61 |
FamÃlias de reticulados de densidade recorde em dimensÃes dois e trÃs / Families lattices record density in two three dimensionsFÃbio da Costa Ribeiro 23 May 2014 (has links)
O objetivo deste trabalho à construir exemplos em R2 e R3 de reticulados com mÃxima densidade de centro. O primeiro capÃtulo à destinado a introduzir os conceitos de reticulado em Rn, o de empacotamento esfÃrico, bem como apresentar algumas propriedades gerais. O segundo capÃtulo à destinado a construÃÃo dos exemplos mencionados acima a partir das raÃzes de polinÃmios quadrÃticos e cÃbicos em Z[x]. No apÃndice se encontram uma anÃlise do discriminante de um polinÃmio cÃbico e uma demonstraÃÃo do volume de uma esfera n-dimensional. / The objective of this work is to build example in R2 and R3 with lattices with maximum center density. The first chapter is supposed to introduce the concept of lattices in Rn
and spheric packing, as well as present some general properties. The second chapter is done to the construction through the roorts of quatratic polynomials and cubics in Z[x]. In the apendix we find an annalisis of the discriminant of a cubic polynomial and a demonstration of a n-dimentional sphere.
|
62 |
O Problema da Mochila Compartimentada / The Compartmentalized Knapsack ProblemFabiano do Prado Marques 23 May 2000 (has links)
Nesse trabalho, estudamos um problema de otimização combinatorial conhecido por Problema da Mochila Compartimentada, que é uma extensão do clássico Problema da Mochila. O problema consiste em determinar as capacidades adequadas de vários compartimentos que podem vir a ser alocados em uma mochila e como esses compartimentos devem ser carregados, respeitando as restrições de capacidades dos compartimentos e da mochila. Busca-se maximizar o valor de utilidade total. O problema é muito pouco estudado na literatura, apesar de surgir naturalmente em aplicações práticas. Nesse estudo, propomos uma modelagem matemática não linear para o problema e verificamos algumas heurísticas para sua resolução. / In this work, we studied a combinatorial optimization problem called the Clustered Knapsack Problem, that is an extension of the standard Knapsack Problem. The problem is to determine the right capacities of several clusters which can be allocated in a knapsack and how these clusters should be placed so as to respect the constraints on the capacities of the clusters and the knapsack. The objective is to maximize a total utility value. The problem has seldom been studied in the literature, even though it appears naturally in practical applications. In this study, we propose a non-linear model for the problem and we insert some heuristics for its resolution.
|
63 |
Mathematical models and heuristic methods for nesting problems / Modelos matemáticos e métodos heurísticos para os problemas de corte de itens irregularesLeandro Resende Mundim 18 August 2017 (has links)
Irregular cutting and packing problems, with convex and non-convex polygons, are found in many industries such as metal mechanics, textiles, of shoe making, the furniture making and others. In this thesis we study the two-dimensional version of these problems, where we want to allocate a set of items, without overlap, inside one or more containers, limited or unlimited, so as to optimize an objective function. In this document we study the knapsack problem, placement problem, strip packing problem, cutting stock problem and bin packing problem. For these problems, the heuristic methods and mathematical programming models are proposed and presented very promising results, surpassing in many cases the best results in the specialized literature. This thesis is organized as follows. In Chapter 1, we present a review of the studied problems, the value proposition for this thesis with the main contributions and ideas. In Chapter 2, we propose a metaheursitic for the strip packing problem with irregular items and circles. Then, in Chapter 3, we present a generic heuristic for the allocation of irregular items that may be weakly or strongly heterogeneous and will be allocated in a container (output maximization problems) or multiple containers (input minimization problems). In Chapter 4, we propose a solution method for the cutting stock problem with deterministic demand and stochastic demand. In Chapters 5 and 6, we present mathematical programming models for the strip packing problem. Finally, in Chapter 7, we present a conclusion and a concise direction for future works. / Os problemas de corte e empacotamento de itens irregulares, polígonos convexos e não convexos, são encontrado em diversas indústrias, tais como a metal-mecânica, a têxtil, a de calçados, a moveleira e outras. Nesta tese estudamos a versão bidimensional destes problemas, na qual desejamos alocar um conjunto de itens, sem sobreposição, no interior de um ou mais recipientes, limitados ou ilimitados, de modo a otimizar uma função objetivo. Neste trabalho estudamos o problema da mochila, o problema do assentamento, o problema empacotamento em faixa, o problema de corte de estoque e o problema de empacotamento de contêineres. Para estes problemas, os métodos heurísticos e modelos de programação matemática propostos e apresentam resultados muito promissores, ultrapassando em muitos casos os melhores resultados da literatura especializada. Esta tese esta organizada da seguinte maneira. No Capítulo 1, apresentamos uma revisão dos problemas estudados, a proposta de valor deste doutorado com as principais contribuições e ideias. No Capítulo 2, propomos uma meta-heurística para o problema de empacotamento em faixa para itens irregulares e círculos. Em seguida, no Capítulo 3 apresentamos uma heurística genérica para a alocação de itens irregulares que podem ser fracamente ou fortemente heterogêneos e serão alocados em um recipiente (problema de maximização de saída) ou de múltiplos recipientes (problemas de minimização de entrada). O Capítulo 4 propõem um método de solução para o problema de corte de estoque com demanda conhecida e demanda estocástica. Nos Capítulos 5 e 6 apresentamos modelos de programação matemática para o problema de corte de itens irregulares em faixa. Finalmente, no Capítulo 7, apresentamos a conclusão e uma sucinta direção para os trabalhos futuros.
|
64 |
Problema da mochila com itens irregulares / Irregular knapsack problemsDel Valle, Aline Marques 17 August 2018 (has links)
Orientador: Eduardo Candido Xavier / Dissertação (mestrado) - Universidade Estadual de Campinas, Insituto de Computação / Made available in DSpace on 2018-08-17T16:49:45Z (GMT). No. of bitstreams: 1
DelValle_AlineMarques_M.pdf: 1217777 bytes, checksum: 66f10d1b6b4533727cbe82431f97660d (MD5)
Previous issue date: 2010 / Resumo: Nesta dissertação, estudamos problemas de empacotamento com itens irregulares. Estamos particularmente interessados no Problema da Mochila Bidimensional: dados um recipiente de tamanho W x H e uma lista de itens bidimensionais, o objetivo é empacotar um subconjunto dos itens de forma a maximizar a área dos itens empacotados. Existem diversos trabalhos que lidam com problemas para itens e recipientes bidimensionais com forma regular (retangular). No entanto, são poucos os estudos que tratam de itens com formas irregulares. Nós propomos algoritmos de empacotamento para itens irregulares em recipientes limitados baseados no uso de No-Fit-Polygon (NFP). Este trabalho apresenta uma heurística GRASP para a versão restrita do Problema da Mochila: uma solução inicial gulosa é gerada e, em seguida, utiliza-se um algoritmo de busca local para melhorar solução atual. Uma estratégia híbrida também foi proposta para versão irrestrita do Problema da Mochila. Ela divide-se em passos de empacotamento de itens irregulares e empacotamento de itens regulares. Testamos os algoritmos com instâncias adaptadas do problema de Strip Packing. O GRASP obteve empacotamentos ótimos para várias instancias testadas e, mesmo para as instâncias em que o algoritmo não obteve resultados ótimos, os empacotamentos obtidos tiveram boa taxa de ocupação, com valores relativamente próximos do ótimo. O tempo de execução do algoritmo foi razoável. Na estratégia híbrida, obtiveram-se empacotamentos bons para a maioria das instâncias, com taxa de ocupação acima de 90% e tempos de execução relativamente baixos / Abstract: In this work, we study packing problems dealing with two dimensional irregular items. We are particularly interested in the knapsack version of the problem: given a container with size W x H and a list of two dimensional items, the goal is to pack a subset of items such that the total area of packed items is maximized. There are several works that deal with problems for the case where items and containers have regular shapes (rectangular). However, only a few studies deal with items with irregular shapes. We propose algorithms for packing irregular items in limited containers based on the use of No-Fit-Polygon (NFP). This work presents a GRASP algorithm for the restricted version of the Knapsack Problem: first, a greedy initial solution is generated, then, the local search algorithm is used to improve the current solution. A hybrid strategy has also been proposed for the unrestricted version of the Knapsack Problem. It is divided into steps of packing irregular items and packing regular items. We tested the algorithms using adapted instances for the Strip Packing problem. The GRASP algorithm achieved optimal packings for several of the tested instances, and, even for those that the algorithm did not, the obtained packings had a good occupancy rate, with values relatively close to the optimum. The runtime of the algorithm was reasonable. In the hybrid strategy, we obtained good packings for most of the instances, with occupancy rates above 90% and relatively low execution times / Mestrado / Teoria da Computação / Mestre em Ciência da Computação
|
65 |
Algoritmos para problemas de corte e empacotamento / Algorithms for cutting and packing problemsQueiroz, Thiago Alves de 18 August 2018 (has links)
Orientador: Flávio Keidi Miyazawa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-18T01:07:44Z (GMT). No. of bitstreams: 1
Queiroz_ThiagoAlvesde_D.pdf: 1460601 bytes, checksum: 0d83e25259c427329e25174c2e729e77 (MD5)
Previous issue date: 2010 / Resumo: Problemas de Corte e Empacotamento são, em sua maioria, NP-difíceis e não existem algoritmos exatos de tempo polinomial para tais se for considerado P ¿ NP. Aplicações práticas envolvendo estes problemas incluem a alocação de recursos para computadores; o corte de chapas de ferro, de madeira, de vidro, de alumínio, peças em couro, etc.; a estocagem de objetos; e, o carregamento de objetos dentro de contêineres ou caminhões-baú. Nesta tese investigamos problemas de Corte e Empacotamento NP-difíceis, nas suas versões bi- e tridimensionais, considerando diversas restrições práticas impostas a tais, a saber: que permitem a rotação ortogonal dos itens; cujos cortes sejam feitos por uma guilhotina; cujos cortes sejam feitos por uma guilhotina respeitando um número máximo de estágios de corte; cujos cortes sejam não-guilhotinados; cujos itens tenham demanda (não) unitária; cujos recipientes tenham tamanhos diferentes; cujos itens sejam representados por polígonos convexos e não-convexos (formas irregulares); cujo empacotamento respeite critérios de estabilidade para corpos rígidos; cujo empacotamento satisfaça uma dada ordem de descarregamento; e, cujos empacotamentos intermediários e final tenham seu centro de gravidade dentro de uma região considerada "segura". Para estes problemas foram propostos algoritmos baseados em programação dinâmica; modelos de programação inteira; técnicas do tipo branch-and-cut; heurísticas, incluindo as baseadas na técnica de geração de colunas; e, meta-heurísticas como o GRASP. Resultados teóricos também foram obtidos. Provamos uma questão em aberto levantada na literatura sobre cortes não-guilhotinados restritos a um conjunto de pontos. Uma extensiva série de testes computacionais considerando instâncias reais e várias outras geradas de forma aleatória foram realizados com os algoritmos desenvolvidos. Os resultados computacionais, sendo alguns deles comparados com a literatura, comprovam a validade dos algoritmos propostos e a sua aplicabilidade prática para resolver os problemas investigados / Abstract: Several versions of Cutting and Packing problems are considered NP-hard and, if we consider that P ¿ NP, we do not have any exact polynomial algorithm for solve them. Practical applications arises for such problems and include: resources allocation for computers; cut of steel, wood, glass, aluminum, etc.; packing of objects; and, loading objects into containers and trucks. In this thesis we investigate Cutting and Packing problems that are NP-hard considering theirs two- and three-dimensional versions, and subject to several practical constraints, that are: that allows the items to be orthogonally rotated; whose cuts are guillotine type; whose cuts are guillotine type and performed in at most k stages; whose cuts are non-guillotine type; whose items have varying and unit demand; whose bins are of variable sizes; whose items are represented by convex and non-convex polygons (irregular shapes); whose packing must satisfy the conditions for static equilibrium of rigid bodies; whose packing must satisfy an order to unloading; and, whose intermediaries and resultant packing have theirs center of gravity inside a safety region; Such cutting and packing problems were solved by dynamic programming algorithms; integer linear programming models; branch-and-cut algorithms; several heuristics, including those ones based on column generation approaches, and metaheuristics like GRASP. Theoretical results were also provided, so a recent open question arised by literature about non-guillotine patterns restricted to a set of points was demonstrated. We performed an extensive series of computational experiments for algorithms developed considering several instances presented in literature and others generated at random. These results, some of them compared with the literature, validate the approaches proposed and suggest their applicability to deal with practical situations involving the problems here investigated / Doutorado / Doutor em Ciência da Computação
|
66 |
Desempenho de algoritmos de região de confiança para problemas de empacotamneto de cilindros / Packing cylinders using trust-region algorithms : a comparative studyXavier, Larissa Oliveira, 1983- 20 April 2007 (has links)
Orientadores: Sandra Augusta Santos, Jose Mario Martinez / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T17:04:51Z (GMT). No. of bitstreams: 1
Xavier_LarissaOliveira_M.pdf: 1818711 bytes, checksum: e0305d93bde788c50b64809da1b8bf9e (MD5)
Previous issue date: 2007 / Resumo: Este trabalho encaminha a investigação de questões relacionadas ao desempenho de algoritmos de região de confiança para problemas de otimização irrestrita de grande porte. O algoritmo clássico de Moré e Sorensen, baseado em fatorações de Cholesky, é comparado com a abordagem de Rojas, Santos e Sorensen (algoritmo RSS). Do ponto de vista teórico são estudados os resultados de convergência dos dois algoritmos. Em termos práticos, são resolvidos problemas com a estrutura típica de empacotamento de cilindros. Também são pesquisados o desempenho efetivo do algoritmo RSS na solução aproximada dos subproblemas, e a repercussão da precisão com que os subproblemas são resolvidos no esforço global do algoritmo. / Abstract: This work investigates issues related to the performance of trust-region algorithms for large-scale unconstrained minimization. The classic algorithm of Moré and Sorensen, based on Cholesky?s factorizations, is compared with the approach of Rojas, Santos and Sorensen (algorithm RSS). From the theoretic standpoint, the convergence results of both algorithms are compiled. In practical terms, problems with the typical structure of packying of cylinders are solved. The effective performance of the algorithm RSS in the approximate solution of the subproblems is analyzed as well, together with the influence of the inner precision of the subproblems to the global effort of the algorithm / Mestrado / Otimização / Mestre em Matemática Aplicada
|
67 |
A densidade de empacotamentos esfericos em reticulados / The density of lattice sphere packingsNaves, Lígia Rodrigues Bernabé, 1982- 15 August 2018 (has links)
Orientadores: Sueli Irene Rodrigues Costa, Patricia Helena Araujo da Silva Nogueira / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-15T04:07:16Z (GMT). No. of bitstreams: 1
Naves_LigiaRodriguesBernabe_M.pdf: 1248780 bytes, checksum: a87e22d1d349ffc57557fdb83454f7d3 (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho, estudamos a teoria de reticulados com foco na densidade de empacotamento, a qual possui várias aplicações e possibilita estabelecer interessantes conexões entre tópicos de álgebra linear, cálculo de várias variáveis e geometria discreta. No primeiro capítulo, introduzimos conceitos fundamentais sobre reticulados. No segundo capítulo, abordamos a densidade de empacotamentos esféricos e analisamos a importância e a dificuldade de se conhecer os empacotamentos mais densos. Discutimos também exemplos de reticulados com densidade máxima em suas dimensões. No terceiro capítulo, detalhamos a demonstração do teorema de Minkowski - Hlawka, que fornece um limitante inferior para a densidade de empacotamentos reticulados. Apresentamos também o problema dos fat struts, que tem origem em teoria de comunicação e que se relaciona com a busca de reticulados-projeção de densidade máxima / Abstract: This dissertation addresses the lattice theory with focus on packing density, which has many applications and allows to establish interesting connections between topics of linear algebra, calculus of several variables and discrete geometry. The first chapter is an introduction to the main concepts and properties of lattices. In the second chapter we discuss the sphere packing density problem, its importance and the difficulty in finding denser packings. Examples of lattices with maximum density are analyzed for lower dimensions. In the third chapter we detail the proof of the theorem of Min-kowski - Hlawka which provides a lower bound for lattice packing density of lattices in any dimension. We also present the problem of the fat struts which comes from communication theory and is related to the search for denser projection lattices / Mestrado / Geometria Topologia / Mestre em Matemática
|
68 |
Tempo de convergencia para o equilíbrio de Nash nos jogos empacotamento de itens e balanceamento de carga / Convergence time to the Nash equilibrium in packing and load balancing gamesVignatti, André Luís 15 August 2018 (has links)
Orientador: Flavio Keidi Miyazawa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-15T17:39:45Z (GMT). No. of bitstreams: 1
Vignatti_AndreLuis_D.pdf: 822237 bytes, checksum: d9b8ad70708a9313f0d1ed9d64d39302 (MD5)
Previous issue date: 2010 / Resumo: Nesta tese, estudamos versões de teoria dos jogos dos problemas de empacotamento de itens e balanceamento de carga. Consideramos que a implementação de um algoritmo centralizado de controle é inviável, fazendo com que as entidades participantes do sistema ajam de maneira egoísta. Assim, a escolha egoísta de estratégias pelas entidades pode ou não levar a um estado estável do sistema, chamado de equilíbrio de Nash. Dependendo das condições definidas pelo modelo utilizado, devemos embutir certas regras para as entidades, contanto que as entidades tenham incentivo de utilizá-las e que, além disso, façam com que o sistema alcance um equilíbrio de Nash. Os principais resultados desta tese são relativos ao tempo de convergência para o equilíbrio de Nash, ou seja, buscamos saber quantas vezes os agentes mudam suas estratégias até alcançarem o equilíbrio de Nash, seja agindo de maneira completamente egoísta ou seguindo certas regras. Para o jogo de empacotamento de itens, apresentamos limitantes teóricos para o tempo de convergência, olhando ambos os casos de atualizações seqüenciais ou simultâneas das estratégias. Para o jogo de balanceamento de carga consideramos um modelo distribuído assíncrono com entidades heterogêneas, apresentando algumas regras que as entidades devem seguir e realizamos simulações para comparar as regras apresentadas / Abstract: In this thesis, we study game-theorical versions of the bin packing and load balancing problems. We consider that the implementation of a centralized controller algorithm is not feasible, making the entities that participate in the system act in a selfish way. Thus, the selfish choice of the strategies by the entities may or may not lead to a stable state of the system, called Nash equilibrium. Depending on the conditions defined by the considered model, we must build certain rules for entities, provided that the entities have incentive to use them and also make the system reach a Nash equilibrium. The main results of this thesis are related to the convergence time to Nash equilibrium, i.e., we seek to know how many times the agents change their strategies until they reach a Nash equilibrium, whether they act in a completely selfish way or follow certain rules. For the bin packing game, we present theoretical bounds for the convergence time, considering both the cases of sequential or simultaneous updates of the strategies. For the load balancing game, we consider an asynchronous distributed model with heterogeneous entities, presenting some rules that the entities must follow and we carry out simulations to compare the presented rules / Doutorado / Teoria da Computação / Doutor em Ciência da Computação
|
69 |
Modelagem e visualização de microestruturas digitais de materiais policristalinos monofásicos / Three-dimensional modelling and visualization of digital single-phase polycrystalline materials microstructuresAndre Montes Rodrigues 16 May 2014 (has links)
Neste trabalho se buscou criar uma base tecnológica para síntese digital e visualização virtual de microestruturas de materiais policristalinos monofásicos, visando disponibilizar software e metodologias de baixo custo aos pesquisadores da área ou de áreas correlatas. Para isso foram levantados e testados métodos, sistemas, bibliotecas e algoritmos computacionais pertinentes ao problema em questão. A técnica de síntese escolhida adotou uma simulação física de empacotamento de partículas seguida por tesselação espacial baseada no diagrama Voronoi. Para testar a abordagem uma amostra de um material real foi reconstituída digitalmente. O modelo reproduziu com grande precisão a distribuição de tamanhos de grão, o número de faces por grão e o número de vizinhos imediatos da referência. Na frente de visualização virtual buscou-se definir um modelo capaz de lidar com grandes quantidades de dados e baseado em princípios cognitivos sólidos, que permitisse maior extração de conhecimento de modelos microestruturais. A técnica de visualização em múltiplas escalas foi considerada a mais apropriada aos modelos cujos objetos e detalhes abrangem diversas escalas espaciais, permitindo ao computador lidar com vastas quantidades de dados ao alternar entre qualidade e quantidade no processo de geração de imagens. Técnicas de visualização tradicionais também foram testadas e a técnica de corte se mostrou fundamental, principalmente para a exploração direta do interior do modelo, mas também para a extração de dados voltados a análise microestrutural estereológica. / The main goal of this work is to create a technological foundation for digital synthesis and virtual visualization of single-phase polycrystalline materials microstrutures, aiming to offer low cost software and methodologies to materials science researchers and alike. Several methods, applications, libraries and algorithms were tested and the most appropriate were selected for further exploration. The chosen microstructural synthesis technique uses newtonian particle packing simulation, followed by a Voronoi-based tesselation. This simple approach were put to test using a real material sample. The sample were digitally built and meaningfull parameters like grain size distribution, edges per face and mean number of neighbours were replicated with acceptable precision. Regarding visualization, the most relevant issue was the specification of a computationally scalable method based on proven cognitive principles, capable to deal with a huge amount of information and to support efficient knowledge extraction from microstructural models. The multiscale approach has proved to be the most suited for models that spans several scales in space, allowing computers to store and display large quantities of data and to manage the tradeoff between quality and quantity in the rendering process. Traditional visualization techniques were tested as well and section visualization has proved to be paramount for internal model visualization, as it is for stereological microstructural analysis.
|
70 |
Empacotamento de bicliques em grafos bipartidos / Biclique packing in bipartite graphsAlexandre da Silva Freire 02 October 2012 (has links)
Nesta tese, estudamos o problema de Empacotamento de Bicliques. Um biclique é um grafo bipartido completo. No problema de Empacotamento de Bicliques são dados um inteiro k e um grafo bipartido G e deseja-se encontrar um conjunto de k bicliques, subgrafos de G, dois a dois disjuntos nos vértices, tal que a quantidade total de arestas dos bicliques escolhidos seja máxima. No caso em que k=1, temos o problema de Biclique máximo. Esses dois problemas possuem aplicações na área de Bioinformática. Mantemos neste trabalho um enfoque prático, no sentido de que nosso interesse é resolver instâncias desses dois problemas com tamanho razoavelmente grande. Para isso, utilizamos técnicas de Programação Linear Inteira. Para avaliar os métodos propostos aqui, mostramos resultados de experimentos computacionais feitos com instâncias vindas de aplicações e também com instâncias geradas aleatoriamente. / In this thesis, we study the Biclique Packing problem. A biclique is a complete bipartite graph. In the Biclique Packing problem we are given an integer k and a bipartite graph G and we want to find a set of k vertex disjoint bicliques of G, such that the total number of biclique\'s edges is maximum. When k=1, we have the Maximum Biclique problem. These two problems have applications in Bioinformatics. In this work we keep a practical focus, in the sense that we are interested in solving large size instances of these problems. To tackle these problems, we use Integer Linear Programming techniques. In order to evaluate the methods proposed here, we show results of computational experiments carried out with practical application\'s instances and also with randomly generated ones.
|
Page generated in 0.0812 seconds