• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 29
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 433
  • 433
  • 230
  • 229
  • 216
  • 131
  • 126
  • 81
  • 73
  • 53
  • 53
  • 49
  • 46
  • 41
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Design and Evaluation of an L-Band Current-Mode Class-D Power Amplifier Integrated Circuit

Shusta, Michael J 29 August 2014 (has links) (PDF)
Power amplifiers (PAs) convert energy from DC to high frequencies in all radio and microwave transmitter systems be they wireless base stations, handsets, radars, heaters, and so on. PAs are the dominant consumers of energy in these systems and, therefore, the dominant sources of system cost and inefficiency. Research has focused on efficient solid-state PA circuit topologies and their optimization since the 1960s. The 2000s saw the current-mode class-D (CMCD) topology, potentially suitable for today's wireless communications systems, show promise in the UHF frequency band. This thesis describes the design and testing of a high-efficiency CMCD amplifier with an integrated driver stage. In addition, analysis of a merged PA-mixer circuit based on the CMCD is provided.
402

Planar Ultra-Wideband Modular Antenna (PUMA) Arrays for High-Volume Manufacturing on Organic Laminates and BGA Interfaces

LaCroix, James R 21 March 2022 (has links) (PDF)
This work proposes wideband and broadband Planar Ultra-wideband Modular Antenna (PUMA) arrays designed to improve cost and reliability for high production volume commercial and military applications. The designs feature simplified PCB stack-ups with high dielectric constant (Dk) dimensionally stable materials to improve the manufacturing cost and yield. Additionally, the packages use ball grid array (BGA) interconnects, commonly used in digital electronics, for simple solder reflow integration with radio frequency (RF) electronics. While high Dk materials present practical manufacturing benefits, theoretical background will show how and why PUMA arrays lose frequency bandwidth and scan volume with high Dk materials. Further, a band limiting cavity mode will be shown to encroach into the frequency band of high Dk PUMA arrays due to a higher order common mode. PUMA arrays designed on several high Dk materials (Dk = {2.55, 3, 3.7}) will be presented to characterize this reduction in bandwidth. A wideband 7.25-31 GHz (4.3:1) PUMA array-on-package designed on Rogers RO4725JXR (Dk = 2.55) is presented with infinite array simulation results showing good active impedance match, port isolation and cross-polarization performance out to q = 45°. A simplified broadband 15-21 GHz (30%) PUMA array on a thin (λ/11) single layer of Isola FR408HR (Dk = 3.7) is proposed with infinite array results predicting strong active impedance, port isolation and cross-polarization performance with better port isolation and cross-polarization levels than a similar dual-polarized probe fed patch array.
403

Analysis of the Annealing Budget of Metal Oxide Thin-Film Transistors Prepared by an Aqueous Blade-Coating Process

Tang, Tianyu, Dacha, Preetam, Haase, Katherina, Kreß, Joshua, Hänisch, Christian, Perez, Jonathan, Krupskaya, Yulia, Tahn, Alexander, Pohl, Darius, Schneider, Sebastian, Talnack, Felix, Hambsch, Mike, Reineke, Sebastian, Vaynzof, Yana, Mannsfeld, Stefan C. B. 18 April 2024 (has links)
Metal oxide (MO) semiconductors are widely used in electronic devices due to their high optical transmittance and promising electrical performance. This work describes the advancement toward an eco-friendly, streamlined method for preparing thin-film transistors (TFTs) via a pure water-solution blade-coating process with focus on a low thermal budget. Low temperature and rapid annealing of triple-coated indium oxide thin-film transistors (3C-TFTs) and indium oxide/zinc oxide/indium oxide thin-film transistors (IZI-TFTs) on a 300 nm SiO2 gate dielectric at 300 °C for only 60 s yields devices with an average field effect mobility of 10.7 and 13.8 cm2 V−1 s−1, respectively. The devices show an excellent on/off ratio (>106), and a threshold voltage close to 0 V when measured in air. Flexible MO-TFTs on polyimide substrates with AlOx dielectrics fabricated by rapid annealing treatment can achieve a remarkable mobility of over 10 cm2 V−1 s−1 at low operating voltage. When using a longer post-coating annealing period of 20 min, high-performance 3C-TFTs (over 18 cm2 V−1 s−1) and IZI-TFTs (over 38 cm2 V−1 s−1) using MO semiconductor layers annealed at 300 °C are achieved.
404

Estudo de camadas transportadoras de cargas em diodos emissores de luz poliméricos. / Study of charge transport layers in polymer light emitting diodes.

Santos, João Claudio de Brito 20 April 2007 (has links)
No presente trabalho foi realizado o estudo das propriedades ópticas e elétricas de dispositivos eletroluminescentes poliméricos, conhecidos como diodos emissores de luz poliméricos (PLEDs), e o desenvolvimento de camadas transportadoras de carga (HTL), que visam promover um aumento da eficiência elétrica dos dispositivos. Para o estudo das propriedades ópticas e elétricas dos PLEDs, foram fabricados dispositivos com estruturas do tipo Ânodo/HTL/Polímero Eletroluminescente/Cátodo. Foram apresentadas todas as etapas de fabricação dos dispositivos, assim como seus processos de caracterização. Para o ânodo, foi utilizado um óxido transparente condutor, óxido de índio-estanho - ITO, com tratamento superficial em plasma de oxigênio. Foram estudados três materiais diferentes para as HTLs. Filmes de PAni:PVS ou PAni:Ni-TS-Pc foram depositados pela técnica de automontagem (Layer-by-Layer) e os filmes de PEDOT:PSS foram depositados pelo método de spin-coating. O polímero eletroluminescente utilizado neste trabalho foi o MEH-PPV, também depositado pelo método de spin-coating. Para o cátodo foi utilizado o alumínio, evaporado termicamente. O encapsulamento dos dispositivos foi realizado em atmosfera inerte de argônio para diminuir os efeitos de degradação através do oxigênio e da luz. O emprego de camadas transportadoras de buracos (HTLs) resultou numa sensível diminuição no valor da tensão de operação dos dispositivos, quando empregados filmes de PAni:PVS e PAni:Ni-TS-Pc. Os valores das tensões de operação baixaram de 12 V para cerca de 3 V em relação aos dispositivos fabricados sem a utilização de HTLs. Através da microscopia de força atômica, foi possível determinar a espessura das bicamadas e a rugosidade superficial dos filmes de PAni:PVS para correlacionar estes resultados com a resposta elétrica dos dispositivos. Espessuras de 4nm (para 1 bicamada) resultaram em tensões de operação de 3 V. Foi possível verificar também, por espectroscopia no UV-VIS, que este tipo de filme absorve luz em freqüência diferente daquela emitida pelo MEH-PPV. Medidas elétricas em regime de corrente contínua, curvas de Corrente vs. Tensão e, em regime de corrente alternada, espectroscopia de impedância, foram realizadas em dispositivos para determinar o valor da tensão de operação e estudar os efeitos de interface nas diferentes camadas que compõe um dispositivo. Através das curvas obtidas pela espectroscopia de impedância, foi possível determinar os valores dos componentes dos circuitos equivalentes (capacitores e resistores). Com isso, é possível simular o comportamento destes dispositivos através de circuitos elétricos antes mesmo de serem fabricados. Pelos resultados obtidos, todas as HTLs estudadas contribuíram para uma sensível diminuição no valor da tensão de operação dos dispositivos, apontando-os como excelentes materiais a serem utilizados com o objetivo de alcançar uma maior eficiência e um melhor desempenho destes dispositivos. / In the present work, the study of the optical and electrical properties of polymeric electroluminescent devices known as Polymer Light-Emitting Diodes (PLEDs) and the development of Hole Transport Layers (HTLs) to promote an increase of the electrical efficiency of the devices was performed. PLEDs were constructed with structures like Anode/HTL/Electroluminescent Polymer/Cathode in order to study the optical and electrical properties of these devices. All the stages of the devices production were presented, as well as its characterization processes. For the anode a conductive transparent oxide (Indium Tin Oxide - ITO) with a superficial oxygen plasma treatment was used. Three different materials for the HTLs were used. Films of PAni:PVS or PAni:Ni-TS-Pc were deposited by the self-assembly technique (Layer-by-Layer) and the films of PEDOT:PSS were deposited by the spin-coating method. The electroluminescent polymer used in this work was MEH-PPV, also deposited by the spin-coating method. Aluminum was deposited by thermal evaporation for the cathode. The devices encapsulation was performed in Argon inert atmosphere to reduce the degradation effects through oxygen and light. The use of Hole Transport Layers (HTLs) resulted in a sensitive decrease in the devices operating voltage value when films of PAni:PVS and PAni:Ni-TS-Pc were used. The operating voltage values have decreased from 12 V to 3 V in relation to the devices assembled without the usage of HTLs. By the use of Atomic Force Microscopy measurements the thickness of the bilayers and the surface roughness of the PAni:PVS films was obtained to correlate these results with the devices electric characteristics. Thicknesses of 3 to 4 nm (for one bilayer) resulted in operating voltage of 3 V. It was possible to verify also, by UVVIS Spectroscopy, that this type of PAni:PVS films absorbs light in a different frequency than that emitted by MEH-PPV. Electric measurements in the direct current, Current vs. Voltage curves and, in alternating current, Impedance Spectroscopy, were performed in devices to determine the operating voltage value and to study the interface effects in the different layers used in the devices. Analyzing the curves obtained by the impedance spectroscopy, it was possible to determine the values of the equivalent circuit components (capacitors and resistors) and, with that, to simulate the behavior of these devices through electric circuits even before they were manufactured. By the experimental results, all the HTLs studied have contributed to a sensitive decrease in the devices operating voltage, indicating them as excellent materials to be used to reach a higher efficiency and a better performance of these devices.
405

Electronic and Magnetic Properties of Two-dimensional Nanomaterials beyond Graphene and Their Gas Sensing Applications: Silicene, Germanene, and Boron Carbide

Mehdi Aghaei, Sadegh 28 June 2017 (has links)
The popularity of graphene owing to its unique properties has triggered huge interest in other two-dimensional (2D) nanomaterials. Among them, silicene shows considerable promise for electronic devices due to the expected compatibility with silicon electronics. However, the high-end potential application of silicene in electronic devices is limited owing to the lack of an energy band gap. Hence, the principal objective of this research is to tune the electronic and magnetic properties of silicene related nanomaterials through first-principles models. I first explored the impact of edge functionalization and doping on the stabilities, electronic, and magnetic properties of silicene nanoribbons (SiNRs) and revealed that the modified structures indicate remarkable spin gapless semiconductor and half-metal behaviors. In order to open and tune a band gap in silicene, SiNRs were perforated with periodic nanoholes. It was found that the band gap varies based on the nanoribbon’s width, nanohole’s repeat periodicity, and nanohole’s position due to the quantum confinement effect. To continue to take advantage of quantum confinement, I also studied the electronic and magnetic properties of hydrogenated silicene nanoflakes (SiNFs). It was discovered that half-hydrogenated SiNFs produce a large spin moment that is directly proportional to the square of the flake’s size. Next, I studied the adsorption behavior of various gas molecules on SiNRs. Based on my results, the SiNR could serve as a highly sensitive gas sensor for CO and NH3 detection and a disposable gas sensor for NO, NO2, and SO2. I also considered adsorption behavior of toxic gas molecules on boron carbide (BC3) and found that unlike graphene, BC3 has good sensitivity to the gas molecules due to the presence of active B atoms. My findings divulged the promising potential of BC3 as a highly sensitive molecular sensor for NO and NH3 detection and a catalyst for NO2 dissociation. Finally, I scrutinized the interactions of CO2 with lithium-functionalized germanene. It was discovered that although a single CO2 molecule was weakly physisorbed on pristine germanene, a significant improvement on its adsorption energy was found by utilizing Li-functionalized germanene as the adsorbent. My results suggest that Li-functionalized germanene shows promise for CO2 capture.
406

Estudo de camadas transportadoras de cargas em diodos emissores de luz poliméricos. / Study of charge transport layers in polymer light emitting diodes.

João Claudio de Brito Santos 20 April 2007 (has links)
No presente trabalho foi realizado o estudo das propriedades ópticas e elétricas de dispositivos eletroluminescentes poliméricos, conhecidos como diodos emissores de luz poliméricos (PLEDs), e o desenvolvimento de camadas transportadoras de carga (HTL), que visam promover um aumento da eficiência elétrica dos dispositivos. Para o estudo das propriedades ópticas e elétricas dos PLEDs, foram fabricados dispositivos com estruturas do tipo Ânodo/HTL/Polímero Eletroluminescente/Cátodo. Foram apresentadas todas as etapas de fabricação dos dispositivos, assim como seus processos de caracterização. Para o ânodo, foi utilizado um óxido transparente condutor, óxido de índio-estanho - ITO, com tratamento superficial em plasma de oxigênio. Foram estudados três materiais diferentes para as HTLs. Filmes de PAni:PVS ou PAni:Ni-TS-Pc foram depositados pela técnica de automontagem (Layer-by-Layer) e os filmes de PEDOT:PSS foram depositados pelo método de spin-coating. O polímero eletroluminescente utilizado neste trabalho foi o MEH-PPV, também depositado pelo método de spin-coating. Para o cátodo foi utilizado o alumínio, evaporado termicamente. O encapsulamento dos dispositivos foi realizado em atmosfera inerte de argônio para diminuir os efeitos de degradação através do oxigênio e da luz. O emprego de camadas transportadoras de buracos (HTLs) resultou numa sensível diminuição no valor da tensão de operação dos dispositivos, quando empregados filmes de PAni:PVS e PAni:Ni-TS-Pc. Os valores das tensões de operação baixaram de 12 V para cerca de 3 V em relação aos dispositivos fabricados sem a utilização de HTLs. Através da microscopia de força atômica, foi possível determinar a espessura das bicamadas e a rugosidade superficial dos filmes de PAni:PVS para correlacionar estes resultados com a resposta elétrica dos dispositivos. Espessuras de 4nm (para 1 bicamada) resultaram em tensões de operação de 3 V. Foi possível verificar também, por espectroscopia no UV-VIS, que este tipo de filme absorve luz em freqüência diferente daquela emitida pelo MEH-PPV. Medidas elétricas em regime de corrente contínua, curvas de Corrente vs. Tensão e, em regime de corrente alternada, espectroscopia de impedância, foram realizadas em dispositivos para determinar o valor da tensão de operação e estudar os efeitos de interface nas diferentes camadas que compõe um dispositivo. Através das curvas obtidas pela espectroscopia de impedância, foi possível determinar os valores dos componentes dos circuitos equivalentes (capacitores e resistores). Com isso, é possível simular o comportamento destes dispositivos através de circuitos elétricos antes mesmo de serem fabricados. Pelos resultados obtidos, todas as HTLs estudadas contribuíram para uma sensível diminuição no valor da tensão de operação dos dispositivos, apontando-os como excelentes materiais a serem utilizados com o objetivo de alcançar uma maior eficiência e um melhor desempenho destes dispositivos. / In the present work, the study of the optical and electrical properties of polymeric electroluminescent devices known as Polymer Light-Emitting Diodes (PLEDs) and the development of Hole Transport Layers (HTLs) to promote an increase of the electrical efficiency of the devices was performed. PLEDs were constructed with structures like Anode/HTL/Electroluminescent Polymer/Cathode in order to study the optical and electrical properties of these devices. All the stages of the devices production were presented, as well as its characterization processes. For the anode a conductive transparent oxide (Indium Tin Oxide - ITO) with a superficial oxygen plasma treatment was used. Three different materials for the HTLs were used. Films of PAni:PVS or PAni:Ni-TS-Pc were deposited by the self-assembly technique (Layer-by-Layer) and the films of PEDOT:PSS were deposited by the spin-coating method. The electroluminescent polymer used in this work was MEH-PPV, also deposited by the spin-coating method. Aluminum was deposited by thermal evaporation for the cathode. The devices encapsulation was performed in Argon inert atmosphere to reduce the degradation effects through oxygen and light. The use of Hole Transport Layers (HTLs) resulted in a sensitive decrease in the devices operating voltage value when films of PAni:PVS and PAni:Ni-TS-Pc were used. The operating voltage values have decreased from 12 V to 3 V in relation to the devices assembled without the usage of HTLs. By the use of Atomic Force Microscopy measurements the thickness of the bilayers and the surface roughness of the PAni:PVS films was obtained to correlate these results with the devices electric characteristics. Thicknesses of 3 to 4 nm (for one bilayer) resulted in operating voltage of 3 V. It was possible to verify also, by UVVIS Spectroscopy, that this type of PAni:PVS films absorbs light in a different frequency than that emitted by MEH-PPV. Electric measurements in the direct current, Current vs. Voltage curves and, in alternating current, Impedance Spectroscopy, were performed in devices to determine the operating voltage value and to study the interface effects in the different layers used in the devices. Analyzing the curves obtained by the impedance spectroscopy, it was possible to determine the values of the equivalent circuit components (capacitors and resistors) and, with that, to simulate the behavior of these devices through electric circuits even before they were manufactured. By the experimental results, all the HTLs studied have contributed to a sensitive decrease in the devices operating voltage, indicating them as excellent materials to be used to reach a higher efficiency and a better performance of these devices.
407

Exploration of Real and Complex Dispesion Realtionship of Nanomaterials for Next Generation Transistor Applications

Ghosh, Ram Krishna January 2013 (has links) (PDF)
Technology scaling beyond Moore’s law demands cutting-edge solutions of the gate length scaling in sub-10 nm regime for low power high speed operations. Recently SOI technology has received considerable attention, however manufacturable solutions in sub-10 nm technologies are not yet known for future nanoelectronics. Therefore, to continue scalinginsub-10 nm region, new one(1D) and two dimensional(2D) “nano-materials” and engineering are expected to keep its pace. However, significant challenges must be overcome for nano-material properties in carrier transport to be useful in future silicon nanotechnology. Thus, it is very important to understand and modulate their electronic band structure and transport properties for low power nanoelectronics applications. This thesis tries to provide solutions for some problems in this area. In recent times, one dimensional Silicon nanowire has emerged as a building block for the next generation nano-electronic devices as it can accommodate multiple gate transistor architecture with excellent electrostatic integrity. However as the experimental study of various energy band parameters at the nanoscale regime is extremely challenging, usually one relies on the atomic level simulations, the results of which are at par with the experimental observations. Two such parameters are the band gap and effective mass, which are of pioneer importance for the understanding of the current transport mechanism. Although there exists a large number of empirical relations of the band gap in relaxed Silicon nanowire, however there is a growing demand for the development of a physics based analytical model to standardize different energy band parameters which particularly demands its application in TCAD software for predicting different electrical characteristics of novel devices and its strained counterpart to increase the device characteristics significantly without changing the device architecture. In the first part of this work reports the analytical modeling of energy band gap and electron transport effective mass of relaxed and strained Silicon nanowires in various crystallographic directions for future nanoelectronics. The technology scaling of gate length in beyond Moore’s law devices also demands the SOI body thickness, TSi0 which is essentially very challenging task in nano-device engineering. To overcome this circumstance, two dimensional crystals in atomically thin layered materials have found great attention for future nanolectronics device applications. Graphene, one layer of Graphite, is such 2D materials which have found potentiality in high speed nanoelectronics applications due to its several unique electronic properties. However, the zero band gap in pure Graphene makes it limited in switching device or transistor applications. Thus, opening and tailoring a band gap has become a highly pursued topic in recent graphene research. The second part of this work reports atomistic simulation based real and complex band structure properties Graphene-Boron nitride heterobilayer and Boron Nitride embedded Graphene nanoribbons which can improve the grapheme and its nanoribbon band structure properties without changing their originality. This part also reports the direct band-to-band tunneling phenomena through the complex band structures and their applications in tunnel field effect transistors(TFETs) which has emerged as a strong candidate for next generation low-stand by power(LSTP) applications due to its sub-60mV/dec Sub threshold slope(SS). As the direct band-to-band tunneling(BTBT) is improbable in Silicon(either its bulk or nanowire form), it is difficult to achieve superior TFET characteristics(i.e., very low SS and high ON cur-rent) from the Silicon TFETs. Whereas, it is explored that much high ON current and very low subthreshold slope in hybrid Graphene based TFET characteristics open a new prospect in future TFETs. The investigations on ultrathin body materials also call for a need to explore new 2D materials with finite band gap and their various nanostructures for future nanoelectronic applications in order to replace conventional Silicon. In the third part of this report, we have investigated the electronic and dielectric properties of semiconducting layered Transition metal dichalcogenide materials (MX2)(M=Mo, W;X =S, Se, Te) which has recently emerged as a promising alternative to Si as channel materials for CMOS devices. Five layered MX2 materials(exceptWTe2)in their 2D sheet and 1D nanoribbon forms are considered to study the real and imaginary band structure of thoseMX2 materials by atomistic simulations. Studying the complex dispersion properties, it is shown that all the five MX2 support direct BTBT in their monolayer sheet forms and offer an average ON current and subthresholdslopeof150 A/mand4 mV/dec, respectively. However, onlytheMoTe2 support direct BTBT in its nanoribbon form, whereas the direct BTBT possibility in MoS2 and MoSe2 depends on the number of layers or applied uniaxial strain. WX2 nanoribbons are shown to be non-suitable for efficient TFET operation. Reasonably high tunneling current in these MX2 shows that these can take advantage over conventional Silicon in future tunnel field effect transistor applications.
408

Exploration of Real and Complex Dispesion Realtionship of Nanomaterials for Next Generation Transistor Applications

Ghosh, Ram Krishna January 2013 (has links) (PDF)
Technology scaling beyond Moore’s law demands cutting-edge solutions of the gate length scaling in sub-10 nm regime for low power high speed operations. Recently SOI technology has received considerable attention, however manufacturable solutions in sub-10 nm technologies are not yet known for future nanoelectronics. Therefore, to continue scalinginsub-10 nm region, new one(1D) and two dimensional(2D) “nano-materials” and engineering are expected to keep its pace. However, significant challenges must be overcome for nano-material properties in carrier transport to be useful in future silicon nanotechnology. Thus, it is very important to understand and modulate their electronic band structure and transport properties for low power nanoelectronics applications. This thesis tries to provide solutions for some problems in this area. In recent times, one dimensional Silicon nanowire has emerged as a building block for the next generation nano-electronic devices as it can accommodate multiple gate transistor architecture with excellent electrostatic integrity. However as the experimental study of various energy band parameters at the nanoscale regime is extremely challenging, usually one relies on the atomic level simulations, the results of which are at par with the experimental observations. Two such parameters are the band gap and effective mass, which are of pioneer importance for the understanding of the current transport mechanism. Although there exists a large number of empirical relations of the band gap in relaxed Silicon nanowire, however there is a growing demand for the development of a physics based analytical model to standardize different energy band parameters which particularly demands its application in TCAD software for predicting different electrical characteristics of novel devices and its strained counterpart to increase the device characteristics significantly without changing the device architecture. In the first part of this work reports the analytical modeling of energy band gap and electron transport effective mass of relaxed and strained Silicon nanowires in various crystallographic directions for future nanoelectronics. The technology scaling of gate length in beyond Moore’s law devices also demands the SOI body thickness, TSi0 which is essentially very challenging task in nano-device engineering. To overcome this circumstance, two dimensional crystals in atomically thin layered materials have found great attention for future nanolectronics device applications. Graphene, one layer of Graphite, is such 2D materials which have found potentiality in high speed nanoelectronics applications due to its several unique electronic properties. However, the zero band gap in pure Graphene makes it limited in switching device or transistor applications. Thus, opening and tailoring a band gap has become a highly pursued topic in recent graphene research. The second part of this work reports atomistic simulation based real and complex band structure properties Graphene-Boron nitride heterobilayer and Boron Nitride embedded Graphene nanoribbons which can improve the grapheme and its nanoribbon band structure properties without changing their originality. This part also reports the direct band-to-band tunneling phenomena through the complex band structures and their applications in tunnel field effect transistors(TFETs) which has emerged as a strong candidate for next generation low-stand by power(LSTP) applications due to its sub-60mV/dec Sub threshold slope(SS). As the direct band-to-band tunneling(BTBT) is improbable in Silicon(either its bulk or nanowire form), it is difficult to achieve superior TFET characteristics(i.e., very low SS and high ON cur-rent) from the Silicon TFETs. Whereas, it is explored that much high ON current and very low subthreshold slope in hybrid Graphene based TFET characteristics open a new prospect in future TFETs. The investigations on ultrathin body materials also call for a need to explore new 2D materials with finite band gap and their various nanostructures for future nanoelectronic applications in order to replace conventional Silicon. In the third part of this report, we have investigated the electronic and dielectric properties of semiconducting layered Transition metal dichalcogenide materials (MX2)(M=Mo, W;X =S, Se, Te) which has recently emerged as a promising alternative to Si as channel materials for CMOS devices. Five layered MX2 materials(exceptWTe2)in their 2D sheet and 1D nanoribbon forms are considered to study the real and imaginary band structure of thoseMX2 materials by atomistic simulations. Studying the complex dispersion properties, it is shown that all the five MX2 support direct BTBT in their monolayer sheet forms and offer an average ON current and subthresholdslopeof150 A/mand4 mV/dec, respectively. However, onlytheMoTe2 support direct BTBT in its nanoribbon form, whereas the direct BTBT possibility in MoS2 and MoSe2 depends on the number of layers or applied uniaxial strain. WX2 nanoribbons are shown to be non-suitable for efficient TFET operation. Reasonably high tunneling current in these MX2 shows that these can take advantage over conventional Silicon in future tunnel field effect transistor applications.
409

Development of a Lab-on-a-Chip Device for Rapid Nanotoxicity Assessment In Vitro

Shah, Pratikkumar 11 December 2014 (has links)
Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.
410

Nanofabrication and Spectroscopy of Magnetic Nanostructures Using a Focused Ion Beam

Hadjikhani, Ali 08 July 2016 (has links)
This research used a focused ion beam in order to fabricate record small nano-magnetic structures, investigate the properties of magnetic materials in the rarely studied range of nanometer size, and exploit their extraordinary characteristics in medicine and nano-electronics. This study consists of two parts: (i) Fabrication and study of record small magnetic tunnel junctions (ii) Introduction of a novel method for detection of magnetoelectric nanoparticles (MENs) in the tissue. A key challenge in further scaling of CMOS devices is being able to perform non-volatile logic with near zero power consumption. Sub-10-nm nanomagnetic spin transfer torque (STT) magnetic tunneling junctions (MTJs) have the potential for a universal memory that can address this key challenge. The main problem is to decrease the switching current density. This research studied these structures in sub-10-nm size range. In this range, spin related excitations consume considerably smaller amounts of energy as compared to the larger scale. This research concluded that as predicted a decrease in switching current superior to that of the linear scaling will happen in this size range. Magneto-electric nanoparticles (MENs) can be used to directly couple intrinsic electric-field-driven processes with external magnetic fields for controlling neural activity deep in the brain. These particles have been proven to be capable of inducing deep brain stimulation non-invasively. Furthermore, these magneto-electric nano-particles can be used for targeted drug delivery and are contenders to replace conventional chemotherapy. The circulatory system can deliver a drug to almost every cell in the body; however, delivering the drug specifically into the tumor cell and then releasing it on demand remains a formidable task. Nanomedicine can accomplish this, but ensuring that the drug is released at an appropriate rate once at the target site is an important task. In order to have a complete understanding of the behavior of these MENs when injected into the body, a comprehensive bio-distribution study was performed. This study introduced a novel spectroscopy method for tracing the nanoparticles in the bloodstream. This study investigated the post injection distribution of the MENs in vital organs throughout a period of two months.

Page generated in 0.0716 seconds