• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 58
  • 40
  • 37
  • 13
  • 10
  • 10
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 567
  • 92
  • 56
  • 49
  • 41
  • 39
  • 39
  • 39
  • 38
  • 37
  • 37
  • 36
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

ECC-D4 Electostatic Oil Cleaner Design for Heavy-Duty Gas Turbine Applications

Gorur, Murat January 2010 (has links)
The turbine technology improvements from 1980 onwards have considerably increased mechanical and thermal stresses on turbine oils which, cause oil oxidation and thereby turbine oil degradation (Livingstone et al., 2007; Sasaki & Uchiyama, 2002). If the oil degradation problem is ignored, this might result in serious turbine system erratic trips and start-up operational problems (Overgaag et al., 2009). Oil oxidation by-products, in other words, sludge and varnish contaminants, lead stated turbine operation-tribological problems. Hence, sludge and varnish presence in turbine oil become a major reason for declining turbine reliability and availability. In the power generation industry, heavy-duty gas turbines as well as steam turbines have been lubricated with mineral based turbine oils for many decades (Okazaki & Badal, 2005). First, generally Group I oils (mineral base oils produced by solvent extraction, dewaxing) were used. Nevertheless, this group of oils has lower oxidation resistance. Therefore, modern gas turbines demand oils which have better oil oxidation resistance, and lower sludge and varnish contaminants tendency (Hannon, 2009). Today, there are many turbine lubricants available on the market. Besides Group I oils, more and more Group II oils (mineral base oils produced by hydro cracking and hydro treating) are selected in service, and having increased oil oxidation resistance. However field inspections demonstrate that Group II oils also experience sludge and varnish problems as well as Group I oils. Primary reason for these phenomena is the antioxidant additive packages that are used in Group II oils (Overgaag et al., 2009). In any case with recent oil formulations, oil degradation products still exist in current turbine oils, and will continue to do so in natural process. These sludge and varnish contaminants are less than 1 micron in size. Thus, they can pass turbine oil system standard mechanical filters without obstruction. With regard to keep the turbine systems in best operational conditions, external turbine oil cleaning practices became crucial to remove these less than 1 micron size oil degradation products from turbine oils. Current effective method for removing the sludge and varnish is to use electrostatic oil cleaners (Moehle & Gatto et al., 2007). Since the majority of turbine user and operator population have been shifted to use Group II based oils to counter the increased sludge and varnish problems, traditional oil cleaners became insufficient to remove sludge and varnish from Group II. (Due to Group II oils have different oil characteristics such as oil oxidation stability and solvency capability). With this awareness, thesis project is looking for ways to introduce and develop an Advanced Electrostatic Oil Cleaner to increase the availability and reliability figures of heavy-duty gas turbines against the rising amount of oil degradation products in modern formulated turbine oils. ECC (Electrostatic Cooled Cleaner) is an electrostatic oil cleaner device to clean and cool mineral based turbine oils for heavy-duty gas turbine applications by removing the sludge and varnish - oil contaminants from turbine oils. The basic principle of the ECC is based on the electrostatic force produced by parallel positioned electrodes which are charged with a high D.C. voltage. Oil contaminants- sludge and varnish have polar nature. Therefore, they are attracted by electrostatic forces whose intensity is proportional to the voltage applied. With the oil flowing in parallel to these electrodes, the polar particles in the oil (which is only neutral /no polar) are caught by filter media positioned between these electrodes. Small investments on advanced oil cleaner result in big savings on turbine system performance. Increased turbine availability and reliability predominantly reduce maintenance costs and risks besides, and thus maximizing revenue by extending heavy-duty gas turbine operational life. An introduced prototype of the ECC-D4 model was tested using two Group II and one Group I oils. The amounts of 200 liter (each) test oils were circulated approximately 300 times through the ECC-D4. In each 3 oil cleaning test sessions, it is proved that the oil insolubles content decreased approximately 40% in tested turbine oils within about 240 ECC-D4 operating hours. With taken base of heavy-duty gas turbine characteristics such as 400 MW power production capacity, annually 8000 operating hours, and 15000 liter oil reservoir volume; it is estimated that the ECC-D4 can extend the oil service-life from 24000 to 48000 operating hours (which is approximately the oil service end-life). In addition to that, assuming the ECC-D4 investment cost as 30k€, about 15k€ savings per year through the new turbine oil and component replacement costs, besides turbine operation profit losses. Moreover, the ECC-D4 returns on investment with a rate of 39 % for defined heavy-duty gas turbine. In general perspective of ECC-D4, it makes heavy-duty gas turbine infrastructure innovative, fully integrated and committed to fulfilling the need for clean, efficient, reliable power production practices in an environmental manner.
182

Structural optimization of actuators and mechanisms considering electrostatic-structural coupling effects and geometric nonlinearity / 静電-構造連成効果および幾何学的非線形性を考慮したアクチュエータと機構の構造最適化

Kotani, Takayo 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18585号 / 工博第3946号 / 新制||工||1606(附属図書館) / 31485 / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 西脇 眞二, 教授 田畑 修, 教授 松原 厚 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
183

Study of Electrostatic Charging and Particle Wall Fouling in a Pilot-scale Pressurized Gas-Solid Fluidized Bed up to Turbulent Flow Regime

Song, Di January 2017 (has links)
In gas-solid fluidized beds, the generation of electrostatic charges due to continuous contacts between fluidizing particles, and the particles and the fluidization vessel wall, is unavoidable. Industrial operations, such as the production of polyethylene, are susceptible to significant operational challenges caused by electrostatics including reactor wall fouling, a problem known as “sheeting”. The formation of particle sheets can require shutdown periods for clean-up which results in significant economic losses. To gain a better understanding of the underlying mechanisms of electrostatic charging in gas-solid fluidized beds, in an attempt to eliminate or minimize this problem, a pilot-scale pressurized gas-solid fluidization system was designed and built, housing an online electrostatic charge measurement technique consisting of two Faraday cups. The system permits the study of the degree of particle wall fouling at pressures and temperatures up to 2600 kPa and 100°C, respectively, and gas velocities up to 1 m/s (covering a range including turbulent flow regime). The system also allowed, for the first time, the measurement of the fluidizing particles’ mass, net charge and size distribution in various regions of the bed, especially those related to the wall coating under the industrially relevant operating conditions of high pressures and gas velocities. Experimental trials were carried out using polyethylene resin received from commercial reactors to investigate the influence of pressure and gas velocity on the bed hydrodynamics and in turn, the degree of bed electrification. Mechanisms for particle charging, migration and adherence to the column wall were proposed. The size distribution of the gas bubbles shifted towards smaller bubbles as the operating pressure was raised. Thus, higher pressures lead to greater mixing within the bulk of the bed and resulted in a higher degree of particle wall fouling. Moreover, the extent of wall fouling increased linearly with the increase in gas velocity and as the bed transitioned to turbulent regime, due to the increase in particle-wall contacts. Bipolar charging was observed especially within the wall coating with smaller particles being negatively charged. Overall, particle-wall contacts generated negatively charged particles resulting in a net negative charge in the bed, whereas particle-particle contacts generated positively and negatively charged particles resulting in no net charge when entrainment was negligible. The formation of the wall layer and its extent was influenced by the gravitational and drag forces balancing the image force and Coulomb forces (created by the net charge of the bed and the metallic column wall as the attraction between oppositely charged particles).
184

Effect of Powder and Target Properties on Food Powder Coating and Comparison of Solid-liquid Separation (SLS) and Vacuum Concentration of Tomato Juice

Sumonsiri, Nutsuda 20 June 2012 (has links)
No description available.
185

Physicochemical, morphological, and adhesion properties of sodium bisulfite modified soy protein components

Zhang, Lu January 1900 (has links)
Master of Science / Department of Grain Science and Industry / X. Susan Sun / Soybean protein modified with sodium bisulfite behaves like latex adhesives, with adhesive strength comparable to formaldehyde-based adhesives. β-conglycinin and glycinin are two major protein components of the adhesive system. The objective of this research was to investigate the effect of sodium bisulfite on the physicochemical, morphological, and adhesion properties of glycinin and β-conglycinin in order to better understand the function of glycinin and β-conglycinin in the formation of the soy latex adhesive. Sodium bisulfite broke the disulfide bonds that linked acidic and basic polypeptides of glycinin, and the reducing effect was enhanced with increasing sodium bisulfite concentration. Although cleavage of disulfide bonds was expected to destabilize proteins, the thermal stability of glycinin increased as the sodium bisulfite concentration increased. Sodium bisulfite modified glycinin had higher surface hydrophobicity, which facilitated hydrophobic interations between molecules and aggregation of glycinin. The balance between hydrophobic interactions and electrostatic forces makes glycinin form unique chain-like structures. Adhesive performance of glycinin dropped significantly at lower sodium bisulfite concentration and then increased as sodium bisulfite concentration increased up to 24 g/L. Excess sodium bisulfite was detrimental to adhesive strength and water resistance. High-molecular-weight aggregates were observed in unmodified β-conglycinin, but these aggregates were dissociated by sodium bisulfite treatment. Similar to glycinin, the thermal stability of β-conglycinin was improved by the modification. However, the denaturation enthalpy of β-conglycinin decreased significantly at high level of sodium bisulfite (36 g/L). The turbidity at pH 4.8 also dropped extensively at the concentration of 36 g/L. The contact angle of β-conglycinin reached its minimum at 6 g/L sodium bisulfite on cherry wood and 24 g/L on glass. Morphology study proved that sodium bisulfite modification made the β-conglycinin solution more dispersed. At pH 9.5, water resistance of β-conglycinin was improved to a small extent by 6 g/L sodium bisulfite. At pH 4.8, adhesive performance was enhanced by 3 g/L and 6 g/L sodium bisulfite. High level of sodium bisulfite at 36 g/L reduced the adhesive performance of β-conglycinin drastically.
186

Electrostatic extraction of buffer-gas-cooled beams for studying ion-molecule chemistry at low temperatures

Twyman, Kathryn S. January 2014 (has links)
This thesis describes the design, construction, operation, and characterisation of an experimental apparatus that produces a source of internally cold, slow molecules that can be used for studying ion-molecule reactions at low temperatures. The apparatus combines buffer-gas cooling with a bent quadrupole velocity selector to cool both the translational and rotational degrees of freedom of the molecules. A cold cell (6 K) is filled with a buffer gas, such as helium, that exhibits sufficiently high vapour pressure for cryogenic applications. Hot molecules (150 to 300 K) enter the cell and thermalise with the buffer gas through collisions. Molecules are subsequently loaded into an electrostatic quadrupole guide, which acts as a velocity filter; only translationally cold polar molecules are guided around the bend. Using a buffer-gas-cooled source of molecules for electrostatic velocity selection, rather than a 300 K effusive source, yields a rotationally cold sample, with J ≤ 3. This rotational selectivity will enable the dependence of reaction cross sections on the reactant rotational state to be examined. Mass spectrometry is used to characterise cold molecular beams of ND3 and CH3F, while (2+1) REMPI spectra are recorded for the ammonia isotopologues. The peak velocity of guided ND3 is 75.86(0.70) ms-1 for standard conditions in a 6 K helium buffer gas cell (1.0 sccm ND3 flow rate, 0.6 mbar helium inlet pressure, ± 5 kV voltage). This corresponds to a peak kinetic energy of 6.92(0.13) K. (2+1) REMPI spectroscopy of the B1E''(v2'=5) ← X(1) transition enabled the rotational state distribution of guided ammonia molecules to be established. PGOPHER simulations of the experimental spectra suggest a rotational temperature of 10 K for ND3 molecules (from a 6 K helium buffer gas cell). The extent of translational and rotational cooling can be controlled by varying the molecular and buffer gas densities within the cell, by changing the temperature of the buffer gas cell (we can operate at 6 K or 17 K), or by changing the buffer gas. The translational temperature of guided ND3 is similar in a 6 K helium and 17 K neon buffer gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively) because the heavier neon gas has a slightly lower thermal velocity at 17 K than helium does at 6 K. Despite similar translational temperatures, the rotational temperature of guided ND3 is lower for molecules exiting the 6 K helium cell compared to the 17 K neon buffer gas cell (10 K and 15 K, respectively). The 6 K helium and 17 K neon buffer gas cells provide an excellent opportunity to investigate the effect of rotational cooling on branching ratios and reaction rates in low temperature ion-molecule reactions. The buffer gas cell and velocity guide described in this work will be combined with a linear Paul ion trap, to facilitate the study of cold ion-molecule reactions.
187

Intense femtosecond laser interactions with ions in beams and traps

Pedregosa Gutierrez, Jofre 03 February 2006 (has links) (PDF)
Intense femtosecond laser interactions with ions in beams and traps
188

A Study of the Flow of Microgels in Patterned Microchannels

Fiddes, Lindsey 30 August 2011 (has links)
This work describes the results of experimental study of the flow of soft objects (microgels) through microchannels. This work was carried with the intention of building a fundamental biophysical model for the flow of neutrophil cells in microcirculatory system. In Chapter 1 we give a summary of the literature describing the flow of cells and “model cells” in microchannels. Paramount to this we developed methods to modify microchannels fabricated in poly(dimethyl siloxane) (PDMS). Originally, these microchannels could not be used to mimic biological microenvironments because they are hydrophobic and have rectangular cross-sections. We designed a method to create durable protein coatings in PDMS microchannels, as outlined in Chapter 3. Surface modification of the channels was accomplished by a two-step approach which included (i) the site-specific photografting of a layer of poly(acrylamide) (PAAm) to the PDMS surface and (ii) the bioconjugation of PAAm with the desired protein. This method is compatible with different channel geometries and it exhibits excellent longevity under shear stresses up to 1 dyn/cm. The modification was proven to be successful for various proteins of various molecular weights and does not affect protein activity. The microchannels were further modified by modifying the cross-sections in order to replicate cardiovascular flow conditions. In our work, we transformed the rectangular cross-sections into circular corss-sections. Microchannels were modified by polymerizing a liquid silicone oligomer around a gas stream coaxially introduced into the channel, as outlined in Chapter 3. We demonstrated the ability to control the diameter of circular cross-sections of microchannels. The flow behaviour of microgels in microchannels was studied in a series of experiments aimed at studying microgel flow (i) under electrostatic interactions (Chapter 4), (ii) binding of proteins attached to the microgel and the microchannel (Chapter 5) and (iii) under the conditions of varying channel geometry (Chapter 6). This work overall present’s new methods to study the flow of soft objects such as cells, in the confined geometries of microchannels. Using these methods, variables can be independently probed and analyzed.
189

INFLUENCE OF ELECTROSTATIC CHARGE UPON THE DEPOSITION BEHAVIOR OF PHARMACEUTICAL AEROSOLS WITHIN CASCADE IMPACTORS

Mohan, Megha 16 August 2012 (has links)
Cascade impactors, routinely used for in vitro particle size characterization of pharmaceutical aerosols, are calibrated using dilute, charge-neutralized, monodisperse aerosols. But pharmaceutical aerosols are known to generate concentrated, inherently charged, polydisperse aerosol clouds. A computational model of the Andersen Cascade Impactor (ACI) suggested that the presence of charge on aerosol particles may influence their deposition within the ACI, but experimental validation of the model is warranted. This dissertation investigates the influence of electrostatic charge upon the deposition behavior of aerosols within cascade impactors, to address the impact of charge on particle size characterization. The influence of applied charge upon the deposition pattern and aerodynamic particle size distribution (APSD) of commercially available pressurized metered dose inhalers (pMDIs) within the Electrical Low Pressure Impactor (ELPI) was examined. Electrostatic properties were modified using an external voltage source in conjunction with the ELPI corona charger and observed to be dependent on the formulation and device packaging. Induced artificial charge on the aerosol particles influenced the deposition pattern within the impactor, but did not result in a significant change in the apparent APSD. An experimental apparatus capable of producing charge neutralized and charged aerosol, with targeted deposition on the CFD predicted ‘charge sensitive’ ACI stages, was developed. In vitro results were observed to be in partial agreement with the CFD predictions. While charge influenced the deposition pattern in the ACI with increased deposition observed in the charger and on the upper stages of the ACI, it did not influence the apparent APSD of the aerosol. Electrostatic charge effects on deposition behavior within cascade impactors were delineated with respect to space charge and image charge effects by investigating the influence of impactor grounding, particle size, stage coating and loading. While the deposition pattern within the ACI was influenced by charge, only stage coating and stage loading resulted in a small, significant difference in the apparent APSD, which may not be practically relevant due to the variability associated with in vitro aerosol testing. Similar trends were observed in the deposition behavior of charge neutralized and charged aerosol within an abbreviated ACI system compared to the full resolution ACI.
190

Numerical Analysis of Respiratory Aerosol Deposition: Effects of Exhalation, Airway Constriction and Electrostatic Charge

Vinchurkar, Samir C. 01 January 2008 (has links)
The dynamics of particle laden flows are integral to the analysis of toxic particle deposition and medical respiratory aerosol delivery. Computational fluid-particle dynamics (CFPD) can play a critical role in developing a better understanding of particle laden flows, especially in a number of under-explored areas. The applications considered in this study include both the numerical aspects and the physical phenomena of respiratory aerosol transport. Objective I: Considering the effects of mesh type and grid convergence, four commonly implemented mesh styles were applied to a double bifurcation respiratory geometry and tested for flow patterns and aerosol deposition. Results indicated that the mesh style employed had a significant effect on the transport and deposition of aerosols with hexahedral meshes being most accurate. Objective II: In order to evaluate the effects of bronchoconstriction under exhalation conditions, normal and constricted pediatric airway models were considered. Results include (i) a significant increase in deposition for constricted airways, and (ii) a novel correlation for deposition during exhalation based on the Dean and Stokes numbers. Objective IIIa: Considering evaluation of an aerosol size sampler, an eight-stage Andersen cascade impactor (ACI) was numerically analyzed. The numerical simulations indicated high non-uniformity and recirculation in the flow field. Numerical predictions of retention fraction matched well with existing experiments (0.5 – 11% error). Objective IIIb: As an extension to this study, numerical predictions of electrostatic charge effects on aerosol transport and deposition in the ACI were presented. Charges consistent with standard pharmaceutical pressurized metered dose inhalers and dry powder inhalers were considered. The numerical predictions indicated that charged aerosols deposit as if they were 5 – 85% larger due to electrostatic effects. Applications of the studies considered include (i) quantitative guidance in selecting numerical mesh styles and development of standard grid convergence criteria, (ii) the development of more accurate whole-lung deposition models that better evaluate exhalation conditions,(iii) improvements in the design of pharmaceutical assessment and delivery devices, and (vi) correction values to account for electrostatic charge on pharmaceutical aerosols.

Page generated in 0.0774 seconds