• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 59
  • 27
  • 18
  • 17
  • 11
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 330
  • 98
  • 42
  • 32
  • 31
  • 28
  • 26
  • 26
  • 22
  • 21
  • 20
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Uso de descontinuidades fortes na simulação de problemas de fratura

Silva, Cristiane Zuffo da January 2015 (has links)
A formação e propagação de fissuras é um fenômeno observado em diversos materiais utilizados na engenharia, como concreto, metais, cerâmicas e rochas. Tendo em vista a grande influência que fissuras têm no comportamento global da estrutura o objetivo deste trabalho consiste na implementação de um modelo de fissura com descontinuidades fortes incorporadas a fim de analisar o processo de fratura em materiais quase-frágeis. A descontinuidade no campo de deslocamentos (descontinuidade forte) é representada através da introdução de graus de liberdade adicionais no interior do elemento finito, sendo esta abordagem denominada enriquecimento elementar (E-FEM). Nestes modelos a fissura pode se propagar em qualquer direção dentro do elemento finito, evitando a necessidade de redefinição da malha em cada etapa, além de fornecer resultados relativamente independentes da malha de elementos finitos utilizada. Por serem internos a cada elemento finito, os graus de liberdade adicionais podem ser eliminados da solução global por condensação estática. Desta forma as descontinuidades são definidas em nível de elemento e o modelo pode ser facilmente implementado em códigos computacionais existentes. O modelo implementado foi proposto por Dvorkin, Cuitiño e Gioia (1990), o qual pertence à classe de modelos com formulação assimétrica estaticamente e cinematicamente consistente (SKON). Esta formulação é caracterizada por garantir o movimento de corpo rígido entre as partes do elemento além de assegurar a continuidade de tensões na linha de fissura, resultando numa matriz de rigidez assimétrica. Diferentes relações constitutivas podem ser utilizadas para descrever o comportamento das regiões com e sem fissura. Portanto, para a região não fissurada, utilizouse um modelo constitutivo elástico linear e para a região fissurada foi analisada a performance de dois modelos constitutivos distintos: linear e exponencial. A capacidade de representar o comportamento de elementos estruturais fissurados foi ilustrada através de exemplos de tração e flexão comparados com outros modelos de fissura existentes e com resultados experimentais. Em relação aos modelos constitutivos para a linha da fissura, o modelo linear não se mostrou adequado por superestimar as tensões de pico além de apresentar um ramo de amolecimento mais frágil. Já o modelo exponencial mostrou-se bastante eficiente representando de forma correta o comportamento de materiais quase-frágeis. / The formation and propagation of cracks is a phenomenon observed in many materials used in engineering, such as concrete, metals, ceramics and rocks. In view of the influence of cracks in the global behavior of the structure, the aim of this work is the implementation of an embedded strong discontinuity model in order to analyze the fracture process in quasi-brittle materials. The discontinuity in the displacement field (strong discontinuity) is represented by the introduction of additional degrees of freedom within the finite element. This approach is called elemental enrichment (E-FEM). The embedded models allow the propagation of crack in any direction within the finite element, avoiding the need of remeshing and providing objective results (mesh independent). The additional degrees of freedom are introduced into the finite element, then these degrees can be eliminated from the global solution by static condensation and the model can be easily implemented in existent computational codes. The model used here was proposed by Dvorkin, Cuitiño and Gioia (1990), which belongs to the statically and kinematically optimal non-symmetric (SKON) formulation. In this formulation, the kinematics that allows for relative rigid body motion and the enforcement of the traction continuity are introduced at element level, resulting a non-symmetric formulation. Different constitutive relations can be used to describe the behavior of the zones with and without cracks. For the zone without cracks it was used a linear elastic model and for the cracked zone it was analyzed the behavior of two different constitutive models: linear and exponential. The ability of the model to represent the behavior of cracked structural elements was illustrated by bending and tensile tests and the results were compared with numerical and experimental data. Regarding the constitutive models for the fracture zone, it was concluded that the linear model was not suitable because it overestimated the maximum stress and promoted a britller softening. In contrast, the exponential model proved to be very efficient to represent the behavior of quasi-brittle materials.
172

Avaliação de micronutrientes e sua influência no metabolismo secundário de Bidens pilosa e Salvia officinalis, plantas usadas no tratamento de diabetes / Micronutrients evaluation and its influence on secondary metabolism of Bidens pilosa and Salvia officinalis, plants applied in diabetes treatment

Gonçalves, Rodolfo Daniel Moreno Reis 13 November 2015 (has links)
O diabetes mellitus é uma doença que afeta o metabolismo de carboidratos, gorduras e proteínas e tem como aspectos característicos a hiperglicemia e a excreção da glicose pela urina. Estima-se que o número de casos da doença aumentará muito nos próximos anos, o que a torna preocupante para o sistema público de saúde dos países mais afetados. Além do uso de medicamentos alopáticos, tratamentos complementares como o uso de plantas medicinais pode contribuir para melhorar a qualidade de vida do paciente. Entre as ervas utilizadas, tanto no Brasil quanto em outras partes do mundo, encontram-se Bidens pilosa e Salvia officinalis. Os mecanismos responsáveis pela atividade antidiabética das plantas, geralmente estão associados aos seus metabólitos secundários, no entanto, a influência de micronutrientes não deve ser descartada. Estudos mostram que há uma correlação entre a concentração destes elementos com a presença e o desenvolvimento da doença. O objetivo deste trabalho foi estudar os elementos Cr, Fe, Mg, Mn, V e Zn em Bidens pilosa (picão) e Salvia officinalis (sálvia) cultivadas com tratamento normal (substrato comercial) e com adição dos elementos acima mencionados, e verificar a influência destes elementos na produção de metabólitos secundários que podem atuar como agentes hipoglicêmicos. A determinação e quantificação elementar foram feitas por meio da técnica de Análise por Ativação Neutrônica Instrumental, e para análise dos metabólitos secundários utilizou-se a técnica de Cromatografia Líquida de Alta Eficiência. O resultados indicaram que B. pilosa e S. officinalis podem ser usadas como fontes de Cr, Fe Mg, Mn, V e Zn. Foi observado que a B. pilosa absorveu maior quantidade de Fe no grupo tratamento, e que a S. officinalis foi capaz de acumular Zn nas folhas independente de ter ou não sido tratada. Quanto aos compostos do metabolismo secundário, os resultados indicaram que sua produção pelas plantas aparentemente não foi alterada pela adição da solução dos nutrientes. / Diabetes mellitus is a disease that affects the carbohydrates, lipids and proteins metabolism characterized by hyperglycemia and glucose excretion by urine. It is estimated that the number of cases of this disease will increase in the coming years, worrying the public health system of the most affected countries. Besides the use of allopathic medicine, complementary treatments such as the use of medicinal plants can contribute to improving the pacients quality of life. Among the herbs used, both in Brazil and in other countries, are Bidens pilosa and Salvia officinalis. The mechanisms responsible for antidiabetic activity of the plants, are usually associated with secondary metabolites, however, the influence of micronutrient content should not be discarded. Studies have shown that there is a correlation between the concentration of these elements and the presence and development of the disease. The objective of this work was to study the elements Cr, Fe, Mg, Mn, V and Zn concentration in Bidens pilosa (beggarticks) and Salvia officinalis (sage) cultivated with normal treatment (commercial substrate) and, with the addition of these elements, to verify their influence in the production of secondary metabolites that can act as hypoglycemic agents. The elemental determination and quantification were performed by means of Instrumental Neutron Activation Analysis technique. For the secondary metabolites analysis Liquid Chromatography High Performance technique was used. The results indicated that B. pilosa and S. officinalis may be used as sources of Cr, Fe, Mg, Mn, V and Zn. It was observed that B. pilosa absorbed a larger amount of Fe in the treatment group, and S. officinalis was able to accumulate Zn its in leaves whether treated or not. Considering the secondary metabolism compounds, the results indicated that its production by plants was apparently not altered by the addition of the nutrient solution.
173

The Effect of Processing Conditions on the Energetic Diagram of CdTe Thin Films Studied by Photoluminescence

Collins, Shamara P. 02 July 2018 (has links)
The photovoltaic properties of CdTe-based thin films depend on recombination levels formed in the CdTe layer and at the heterojunction. The localized states are resultant of structural defects (metal sublattice, chalcogen sublattice, interstitial), controlled doping, deposition process, and/or post-deposition annealing. The photoluminescence study of CdTe thin films, from both the bulk and heterojunction, can reveal radiative states due to different defects or impurities. Identification of defects allows for potential explanation of their roles and influence on solar cell performance. A thorough understanding of the material properties responsible for solar cell performance is critical in further advancing the efficiency of devices. The presented work is a systematic investigation using photoluminescence to study CdTe thin films with varying deposition processes. The thin (polycrystalline) films explored in this study were deposited by either the elemental vapor transport technique (EVT) or close spaced sublimation (CSS). Two device architectures were investigated, the typical CdTe/CdS device and the CdSeXTe1-X (CST) alloy device. Post-deposition annealing processes were either laser or thermal. The study of the CdTe thin films is grouped in three general categories: (a) EVT films: Intrinsic and Extrinsic (Group V: Sb and P), (b) CST alloys, and (c) Post-deposition Laser Annealed (LA) films. The main goal of this dissertation is to understand the influence of fabrication procedures (deposition conditions, post deposition thermal and chemical treatments, added impurities, and device architecture) on the defect structure of the CdTe thin films. The behavior of the photoluminescence (PL), studied as a function of the measurement temperature and excitation intensity, provides insight to the mechanism causing the radiative recombination levels. Analysis of the PL spectra for CdTe films with intrinsic doping demonstrated stoichiometric control of native defects for both the Cd- and Te-rich conditions. PL spectra of CdTe:Sb films showed unique Sb-related bands. Also, impurity-related defects were identified in the CdTe:P spectra. Spectral analysis support the need for optimization of dopant concentration. The effects of selenium (Se) thickness and post-deposition processing on the formation of CST alloy were demonstrated in the changing PL spectra. The native defects (and complexes) identified in films with thermal anneal processing were the same as those identified in films with laser anneal post-deposition processing. The PL data were collected and other characterization techniques were used to support the defect assignments. A repository of material properties, which include the recombination levels along with structural defect assignment for each of the CdTe deposition processes, is provided. This project will lend the solar cell community information on CdTe defects for different processing conditions, ultimately influencing the fabrication of improved solar cells.
174

Early Archaean crustal evolution: evidence from ~3.5million year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, Australia

Green, Michael Godfrey January 2001 (has links)
In the Pilgangoora Belt of the Pilbara Craton, Australia, the 3517 Ma Coonterunah Group and 3484-3468 Ma Carlindi granitoids underlie the 3458 Ma Warrawoona Group beneath an erosional unconformity, thus providing evidence for ancient emergent continental crust. The basalts either side of the unconformity are remarkably similar, with N-MORB-normalised enrichment factors for LILE, Th, U and LREE greater than those for Ta, Nb, P, Zr, Ti, Y and M-HREE, and initial e(Nd, Hf) compositions which systematically vary with Sm/Nd, Nb/U and Nb/La ratios. Geological and geochemical evidence shows that the Warrawoona Group was erupted onto continental basement, and that these basalts assimilated small amounts of Carlindi granitoid. As the Coonterunah basalts have similar compositions, they probably formed likewise, although they were deposited >60 myr before. Indeed, such a model may be applicable to most other early Pilbara greenstone successions, and so an older continental basement was probably critical for early Pilbara evolution. The geochemical, geological and geophysical characteristics of the Pilbara greenstone successions can be best explained as flood basalt successions deposited onto thin, submerged continental basement. This magmatism was induced by thermal upwelling in the mantle, although the basalts themselves do not have compositions which reflect derivation from an anomalously hot mantle. The Carlindi granitoids probably formed by fusion of young garnet-hornblende-rich sialic crust induced by basaltic volcanism. Early Archaean rocks have Nd-Hf isotope compositions which indicate that the young mantle had differentiated into distinct isotopic domains before 4.0 Ga. Such ancient depletion was associated with an increase of mantle Nb/U ratios to modern values, and hence this event probably reflects the extraction of an amount of continental crust equivalent to its modern mass from the primitive mantle before 3.5 Ga. Thus, a steady-state model of crustal growth is favoured whereby post ~4.0 Ga continental additions have been balanced by recycling back into the mantle, with no net global flux of continental crust at modern subduction zones. It is also proposed that the decoupling of initial e(Nd) and e(Hf) from its typical covariant behaviour was related to the formation of continental crust, perhaps by widespread formation of TTG magmas.
175

Kinetic Studies of the Oxidation Pathways of Gaseous Elemental Mercury

Donohoue, Deanna L. 11 June 2008 (has links)
Over the last decade our understanding of mercury cycling has dramatically changed. Evidence of rapid atmospheric oxidation has been observed in the Arctic, Antarctic, the MBL, coastal environments, saline lakes, and the upper troposphere/lower stratosphere. These results show that, Hg0, can undergo rapid gas-phase oxidation under standard atmospheric conditions. However, the mechanism and importance of this transformation is still unclear. The goal of this work was two-fold: to investigate of the kinetics of potential pathway for the gas phase oxidation of atmospheric mercury and to develop new laser based techniques, which can be employed for both laboratory and field studies of Hg(0) and the products of mercury oxidation. First and foremost, this work determined kinetic rate coefficients for the potentially important mercury reactions. Rate coefficients were determined using a Pulse Laser Photolysis - Laser Induced Fluorescence (PLP-LIF) technique monitoring one or more of the following species, Hg(0), Cl, Br, HgCl, and HgBr. The concentrations of these species were measured by LIF as the reaction occurred and a concentration vs. time profile was generated. From these profiles a rate coefficient for the reaction can be obtained. In the course of this work kinetic rate coefficients for the following mercury reactions were measured. Hg(0) + Cl + M --> HgCl + M Hg(0) + Br + M --> HgBr + M HgBr + M --> Hg(0) + Br + M HgBr + Br --> products HgCl + O2 --> products This work is the first direct measurement of a kinetic rate coefficient for these reactions, and the first work which employed one photon LIF to monitor the HgCl and HgBr products. The second aspect of this work was the development of new laser based techniques to detect atmospheric mercury and its oxidation products for both laboratory and field application. In this work a LIF technique was develop to detect HgCl and HgBr. In addition, a two photon LIF technique initially developed by Bauer et al., 2002 was verified and expanded. The two photon LIF technique was used to directly monitor Hg(0) atoms in-situ, to monitor Hg(0) evolving form a gold tube, and to monitor the Hg(0) evolving from the thermal decomposition of reactive gaseous mercury collected on a KCl coated or uncoated denuder. This work represents a significant advance in the development of a viable method the detect mercury and the mercury oxidation products in the laboratory and in the field and is the first study to observe clear differences in the characteristic desorption profiles of HgO and HgX2. This work has broad implications, it enhanced our current knowledge concerning the biogeochemical cycling of mercury, broadened our understanding of the mercury chemistry in high halogen environment, and provided new techniques which can be applied in future field and laboratory studies.
176

<i>In-situ</i> Wachstumsuntersuchungen beim reaktiven Anlassen von Cu, In Schichten in elementarem Schwefel

Pietzker, Christian January 2003 (has links)
In dieser Arbeit wurde das reaktive Anlassen von dünnen Kupfer-Indium-Schichten in elementarem Schwefel mittels energiedispersiver Röntgenbeugung untersucht. Durch die simultane Aufnahme der Röntgenspektren und der Messung der diffusen Reflexion von Laserlicht der Wellenlänge 635 nm an der Oberfläche der Probe während des Schichtwachstums von CuInS<SUB>2</SUB> konnte eine Methode zur Prozesskontrolle für ein Herstellungsverfahren von CuInS<SUB>2</SUB> etabliert werden. <br><br>Die Bildung von CuInS<SUB>2</SUB> aus Kupfer-Indium-Vorläuferschichten wird dominiert von Umwandlungen der intermetallischen Phasen. CuInS<SUB>2</SUB> wächst innerhalb der Aufheizperiode ab einer Temperatur von ca. 200°C aus der Phase Cu<sub>11</sub>In<sub>9</sub>. Jedoch zerfällt letztere metallische Phase in Cu<sub>16</sub>In<sub>9</sub> und flüssiges Indium bei einer Temperatur von ca. 310°C. Das flüssige Indium reagiert im Falle von Kupferarmut mit dem Schwefel und führt zu einem zusätzlichen Reaktionspfad über InS zu CuIn<sub>5</sub>S<sub>8</sub>. Unter Präparationsbedingungen mit Kupferüberschuss wird das Indium in einer intermetallischen Phase gebunden.<br><br>Erstmals konnte die Phase Digenite bei Temperaturen über 240°C beobachtet werden. Beim Abkühlen auf Raumtemperatur wandelt sich diese Phase unter dem Verbrauch von Schwefel in Covellite um.<br><br>Für Proben mit Kupferüberschuss konnte eine Wachstumskinetik proportional zur Temperatur beobachtet werden. Dieses Verhalten wurde durch eine stress-induzierte Diffusion als dominierenden Reaktionsmechanismus interpretiert. Dabei werden während der Bildung von CuInS<SUB>2</SUB> durch unterschiedliche Ausdehnungen der metallischen und sulfidischen Schichten eine Spannung in der CuInS<SUB>2</SUB>-Schicht induziert, die nach Überschreiten einer Grenzspannung zu Rissen in der CuInS<sub>2</sub>-Schicht führt. Entlang dieser Risse findet ein schneller Transport der Metalle zur Oberfläche, wo diese mit dem Schwefel reagieren können, statt. Die Risse heilen durch die Bildung neuen Sulfids wieder aus. / In this work the reactive annealing of thin copper and indium films in elemental sulphur was investigated by energy dispersive X-ray diffraction. Measuring simultanously laser light diffusively reflected from the growth surface, a simple method for process monitoring could be established. The process monitoring using 635 nm laser light can now independently be used in production.<br><br>The growth of CuInS<SUB>2</SUB> from copper-indium precursors is dominated by transitions between intermetallic phases. CuInS<SUB>2</SUB> growths in the heat up period above 200 °C from the phase Cu<SUB>11</SUB>In<SUB>9</SUB>. However the latter metallic phase decomposes into Cu<SUB>16</SUB>In<SUB>9</SUB> and liquid indium at a temperature of 310 °C. The liquid indium reacts in the case of copper deficiency with sulphur to InS. This leads to an additional reaction path via InS to CuIn<SUB>5</SUB>S<SUB>8</SUB>. Under preparation conditions with copper excess to the contrary, indium is bound in an intermetallic phase.<br><br>For the first time the phase Digenite could be observed in a growth experiment at temperatures above 240 °C. During cool down to room temperature this phase transforms to Covellite by consumption of sulphur.<br><br>For samples with copper excess a growth kinetic proportional to the temperature was observed. This behaviour is interpreted by a stress induced reaction mechanism: During the formation of CuInS<SUB>2</SUB>, strain in the CuInS<SUB>2</SUB> thin film is induced due to different expansion coefficients of the metallic and sulphurous phases. After transgression of a certain strain limit, cracks within CuInS<SUB>2</SUB> are formed. Along these cracks, fast transport of metallic species to the surface can occur. There these species can react with the sulphur. The cracks can heal up by the formation of new sulphides.
177

Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem

Maphangwa, Khumbudzo Walter January 2010 (has links)
<p>Elevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24&ordm / C to 48&ordm / C in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions.</p>
178

Constraining sources of atmospheric trace constituents with Lagrangian particle dispersion modeling

Benmergui, Joshua January 2013 (has links)
This manuscript based thesis examines and advances methods for constraining sources of atmospheric trace constituents with a Lagrangian particle dispersion model. The method of Bayesian inversion is demonstrated, and a new method is introduced to a class of similar problems where established methods are not applicable. First, A new regression based methodology was developed and applied to observations of atmospheric methanesulfonic acid mass concentrations at Alert, Nunavut. The methodology was used to compare the importance of phytoplankton blooms vs. the ice-free ocean as sources of the dimethylsulfide precursor, and to compare the importance of bromine monoxide vs. hydroxyl as agents oxidizing dimethylsul de to methanesulfonic acid. These issues are relevant to the application of methanesulfonic acid concentrations in ice cores to determine historic sea ice properties. The analysis indicated that source regions to Alert during the spring are primarily ice-free ocean with a significant contribution from ice edge blooms, and during the summer to be dominated by the ice-free ocean. The model also indicated that oxidation of DMS by BrO was the dominant source of MSA in the spring, while DMS oxidation by OH was the dominant source in the summer. Secondly, Bayesian inversion was applied to observations of atmospheric elemental carbon mass concentrations at Tsinghua University in Beijing, China. The analysis provided evidence that current bottom-up elemental carbon emissions estimates in northern China are likely underpredicted. Global chemical transport models show ubiquitous underestimates of the atmospheric burden of elemental carbon, especially near large sources of emissions. Northern China is among the regions with the most intensive elemental carbon emissions in the world, and an underestimate of emissions in this region may be partially responsible for the global chemical transport model underestimates.
179

Influence of carbides and nitrides on corrosion initiation of advanced alloys : A local probing study

Bettini, Eleonora January 2013 (has links)
Advanced alloys often present precipitated carbides and nitrides in their microstructure following exposure to elevated temperatures. These secondary phases are usually undesirable, because potentially deleterious for the corrosion and mechanical performances of the material. Carbides and nitrides are enriched in key alloying elements that are subtracted from their surrounding matrix areas, creating alloying element depleted zones, which might become initial sites for corrosion initiation. In this study, the influence of micro- and nano-sized precipitated carbides and nitrides on the corrosion initiation of biomedical CoCrMo alloys and duplex stainless steels has been investigated at microscopic scale, by using a combination of local probing techniques. The microstructures of the alloys were first characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetic force microscopy (MFM). The Volta potential mapping of carbides and nitrides revealed their higher nobility compared to the matrix, and particularly compared to their surrounding areas, suggesting the occurrence of some alloying element depletion in the latter locations, which may lead to a higher susceptibility for corrosion initiation. In-situ electrochemical AFM studies performed at room temperature showed passive behavior for large potential ranges for both alloy families, despite the presence of the precipitated carbides or nitrides. At high anodic applied potential, at which transpassive dissolution occurs, preferential dissolution started from the areas adjacent to the precipitated carbides and nitrides, in accordance with the Volta potential results. Thus, the presence of carbides and nitrides doesn’t largely affect the corrosion resistance of the tested advanced alloys, which maintain passive behavior when exposed to highly concentrated chloride solutions at room temperature with no applied potential. The effect of nitrides on the corrosion initiation of duplex stainless steels was investigated also at temperatures above the critical pitting temperature (CPT). Depending on the type, distribution and size range of the precipitated nitrides different corrosion behaviors were observed. Intragranular (quenched-in) nano-sized nitrides (ca. 50-100 nm) finely dispersed in the ferrite grains have a minor influence on the corrosion resistance of the material at temperatures above the CPT, while larger intergranular (isothermal) nitrides (ca. 80-250 nm) precipitated along the phase boundaries cause a detrimental reduction of the corrosion resistance of the material, in particular of the austenite phase / <p>QC 20130927</p>
180

Quantitative determination of quinone chromophore changes during ECF bleaching of kraft pulp

Zawadzki, Michael A. 08 1900 (has links)
No description available.

Page generated in 0.778 seconds