• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 13
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 15
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Clathrin Independent Carriers: Molecular characterisation of a novel clathrin-independent endocytic pathway

Mark Howes Unknown Date (has links)
Endocytosis effectuates a critical interface between the eukaryotic cell and its apposing environment. It is, subsequently, paramount for many physiologically important processes and encompasses a diverse array of mechanisms and pathways. The classical endocytic routes mediated by clathrin and caveolin are the best understood and the molecular roles of their major regulators, such as dynamin, adaptor proteins and various lipid species, are the most comprehensively described. Recent identification of an assortment of constitutive, noncaveolar, clathrin-independent endocytic (CIE) pathways has expanded the endocytic system. Unlike the classical endocytic pathways, little is known about the guiding parameters of CIE routes. Consequently, it is not possible to understand the important cellular roles these pathways may be fulfilling. This study has begun to characterise the very basic parameters governing the morphologically striking Clathrin-Independent Carrier (CLIC) pathway. Development of a diverse molecular toolkit has now allowed the quantitation of endocytic capacity provided by CLICs, the visualisation of subtle sorting components of the CLIC pathway, the isolation of novel CLIC cargo and regulators, and has linked this mechanism to the critical cellular processes of cellular migration and membrane repair. Calculation of the individual capacity of endocytic routes provides important information about the contribution of each pathway to total plasma membrane (PM) uptake and turnover. Quantitation of the volume, surface area and number of structures forming per minute in this study shows that CLICs provide the vast majority of constitutive endocytosis, up to four times the capacity of the clathrin mediated endocytic (CME) pathway. As the equivalent of the entire PM area could pass through the CLIC pathway within 12 minutes it is evident that CLICs are fundamental housekeepers of bulk membrane internalisation. Thus, they are likely to be central regulators of PM homeostasis and turnover. High-resolution tomography, in conjunction with analysis of CLIC cargo trafficking, identifies these carriers as complex, pleiomorphic structures that sort the bulk of membrane to early endosomes and recycle cargo back to the cell surface. Such vast internalisation combined with an ability to rapidly recycle components quickly attributes the CLIC pathway as a complex sorting station. Isolation of novel cargo and regulators has identified a striking array of proteins now associated with the CLIC pathway for the first time. A significant proportion of identified targets localise to lipid-rafts and recycle from the PM, facets consistent with association to the CLIC pathway. Numerous targets have also been directly implicated in clathrin-independent endocytosis by independent groups. Verification of selected cargo, such as CD44, Thy-1 and myoferlin, showing specific internalisation through the CLIC pathway, has provided insight into the sorting ability of the CLIC pathway and links to adhesion turnover and membrane recycling. Consistent with a role in cellular adhesion turnover, it was found that CLICs become polarised within migrating cells. This has shown the first instance of spatial separation between three major endocytic routes, CLICs, caveolae and CME and highlights the important and coordinated roles of multiple endocytic pathways during physiologically significant processes. The specific internalisation of paxillin, Thy-1 and CD44 through CLICs at the leading edge of migrating cells suggests that CLICs rapidly turnover adhesion components for dynamic extracellular sensation during directional cell migration. Indeed, specific ablation of the CLIC pathway significantly impedes cellular migration, implying coordination with CME at the leading edge. This study has defined numerous parameters of the CLIC pathway, developing the current understanding of this poorly defined route and places the CLIC pathway as a unique player during critical cellular processes.
32

Macropinocytosis-Inducing Peptides: Identification, Utility, and Mechanism-of-Action / 新規マクロピノサイトーシス誘導ペプチドの同定、細胞内送達への有用性と作用様式

Arafiles, Jan Vincent Valenzuela 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第22753号 / 薬科博第127号 / 新制||薬科||14(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 二木 史朗, 教授 中山 和久, 教授 髙倉 喜信 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
33

Early events in cytokine receptor signaling

Gandhi, Hetvi 27 February 2014 (has links)
Ligand-activated signal transduction is a process critical to cell survival and function as it serves as a means of communication between the cells and their environment. Endocytosis is generally thought to down-regulate incoming signals by reducing the surface availability of receptors. However, increasing evidence in many systems suggests a notion which is referred to as the „signalling endosome" hypothesis - that endocytosis can also actively contribute to signalling apart from clearance of activated receptors and thereby attenuation of signalling. The functional aspect of signalling endosomes has been well-characterized in several pathways including RTK and TGF-β signalling. There are, however, various other signalling pathways where the active mechanism of endocytotic regulation is yet to be understood. In this study, we probe this aspect in the cytokine signalling system, where the receptors are known to internalize but the significance of such internalization and precise mechanism is unclear. My thesis aims to elucidate the function and molecular details of internalization of cytokine receptor using interleukin-4 receptor (IL-4R) signalling as a model. IL-4 and IL-13 ligands can induce assembly of three distinct complexes: IL4 induced IL-4Rα – IL-2Rγ (type I), IL-4 induced IL-4Rα – IL-13Rα1 (type II) or the IL-13 induced IL-13Rα1-IL-4Rα (type II). The formation of any of these complexes triggers signalling through the JAK/STAT pathway. However, models of how the oligomerization of the transmembrane receptors and activation takes place are very diverse and lack a clear molecular and biophysical understanding of the underlying receptor dynamics. Previous results of the lab had shown that the affinities between subunits are low, precluding complex formation at the plasma membrane at physiological concentrations. In addition, IL-4R subunits localize in to endosomal structures adjacent to the plasma membrane. It had already been shown that the shared IL-4R subunit IL-2Rγ is internalized by a specific, actin dependent, Rac1/Pak1 regulated endocytosis route in the IL-2 context. We could show that pharmacological suppression of this endocytosis pathway also prevented IL-4 induced JAK/STAT signalling, placing endocytosis upstream of signalling. Here I show using immuno-EM techniques that these endosomal structures are multivesicular bodies. Importantly, I could show that receptor subunits are highly enriched in the limiting membrane of these endosomes relative to the adjacent plasma membrane. Using quantitative loading assays I could furthermore demonstrate that this enrichment is achieved by constitutive internalization of receptors from the cell surface into cortical endosomes. The trafficking kinetics of the receptor subunits is independent of ligand occupancy. Pharmacological inhibition shows that receptors and ligand traffic via the previously identified Rac1/Pak1 pathway. Finally, Vav2 was identified as a candidate Guanine Exchange Factor (GEF) that may regulate Rac1 activity and thereby control the actin polymerization cascade driving IL-4R endocytosis. Immunoprecipitations showed that Vav2 interacts both with the cytoplasmic tail region of the receptors and the receptor associated 2 kinase JAK3. Vav2 may thus couple the receptor/JAK complexes to the Rac1/Pak1 mediated endocytosis route. Taken together, our results suggests that stable „signalling endosomes‟ adjacent to the plasma membrane act as enrichment centres, where ligand and receptor concentrations are locally increased by constitutive trafficking. The confined environment of the endosome then compensates for the weak affinities between the ligand and receptor and facilitates ligand-mediated receptor dimerization. Importantly, overexpression of both type II IL-4R subunits renders signal transduction resistant to endocytosis inhibition, strongly suggesting that the critical factor effecting signalling is sufficient concentration, which the endosomes facilitate achieving. The endosomes are thus dispensable as signalling scaffolds when the receptors are in sufficient concentration, where activated receptors could interact with downstream pathway components. Endocytosis thus provides a crucial means for the signalling process to overcome the thermodynamic hurdles for receptor oligomerization. In conclusion, our data propose a novel, purely thermodynamic role of endosomes in regulating cytokine receptor signalling not seen in any other signalling pathway.
34

WASH and WAVE Actin Regulators of the Wiskott-Aldrich Syndrome Protein (WASP) Family Are Controlled by Analogous Structurally Related Complexes

Jia, Da, Gomez, Timothy S., Metlagel, Zoltan, Umetani, Junko, Otwinowski, Zbyszek, Rosen, Michael K., Billadeau, Daniel D. 08 June 2010 (has links)
We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member,WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.
35

Development of Peptidomimetic Inhibitors Against Intracellular Targets

Appiah Kubi, George 05 October 2020 (has links)
No description available.
36

Proteomic profiling of vesicular organelles / Karaktärisering av proteom i vesikel organeller

Hassan, Hanna January 2017 (has links)
No description available.
37

Roles of Type IV Secretion Effector Etf-2 and Etf-3 in Ehrlichia chaffeensis Infection

Yan, Qi January 2020 (has links)
No description available.
38

Processing and Presentation of Glutamic Acid Decarboxylase 65 T cell-Inducing Epitopes: Implications in the Non-Obese Diabetic Mouse Model of Type 1 Diabetes

Rasche, Sarah S. January 2010 (has links)
No description available.
39

Investigations into the Nature of the Endosomal System in Plasmodium falciparum

Krai, Priscilla M. 27 August 2013 (has links)
The parasite Plasmodium falciparum causes the most virulent form of human malaria and is responsible for the vast majority of malaria-related deaths. During the asexual intraerythrocytic stage, the parasite must transport newly synthesized proteins and endocytosed cargo to a variety of organelles, many of which are formed de novo and have no human equivalent. This process in mammalian cells would utilize an endosomal protein trafficking system, but no endosomal structures or proteins have been described in the parasite. Prior work on the parasite genome indicated that several proteins, which could potentially coordinate an endosomal network, were encoded in the genome and expressed during the asexual parasite stages. In this study, we have localized and attempted to further characterize these proteins in the context of the endosomal system. Two well-conserved protein components of the late endosome, the retromer cargo-selective complex and Rab7, were found on a previously un-described inherited structure adjacent to the parasite Golgi apparatus and in close opposition to nascent rhoptries (specialized secretory organelles required for invasion). The retromer cargo-selective complex was also in close proximity to its putative cargo, a P. falciparum homolog of the sortilin family of protein sorting receptors, PfSortilin. Another protein, PfFCP, the sole FYVE domain-containing protein in the P. falciparum genome, was localized to the membrane of a specialized acidic organelle, known as the food vacuole, where the parasite catabolizes the majority of its host cell hemoglobin. We analyzed the effects of a PfFCP dominant negative mutant and found that it altered food vacuole morphology and trafficking. A previous report localized the early endosome phosphoinositide, phosphatidylinositol 3-phosphate, to the food vacuole membrane, and in conjunction with our studies on PfFCP, this has raised doubts about the food vacuole as a lysosome equivalent in the parasite. The combination of both early and late endosome protein homologs in the parasite, and their potential function, has led to a new model of protein trafficking within the parasite that includes the food vacuole as a terminal early endosome and the apical organelles as lysosome equivalents. / Ph. D.
40

Implication de l'endosome de recyclage dans la migration cellulaire in vivo

Assaker, Gloria 08 1900 (has links)
Au cours de l’ovogenèse chez la mouche du vinaigre: Drosophila melanogaster, un groupe de cellules folliculaires appelées cellules de bord, migrent à travers les cellules nourricières pour atteindre l’ovocyte. Cet événement, nécessitant la transition épithélio- mésenchymateuse (TEM), la réorientation, puis l’arrêt, ressemble à la formation de métastases. L’endocytose est un régulateur clé de plusieurs événements polarisés, y compris la migration cellulaire. En effet, différentes protéines impliquées dans la migration, comme les intégrines et les E-cadhérines (cadhérines épithéliales), sont régulées par transport à travers les endosomes. De même, l’endocytose restreint au front de migration l’activité des récepteurs tyrosine kinases (RTKs) qui guident les cellules de bord dans leur mouvement. Cependant les mécanismes moléculaires de cette restriction spatiale de l’activité des RTKs demeurent largement inconnus. Nous avons testé l’implication du trafic vésiculaire à travers la machinerie d’endocytose, dans la migration dirigée des cellules de bord, car ce système est facilement accessible pour l’expression de protéines et l’analyse de mutants. Nous avons commencé par confirmer une observation précédente du rôle de l’endosome précoce dans la migration des cellules de bord. Ensuite, nous avons identifié l’endosome de recyclage (ER) comme un régulateur clé de cette migration. En effet, nous avons démontré que l’expression dans les cellules de bord d’une forme dominante négative de Rab11, la petite GTPase régulant le transport vésiculaire à travers l’ER, bloque la migration ou entraîne de sévères défauts de migration dans environ 80% des chambres d’œufs examinées. De plus, nous observons par immunofluorescence une relocalisation de l’activité des RTKs alors que d’autres protéines de migration ne sont pas affectées par Rab11 dominant négatif. Ce résultat a été par la suite confirmé par une interaction génétique entre Rab11 et les RTKs. D’autre part, nous avons montré que le complexe exocyste, un effecteur de Rab11, est impliqué dans la migration des cellules de bord. Nous avons trouvé par microscopie confocale en tissu fixé et par microscopie en temps réel que Sec15, un composant de ce complexe, est polarisé, de façon Rab11- dépendante, dans des vésicules qui s’accumulent au front de migration tout au long du mouvement des cellules de bord. De plus, la perte de l’activité de Sec15 perturbe à son tour la migration. Ainsi, toutes ces données démontrent le rôle fondamental d’un cycle d’endo- exocytose dans le maintien des RTKs actifs au niveau du front de migration des cellules de bord le long de leur mouvement. / During Drosophila melanogaster’s oogenesis, a cluster of folllicle cells, called border cells, perform an invasive migration through the surrounding nurse cells to reach the oocyte. This event resembles metastasis formation since it requires epithelial- mesenchymal transition, reorientation and arrest. Endocytosis plays a fundamental role in many polarized processes, including cell migration, since different migration proteins, like integrins and E-cadherins traffic through the endocytic pathway. Furthermore, receptor tyrosine kinases (RTKs) that guide border cells during their migration are regulated by endocytosis, although the mechanisms involved are largely unknown. We tested the implication of vesicular trafficking through the endocytic machinery, in border cells’ directed migration, because this system is easily accessible for protein expression and mutant analysis. We first confirmed previous observation that trafficking through the early endosome is necessary for border cells migration, and then we identified the recycling endosome as a key compartment for this migration. Indeed, we showed that overexpression in border cells of a dominant negative form of Rab11, the small GTPase regulating vesicular trafficking through the recycling endosome, blocks migration or leads to severe migration defects in about 80% of examined egg chambers. Furthermore, using immunofluorescence, we observed a relocalization of RTKs activity, whereas other migration proteins were not redistributed upon dominant negative Rab11 expression. This result was further confirmed by a genetic interaction between Rab11 and RTKs. Moreover, we showed that the exocyst complex, an effector of Rab11, is also involved in border cells migration. We found by using confocal microscopy of fixed tissues and time-lapse microscopy of living egg chambers, that Sec15, a member of this complex, is distributed in vesicles which are polarized, in a Rab11- dependent manner, throughout border cells migration. In addition, loss of Sec15 also impairs migration. Together these data demonstrate a fundamental role for an endo- exocytic cycle in the maintenance of active RTKs at the leading edge of border cells during their migration.

Page generated in 0.0593 seconds