• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 298
  • 128
  • 34
  • 31
  • 11
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 641
  • 641
  • 151
  • 127
  • 117
  • 113
  • 109
  • 94
  • 90
  • 81
  • 76
  • 73
  • 60
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Complex Rare-earth Antimonide Suboxides for Thermoelectric Applications

Wang, Li Peng 04 1900 (has links)
<p>Thermoelectric (TE) materials are able to convert heat directly into electricity and vice versa. This special property makes them valuable for a variety of applications involving power generation and refrigeration. In the search for potential high-performance TE materials, a number of rare-earth (<em>RE</em>) antimonide suboxide phases have been investigated.This presentation will focus on two classes of rare-earth antimonide suboxides: the <em>RE</em><sub>3</sub>Sb<sub>3</sub>O<sub>3</sub> and <em>RE</em><sub>8</sub>Sb<sub>3-</sub><em><sub>d</sub></em>O<sub>8</sub> phases (<em>C</em>2/<em>m</em> space group) based on the <em>RE</em>–O frameworks and the <em>anti</em>-ThCr<sub>2</sub>Si<sub>2</sub> type <em>RE</em><sub>2</sub>SbO<sub>2</sub> compounds (<em>I</em>4/<em>mmm</em> space group). The physical property measurements on the high-purity bulk samples revealed unexpected semiconducting properties in the non-charge-balanced systems, i.e.<em> RE</em><sub>8</sub>Sb<sub>3-</sub><em><sub>d</sub></em>O<sub>8</sub> and <em>RE</em><sub>2</sub>SbO<sub>2</sub>. Since the electronic structure calculations suggest that the anionic Sb states dominate the valence band at the vicinity of the Fermi level, the local structure of the Sb atomic site is believed to dictate the observed physical properties. The charge transport properties are explained within the framework of Anderson/Mott-type localizations. Ultimately, systematic investigation of the <em>RE</em><sub>2</sub>SbO<sub>2</sub> and Ho<sub>2</sub>Sb<sub>1-<em>x</em></sub>Bi<em><sub>x</sub></em>O<sub>2</sub> series reveal the large variability of the electrical properties caused by the local structural perturbations.</p> / Doctor of Philosophy (PhD)
532

Optimizing the Pd Sites in Pure Metallic Aerogels for Efficient Electrocatalytic H₂O₂ Production

Zhang, Xin, Wang, Cui, Chen, Kai, Clark, Adam H., Hübner, René, Zhan, Jinhua, Zhang, Liang, Eychmüller, Alexander, Cai, Bin 07 November 2024 (has links)
Decentralized electrochemical production of hydrogen peroxide (H₂O₂) is an attractive alternative to the industrial anthraquinone process, the application of which is hindered by the lack of high-performance electrocatalysts in acidic media. Herein, a novel catalyst design strategy is reported to optimize the Pd sites in pure metallic aerogels by tuning their geometric environments and electronic structures. By increasing the Hg content in the Pd–Hg aerogels, the Pd–Pd coordination is gradually diminished, resulting in isolated, single-atom-like Pd motifs in the Pd₂Hg₅ aerogel. Further heterometal doping leads to a series of M–Pd₂Hg₅ aerogels with an unalterable geometric environment, allowing for sole investigation of the electronic effects. Combining theoretical and experimental analyses, a volcano relationship is obtained for the M–Pd₂Hg₅ aerogels, demonstrating an effective tunability of the electronic structure of the Pd active sites. The optimized Au–Pd₂Hg₅ aerogel exhibits an outstanding H₂O₂ selectivity of 92.8% as well as transferred electron numbers of ≈2.1 in the potential range of 0.0–0.4 V/RHE. This work opens a door for designing metallic aerogel electrocatalysts for H₂O₂ production and highlights the importance of electronic effects in tuning electrocatalytic performances.
533

First Principles Calculations of Electron Transport and Structural Damage by Intense Irradiation

Ortiz, Carlos January 2009 (has links)
First principle electronic structure theory is used to describe the effect of crystal binding on radiation detectors, electron transport properties, and structural damage induced by intense irradiation. A large database containing general electronic structure results to which data mining algorithms can be applied in the search for new functional materials, a case study is presented for scintillator detector materials. Inelastic cross sections for the generation of secondary electron cascades through impact ionization are derived from the dielectric response of an electron gas and evolved in time with Molecular Dynamics (MD). Qualitative and quantitive estimates are presented for the excitation and relaxation of a sample irradiated with Free Electron Laser pulses. A study is presented in where the structural damage on covalent bonded crystals following intense irradiation is derived from a Tight Binding approach and evolved in time with MD in where the evolution of the sample is derived from GW theory for the quasiparticle spectra and a dedicated Boltzmann transport equation for the impact ionization.
534

Etude ab initio des effets de corrélation et des effets relativistes dans les halogénures diatomiques de métaux de transition / Ab initio study of the correlation and relativistic effects in diatomic halides containing a transition metal.

Rinskopf, Nathalie 07 September 2007 (has links)
Ce travail est une contribution ab initio à la caractérisation d'halogénures diatomiques de métaux de transition. Nous avons choisi de caractériser la structure électronique des chlorures de métaux de transition du groupe Vb (NbCl et TaCl) et du fluorure de nickel car une série de spectres les concernant ont été enregistrés mais aucune donnée théorique fiable n'était disponible dans la littérature.<p><p>Pour étudier ces molécules, nous avons appliqué une procédure de calcul à deux étapes qui permet de tenir compte des effets de corrélation électronique et des effets relativistes. Dans la première étape, nous avons réalisé des calculs CASSCF/ICMRCI+Q de grande taille qui tiennent compte de l'énergie de corrélation et introduisent des effets relativistes scalaires. Dans la deuxième étape, le couplage spin-orbite est traité par la "state interacting method" implémentée dans le logiciel MOLPRO. Nous avons développé des stratégies de calcul basées sur ces méthodes de calcul et adaptées aux différentes molécules ciblées. Ainsi, pour les molécules NbCl et TaCl, nous avons utilisé des pseudopotentiels relativistes scalaires et spin-orbite, tandis que pour la molécule NiF, nous avons réalisé des calculs tous électrons.<p><p>Nous avons d'abord testé la stratégie de calcul sur les cations Nb+ et Ta+. Ensuite, nous avons calculé pour la première fois les structures électroniques relativiste scalaire et spin-orbite des molécules NbCl (de 0 à 17000 cm-1) et TaCl (de 0 à 23000 cm-1). A l'aide de ces données théoriques, nous avons interprété les spectres expérimentaux en collaboration avec Bernath et al. Nous avons proposé plusieurs attributions de transitions électroniques en accord avec l'expérience mais nos résultats théoriques ne nous ont pas permis de les attribuer toutes. Néanmoins, nous avons mis en évidence une série d'autres transitions électroniques probables qui pourraient, à l'avenir, servir à l'interprétation de nouveaux spectres mieux résolus. <p><p>Outre son intérêt expérimental, cette étude a permis de comparer les structures électroniques des molécules isovalencielles VCl, NbCl et TaCl, mettant en évidence des différences importantes.<p>L'élaboration d'une nouvelle stratégie de calcul pour décrire les systèmes contenant l'atome de nickel représentait un véritable défi en raison de la complexité des effets de corrélation électronique. Notre stratégie de calcul a consisté à introduire ces effets en veillant à réduire au maximum la taille des calculs qui devenait considérable.<p>Nous l'avons testée sur l'atome Ni et appliquée ensuite au calcul des structures électroniques relativiste scalaire et spin-orbite de la molécule NiF entre 0 à 2500 cm-1. Nous avons obtenus des résultats qui corroborent l'expérience. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
535

Electronic and magnetic properties of transition metal compounds: An x-ray spectroscopic study

Küpper, Karsten 15 July 2005 (has links)
The aim of the present work was to develop a detailed picture of the electronic and magnetic properties of a number of interesting transition metal compounds. A number of complementary experimental and theoretical techniques have been applied, special emphasis was given to x-ray spectroscopies. The studies led to a number of results, and the following conclusions can be drawn: The influence of the magnetic ground state (high-spin (FeO) vs. low-spin (FeS2)) with respect to the recorded x-ray spectra was investigated. In particular, by performing RXES on the Fe L edge of the two compounds, very different ratios of La / Lβ integrated intensity for excitation energies close to the L2 edge have been observed. This effect has been explained in terms of the magnetic structure of FeO (high spin), which inhibits Coster-Kronig processes. Special attention has been given to the direct investigation of orbital ordering in a three dimensional CMR manganite, namely La7/8Sr1/8MnO3, by means of x-ray linear dichroism (XLD). We obtained, for the first time, rather strong indications that the coherently distorted Jahn-Teller phase in La7/8Sr1/8MnO3 is accompanied by a predominantly cross type (x2-z2) / (y2-z2) orbital ordering. In addition to manganites the double perovskite Sr2FeMoO6 the combined study by means of x-ray spectroscopies, magnetic measurements and theoretical band structure calculations could resolve some points discussed controversially in the literature. Both, paramagnetic measurements as well as core level spectroscopy of the Fe 2p, Fe 3s and the Mo 3d states suggest a mixed iron valence state involving around 30% Fe3+- Mo5+ and 70% Fe2+ - Mo6+ states in highly ordered Sr2FeMoO6. XPS valence band studies reveal that the Fe 3d states are not extremely localized, and we find evidence that charge transfer between Fe 3d and O 2p states plays an essential role.
536

Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms

Deng, Qingming 13 May 2016 (has links) (PDF)
In this thesis, a series of computational studies based on density functional theory (DFT) and density functional tight-binding (DFTB) is presented to deeply understand experimental results on the synthesis of endohedral fullerenes and graphene/iron hybrids at atomic level. In the first part, a simple and efficient model is proposed to evaluate the strain experienced by clusters encapsulated in endohedral metallofullerenes (EMFs). Calculations for the sole cluster, either in the neutral or the charged state, cannot be used for this goal. However, when the effect of the carbon cage is mimicked by small organic π-systems (such as pentalene and sumanene), the cluster has sufficient freedom to adopt the optimal configuration, and therefore the energetic characteristics of the EMF-induced distortion of the cluster can be evaluated. Both nitride and sulfide clusters were found to be rather flexible. Hence, they can be encapsulated in carbon cages of different size and shape. For carbide M2C2 cluster the situation is more complex. The optimized cluster can adopt either butterfly or linear shapes, and these configurations have substantially different metal-metal distance. Whereas for Sc2C2 both structures are isoenergetic, linear form of the Y2C2 cluster is substantially less stable than the butterfly-shaped configuration. These results show that phenomenon of the “nanoscale fullerene compression” once proposed by Zhang et al. (J. AM. CHEM. SOC. (2012),134(20)) should be “nanoscale fullerene stretching”. Finally, the results also reveal that both Ti2S and Ti2C2 cluster are strained in corresponding EMF molecules, but the origin of the strain is opposite: C78-D3h(5) cage imposes too long Ti···Ti distance for the sulfide cluster and too short distance for the carbide cluster. In the second part of the thesis, possible fullerene geometries and electronic structures have been explored theoretically for the species detected in mass spectra of the Sc-EMF extract synthesized using CH4 as a reactive gas. Two most promising candidates, namely Sc4C@C80-Ih(7) and Sc4C3@C80-Ih(7), have been identified and further studied at the DFT level. For Sc4C@C80, the tetrahedral Sc4 cluster with the central μ4-C atom was found to be 10 kJ/mol more stable than the square cluster. For Sc4C3@C80, the calculation showed that the most stable is the Sc4C3 cluster in which the triangular C3 moiety is η3- and η2-coordinated to Sc atoms. Whereas Sc4C@C80 has rather small HOMO-LUMO gap and low ionization potential, the HOMO-LUMO gap of Sc4C3@C80 is substantially higher and exceeds that of Sc4C2@C80. In the third part, computational studies of structures and reactivity are described for a new type of EMFs with a heptagon that has been produced in the arc-discharge synthesis. DFT computations predict that LaSc2N@Cs(hept)-C80 is more stable than LaSc2N@D5h-C80, so the former should be synthesized in much higher yield than observed. This disagreement may be ascribed to the kinetic factors rather than thermodynamic stability. Because of prospective applications of this EMFs by introducing functional groups, the influence of the heptagon on the chemical properties have been further evaluated. Thermodynamically and kinetically preferred reaction sites are studied computationally for Prato and Bingel-Hirsch cycloaddition reactions. In both types of reactions the heptagon is not affected, and chemical reactivity is determined by the adjacent pentalene units. Thermodynamically controlled Prato addition is predicted to proceed regioselectively across the pentagon/pentagon edges, whereas the most reactive sites in kinetically-controlled Bingel-Hirsch reaction are the carbon atoms next to the pentagon/pentagon edge. Fourth, although various EMFs have been successfully synthesized and characterized, the formation mechanism is still not known in details, and hence control of the synthesis products is rather poor. Therefore, EMF self-assembly process in Sc/carbon vapor in the presence and absence of cooling gas (helium) and reactive gas (NH3 and CH4) is systematically investigated using quantum chemical molecular dynamics (QM/MD) simulations based on the DFTB potentials. The cooling gas effect is that the presence of He atoms accelerates formation of pentagons and hexagons and reduces the size of formed carbon cages in comparison to the analogous He-free simulations. As a result, the Sc/C/He system yields a large number of successful trajectories (i.e. leading to the Sc-EMFs) with more realistic cage-size distribution than the Sc/C system. Encapsulation of Sc atoms within the carbon cage was found to proceed via two parallel mechanisms. The main mechanism involves nucleation of the several hexagons and pentagons with Sc atoms already at the early stages of the carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at high temperatures. Further growth of the carbon cage results in encapsulation of one or two Sc atoms within the forming fullerene. Another encapsulation mechanism is observed in rare cases. In this process, the closed cage is formed with Sc being a part of the carbon network, i.e. being bonded by three or four Sc–C σ-bonds. However, such intermediates are found to be unstable, and transform into the endohedral fullerenes within few picoseconds of annealing. In perfect agreement with experimental studies, extension of the simulation to Fe and Ti showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). The role of “reactive gas” in the EMF synthesis is revealed in dedicated simulations of the fullerene formation in the presence of several molecules of CH4 or NH3. When concentration of reactive gas is high, carbon vapor tends to form graphene flakes or other carbon species terminated by hydrogen atoms, whereas the yield of empty fullerenes is very low. Conversely, with additional metal atoms (Sc) and the same number of NH3 molecules, the yield of fullerenes constantly increase from 5 to 65% which is ascribed to the catalytic activity of metal atoms in the nucleation of carbon cages already at early stage. Moreover, due to the presence of hydrogen atoms from the reactive gas, the carbon cage formation requires much longer time, which provides sufficient reaction time to encapsulate 3 or 4 Sc atoms within one cage. It explains preferential formation of clusterfullerenes in experiments with reactive gas. At the same time, monometallofullerenes and dimetallofullerenes are the main products in absence of reactive gas. We also provide possible growth mechanisms of carbide and cyano-clusterfullerenes in details to elucidate how the intracluster goes into the cage. A possible growth mechanism of nitride clusterfullerenes has been proposed based on DFT results. In the last part, a free-standing crystalline single-atom thick layer of Fe has been studied theoretically. By investigating the energy difference, ΔE, between a suspended Fe monolayer and a nanoparticle using the equivalent number of Fe atoms, one can estimate that the largest stable membrane should be ca. 12 atoms wide or 3 × 3 nm2 which is in excellent agreement with the experimental observation. Otherwise, the possibility of C, O, N atoms embedded into the Fe membrane can been fully excluded by DFTB and DFT simulations, which agrees with electron energy loss spectroscopy (EELS) measurement. A significantly enhanced magnetic moment for single atom thick Fe membranes (3.08 μB) is predicted by DFT as compared to the bulk BCC Fe (2.1 μB), which originates from the 2D nature of the Fe membrane since the dz2 orbital is out-of-plane while the dxy orbital is in-plane.
537

Atomistic modelling of iron with magnetic analytic Bond-Order Potentials

Ford, Michael E. January 2013 (has links)
The development of interatomic potentials for magnetic transition metals, and particularly for iron, is difficult, yet it is also necessary for large-scale atomistic simulations of industrially important iron and steel alloys. The magnetism of iron is especially important as it is responsible for many of the element's unique physical properties -- its bcc ground state structure, its high-temperature phase transitions, and the mobility of its self-interstitial atom (SIA) defects. Yet an accurate description of itinerant magnetism within a real-space formalism is particularly challenging and existing interatomic potentials based on the Embedded Atom Method are suited only for studies of near-equilibrium ferritic iron, due to their restricted functional forms. For this work, the magnetic analytic Bond-Order Potential (BOP) method has been implemented in full to test the convergence properties in both collinear and non-collinear magnetic iron. The known problems with negative densities of states (DOS) are addressed by assessing various possible definitions for the bandwidth and by including the damping factors adapted from the Kernel Polynomial Method. A 9-moment approximation is found to be sufficient to reproduce the major structural energy differences observed in Density Functional Theory (DFT) and Tight Binding (TB) reference calculations, as well as the volume dependence of the atomic magnetic moments. The Bain path connecting bcc and fcc structures and the formation energy of mono- and divacancies are also described well at this level of approximation. Other quantities such as the high-spin/low-spin transition in fcc iron, the bcc elastic constants and the SIA formation energies converge more slowly towards the TB reference data. The theory of non-collinear magnetism within analytic BOP is extended as required for a practical implementation. The spin-rotational behaviour of the energy is shown to converge more slowly than the collinear bulk energy differences, and there are specific problems at low angles of rotation where the magnitude of the magnetic moment depends sensitively on the detailed structure of the local DOS. Issues of charge transfer in relation to magnetic defects are discussed, as well as inadequacies in the underlying d-electron TB model.
538

Electronic Structure And Bonding In Metallaboranes And Main Group Compounds

Hari Krishna Reddy, Kurre 10 1900 (has links) (PDF)
This thesis entitled “Electronic Structure and Bonding in Metallaboranes and Main Group Compounds” consists of five chapters. Chapter 1 gives an exposition of concepts and techniques used in understanding the electronic structure and bonding in some chemically interesting molecules. Heuristics concepts like isolobal analogy and electron counting rules are used in analyzing and predicting some novel chemical systems. A brief description of computational techniques such as density functional theory (DFT) based methods are used to quantitatively examine the structures and energies of these systems. In chapter 2 we present a critical analysis of bonding in neutral and dianionic stannadiphospholes and compare the potential energy surfaces with the isoelectronic Cp+ and Cp- species. The analysis indicates that Sn can be a better isolobal analogue to P+ than to BH or CH+. In chapter 3 we present new strategy to stabilize B2H4 in planar configuration using transition metal fragments. This requires the metal to donate two electrons into the empty B-B π orbital. Such complexes present a unique case study to the classical DCD model of metal-π complex. In chapter 4 we study the bonding in some recently synthesized metallaboranes which does not follow conventional electron counting rules. The complex and non-canonical nature of these metallaboranes feature some unique bonding patterns which are elucidated using theoretical techniques. In the final chapter we present new approach to build metal coated boron fullerenes. We use electron counting rules to device new structures which show enhanced metal boron bonding.
539

Étude DFT+U des phases structurales du La2CuO4

Delaval-Lebel, Merlin 08 1900 (has links)
Ce mémoire traite des propriétés du La2CuO4 dopé en trous, le premier supraconducteur à haute température critique ayant été découvert. Les différentes phases électroniques du cristal y seront présentées, ainsi que le diagramme de phases en dopage de ce matériau. Les trois structures dans lesquelles on peut retrouver ce cristal seront décrites en détail, et leurs liens présumés avec les phases électroniques seront présentés. Il s’en suivra une étude utilisant la théorie de la fonctionnelle de la densité combinée au modèle de Hubbard (DFT+U) des différentes phases structurales, en plus des phases antiferromagnétiques et paramagnétiques. L’effet de la corrélation électronique sur la structure cristalline sera également étudié par l’intermédiaire du paramètre de Hubbard. Le but sera de vérifier si la DFT+U reproduit bien le diagramme de phases expérimentales, et sous quelles conditions. Une étude des effets de l’inclinaison des octaèdres d’oxygène sur la structure électronique sera également présentée. / Presented here is a study on the hole doped La2CuO4, the first discovered high-­‐Tc superconductor of the cuprate family. The different electronic phases of this crystal are briefly reviewed. The three crystal structures present in this material are described, and the link between those phases and the electronic structure are discussed. The relationship of those structural phases with the magnetic phases is investigated with the help of calculations based on the density functional theory where an additional Hubbard term has been added (DFT+U). With the help of the Hubbard parameter, the effect of the electronic correlation’s strength on the structural parameters of the crystal is also studied. The idea here is to verify how well the DFT+U is able to reproduce the experimental phase diagram of this material. The effect of the tilting of the oxygen octahedras on the electronic structure is also addressed.
540

Anwendung von Tensorapproximationen auf die Full Configuration Interaction Methode

Böhm, Karl-Heinz 12 September 2016 (has links) (PDF)
In dieser Arbeit werden verschiedene Ansätze untersucht, um Tensorzerlegungsmethoden auf die Full-Configuration-Interaction-Methode (FCI) anzuwenden. Das Ziel dieser Ansätze ist es, zuverlässig konvergierende Algorithmen zu erstellen, welche es erlauben, die Wellenfunktion effizient im Canonical-Product-Tensorformat (CP) zu approximieren. Hierzu werden drei Ansätze vorgestellt, um die FCI-Wellenfunktion zu repräsentieren und darauf basierend die benötigten Koeffizienten zu bestimmen. Der erste Ansatz beruht auf einer Entwicklung der Wellenfunktion als Linearkombination von Slaterdeterminanten, bei welcher in einer Hierarchie ausgehend von der Hartree-Fock-Slaterdeterminante sukzessive besetzte Orbitale durch virtuelle Orbitale ersetzt werden. Unter Nutzung von Tensorrepräsentationen im CP wird ein lineares Gleichungssystem gelöst, um die FCI-Koeffizienten zu bestimmen. Im darauf folgenden Ansatz, welcher an Direct-CI angelehnt ist, werden Tensorrepräsentationen der Hamiltonmatrix und des Koeffizientenvektors aufgestellt, welche zur Lösung des FCI-Eigenwertproblems erforderlich sind. Hier wird ein Algorithmus vorgestellt, mit welchem das Eigenwertproblem im CP gelöst wird. In einem weiteren Ansatz wird die Repräsentation der Hamiltonmatrix und des Koeffizientenvektors im Fockraum formuliert. Dieser Ansatz erlaubt die Lösung des FCI-Eigenwertproblems mit Hilfe verschiedener Algorithmen. Diese orientieren sich an den Rayleighquotienteniterationen oder dem Davidsonalgorithmus, wobei für den ersten Algorithmus eine zweite Version entwickelt wurde, wo die Rangreduktion teilweise durch Projektionen ersetzt wurde. Für den Davidsonalgorithmus ist ein breiteres Spektrum von Molekülen behandelbar und somit können erste Untersuchungen zur Skalierung und zu den zu erwartenden Fehlern vorgestellt werden. Schließlich wird ein Ausblick auf mögliche Weiterentwicklungen gegeben, welche eine effizientere Berechnung ermöglichen und somit FCI im CP auch für größere Moleküle zugänglich macht. / In this thesis, various approaches are investigated to apply tensor decomposition methods to the Full Configuration Interaction method (FCI). The aim of these approaches is the development of algorithms, which converge reliably and which permit to approximate the wave function efficiently in the Canonical Product format (CP). Three approaches are introduced to represent the FCI wave function and to obtain the corresponding coefficients. The first approach ist based on an expansion of the wave function as a linear combination of slater determinants. In this hierarchical expansion, starting from the Hartree Fock slater determinant, the occupied orbitals are substituted by virtual orbitals. Using tensor representations in the CP, a linear system of equations is solved to obtain the FCI coefficients. In a further approach, tensor representations of the Hamiltonian matrix and the coefficient vectors are set up, which are required to solve the FCI eigenvalue problem. The tensor contractions and an algorithm to solve the eigenvalue problem in the CP are explained her in detail. In the next approach, tensor representations of the Hamiltonian matrix and the coefficient vector are constructed in the Fock space. This approach allows the application of various algorithms. They are based on the Rayleight Quotient Algorithm and the Davidson algorithm and for the first one, there exists a second version, where the rank reduction algorithm is replaced by projections. The Davidson algorithm allows to treat a broader spectrum of molecules. First investigations regarding the scaling behaviour and the expectable errors can be shown for this approach. Finally, an outlook on the further development is given, that allows for more efficient calculations and makes FCI in the CP accessible for larger molecules.

Page generated in 0.0653 seconds