• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Shift-like Automorphisms of Ck

Bera, Sayani January 2014 (has links) (PDF)
We use transcendental shift-like automorphisms of Ck, k > 2 to construct two examples of non-degenerate entire mappings with prescribed ranges. The first example exhibits an entire mapping of Ck, k>2 whose range avoids a given polydisc but contains the complement of a slightly larger concentric polydisc. This generalizes a result of Dixon-Esterle in C2. The second example shows the existence of a Fatou-Bieberbach domain in Ck,k > 2 that is constrained to lie in a prescribed region. This is motivated by similar results of Buzzard and Rosay-Rudin. In the second part we compute the order and type of entire mappings that parametrize one dimensional unstable manifolds for shift-like polynomial automorphisms and show how they can be used to prove a Yoccoz type inequality for this class of automorphisms.
12

The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group

Mkiva, Soga Loyiso Tiyo January 2008 (has links)
>Magister Scientiae - MSc / The groups we consider in this study belong to the class Xo of all finitely generated groups with finite commutator subgroups. We shall eventually narrow down to the groups of the form T)<lw zn for some nE N and some finite abelian group T. For a Xo-group H, we study the non-cancellation set, X(H), which is defined to be the set of all isomorphism classes of groups K such that H x Z ~ K x Z. For Xo-groups H, on X(H) there is an abelian group structure [38], defined in terms of embeddings of K into H, for groups K of which the isomorphism classes belong to X(H). If H is a nilpotent Xo-group, then the group X(H) is the same as the Hilton-Mislin (see [10]) genus group Q(H) of H. A number of calculations of such Hilton-Mislin genus groups can be found in the literature, and in particular there is a very nice calculation in article [11] of Hilton and Scevenels. The main aim of this thesis is to compute non-cancellation (or genus) groups of special types of .Xo-groups such as mentioned above. The groups in question can in fact be considered to be direct products of metacyclic groups, very much as in [11]. We shall make extensive use of the methods developed in [30] and employ computer algebra packages to compute determinants of endomorphisms of finite groups.
13

Sur les algèbres d'endomorphismes du produit tensoriel de Uq(sl2)-modules en q racine de l'unité

Senécal, Charles 07 1900 (has links)
Ce mémoire porte sur la structure des centralisateurs de l'action de l'extension de Lusztig LUqsl2 du groupe quantique Uqsl2 sur les produits tensoriels de la forme \(M\otimes L_q(1)^{\otimes n}\) en q une racine de l'unité. Ici, n est un entier positif, Lq(1) est la représentation fondamentale de dimension 2 de LUqsl2 et M est un LUqsl2-module simple ou projectif. Dans le cas des modules simples, on analyse l'action du groupe de tresses de type B sur les modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via les matrices R et on identifie sa structure comme quotient de l'algèbre de Temperley-Lieb à une frontière TLbn. Dans le cas des modules projectifs, on utilise les idempotents de (l,p)-Jones--Wenzl [BLS19, MS22, STWZ23] pour exprimer \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) comme une algèbre de Temperley-Lieb valencée [Spe21]. Le chapitre 1 introduit les algèbres de Temperley-Lieb et de Temperley-Lieb à une frontière, par générateurs et relations et de façon diagrammatique, en faisant le lien avec le langage des algèbres cellulaires. Le chapitre 2 présente, après une courte introduction au langage des algèbres de Hopf, le groupe quantique Uqsl2 et l'extension de Lusztig LUqsl2 en q une racine de l'unité. Une partie de sa théorie de la représentation est présentée, ainsi que les matrices R et la dualité de Schur-Weyl quantique. Le chapitre 3 se penche sur l'étude de l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). En particulier, il montre que l'action du groupe de tresses de type B sur cet espace se factorise par l'algèbre TLbn, puis montre que le noyau de cette représentation est un idéal engendré par un préidempotent de Jones-Wenzl. Le chapitre 4 présente la construction des idempotents de (l,p)-Jones-Wenzl et la preuve de leurs propriétés clés. Il fait ensuite le lien avec l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) et montre qu'elle est isomorphe à un sandwich de l'algèbre de Temperley-Lieb par ces idempotents. / This thesis studies the structure of the centralizers of the action of Lusztig's extension LUqsl2 of the quantum group Uqsl2 on tensor products of the form \(M\otimes L_q(1)^{\otimes n}\) when q is a root of unity. Here, n is a positive integer, Lq(1) is the 2-dimensional fundamental representation of LUqsl2 and M is a simple or projective module over LUqsl2. In the case of simple modules, we analyze the action of the type B braid group on the modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via the R-matrices and we identify its structure as a quotient of the one-boundary Temperley-Lieb algebra TLbn. In the case of projective modules, we use the (l,p)-Jones-Wenzl idempotents [BLS19, MS22, STWZ23] to write \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) as a valenced Temperley-Lieb algebra [Spe21]. Chapter 1 introduces the Temperley-Lieb algebras and the one-boundary Temperley-Lieb algebras, both by generators and relations and diagrammatically, also exhibiting their cellular structure. Chapter 2 gives an introduction to the language of Hopf algebras, then presents the quantum group Uqsl2 and Lusztig's extension LUqsl2 at q a root of unity. Part of its representation theory is given, as well as its R-matrices and quantum Schur-Weyl duality. Chapter 3 focuses on the study of the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). In particular, it shows that the type B braid group action factorizes through the algebra TLbn, then shows that the kernel of this representation is an ideal generated by a Jones-Wenzl preidempotent. Chapter 4 gives the construction of (l,p)-Jones-Wenzl idempotents and proves their key properties. It then makes explicitly the link with the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) and shows that it is isomorphic to a sandwich of the Temperley-Lieb algebra by those idempotents.

Page generated in 0.056 seconds