• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 10
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement of the wavelength of the Lyman-alpha1 transition of 208 Pb 81+ using FOCAL spectrometers

Chatterjee, Shyamal. January 2007 (has links)
Heidelberg, Univ., Diss., 2007.
2

Analyse mehrachsiger Eigenspannungsverteilungen im intermediären Werkstoffbereich zwischen Oberfläche und Volumen mittels energiedispersiver Röntgenbeugung

Stock, Carsten. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Berlin.
3

Entwicklung einer Methodik zur Erfassung randschichtnaher Eigenspannungsverteilungen s(z) [sigma(z)] in polykristallinen Werkstoffen mittgels energiedispersiver Diffraktion /

Denks, Ingwer Asmus. January 2008 (has links)
Zugl.: Kassel, Universiẗat, Diss., 2008.
4

Multivariat-statistische Auswertung von energiedispersiven Röntgenfluoreszenzspektren zur Identifizierung von Substanzen

Keßler, Thorsten. Unknown Date (has links)
Techn. Universiẗat, Diss., 2001--Darmstadt.
5

Untersuchungen der Elementgehalte luftgetragener Stäube mittels energiedispersiver Röntgenfluoreszenzspektrometrie

Schäfer, Clemens. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Hamburg.
6

Charakterisierung von funktionellen Metalloxidgrenzflächen mittels Röntgenmethoden und Elektronenmikroskopie

Hanzig, Florian 05 July 2018 (has links)
Grenzflächen von Übergangsmetalloxiden in Halbleiterbauelementen bestimmen die Funktionalität auf vielfältige Art und Weise. In dieser Arbeit werden die Nb2O5|Metall- (Metall = Al, Ti, Pt), die TiN|TiO2- und die Si|SrTiO3-Grenzfläche mittels röntgenographischer Methoden sowie der Transmissionselektronenmikroskopie hinsichtlich ihrer Defektchemie, kristallographischen Anpassung und thermischen Stabilität untersucht. Die lokale elektronische Analyse der Nb2O5|Ti- sowie Nb2O5|Al-Grenzfläche zeigt die Ausbildung eines Sauerstoffleerstellengradienten im Nb2O5 durch die Oxidation der unedlen Elektrode. Der elektrische Widerstand dieser beiden Metall-Isolator-Metall-(MIM)-Stapel mit Pt-Bodenelektrode kann reversibel geschalten werden. Diese experimentellen Befunde lassen sich direkt miteinander verknüpfen, da an der Nb2O5|Pt-Grenzfläche weder eine Redoxreaktion stattfindet, noch im Pt|Nb2O5|Pt-Stapel der Widerstand geschaltet werden kann. MIM-Stapel bestehend aus TiN, TiO2 und Au weisen zwar Schaltverhalten des elektrischen Widerstandes auf, lassen aber keine Abweichung der Stöchiometrie im Transmissionselektronenmikroskop erkennen. Die strukturellen Betrachtungen der TiN|TiO2-Grenzfläche verdeutlichen, dass bei der Heteroepitaxie das Aufwachsen der thermodynamisch stabileren TiO2-Modifikation unterdrückt wird, insofern das Substrat eine geeignete kristallographische Orientierung aufweist. So kristallisiert Anatas, eher als Rutil, auf der (001)-Oberfläche des TiN mit einer festen Orientierungsbeziehung. Die thermische Stabilität der Si|SrTiO3-Grenzfläche hängt hingegen stark von der Kationenstöchiometrie des ternären Perowskites ab. Für die Kristallisation der amorphen SrTiO3-Dünnschichten ergibt sich eine Korrelation zwischen der Einsatztemperatur und der Schichtabscheidemethode. / Interfaces of transition metal oxides in semiconductor devices determine their functionalities in a variety of ways. In this work Nb2O5|metal- (metal = Al, Ti, Pt), TiN|TiO2- and Si|SrTiO3-interfaces are investigated by means of X-ray-based methods and transmission electron microscopy with respect to their defect chemistry, crystallographic orientation and thermal stability. From local electronic analysis of the Nb2O5|Ti- as well as Nb2O5|Al-interface the formation of an oxygen vacancy gradient in the Nb2O5 caused by an oxidation of the ignoble electrode can be inferred. The electrical resistance of both types of metal-insulator-metal-(MIM)-stacks, containing a Pt bottom electrode, can be switched reversibly. These experimental findings are directly linked to each other, since at the Nb2O5|Pt-interface no redox reaction based oxygen redistribution takes place and the Pt|Nb2O5|Pt-stack reveals no switching behavior. Using MIM-stacks consisting of TiN, TiO2 und Au switching the electrical resistance is possible, but no stoichiometric deviation was observed in the transmission electron microscope. Structural considerations at the TiN|TiO2-interface clarify that hetero-epitaxy can suppress the growth of the thermodynamically stable TiO2-modification due to suitable crystallographic orientation of the TiN-substrate. Thus, anatase, rather than rutile, crystallizes on the (001)-TiN-surface with a fixed structural coherency. The thermal stability of the Si|SrTiO3-interface strongly depends on the cation stoichiometry of the ternary perovskite. Therefore, crystallization onset temperature correlates to the specific technique of thin film deposition.
7

Dünne Siliziumschichten für photovoltaische Anwendungen hergestellt durch ein Ultraschall-Sprühverfahren

Seidel, Falko 26 January 2015 (has links) (PDF)
Der hauptsächliche Bestandteil dieser Arbeit ist die Entwicklung einer kostengünstigen Methode zur Produktion von auf Silizium basierenden Dünnschicht-Solarzellen durch Sprühbeschichtung. Hier wird untersucht inwiefern sich diese Methode für die Herstellung großflächiger photovoltaische Anlagen eignet. Als Grundsubstanz für entsprechende Lacke werden Mischungen aus Organosilizium und nanokristallines Silizium verwendet. Eine Idee ist das Verwenden von Silizium-Kohlenstoff-Verbindungen als Si-Precursor (Cyclo-, Poly-, Oligo- und Monosilane). In jedem Fall, Organosilizium und Silizium- Nanopartikel, ist eine Umwandlung durch äußere Energiezufuhr nötig, um die Precursor-Substanz in photovoltaisch nutzbares Silizium umzuwandeln. Die Versuchsreihen werden mithilfe photothermischer Umwandlung (FLA-„flash lamp annealing“, einige 1 J/cm² bei Pulslängen von einigen 100 μs) unter N2-Atmosphäre durchgeführt. Zur Bereitstellung eines auf Laborgröße skalierten Produktionsprozesses wurden ein Spraycoater, eine Heizplatte, ein Blitzlampensystem und ein In-Line Ellipsometer in einem Aufbau innerhalb einer Glovebox unter N2-Atmosphäre kombiniert. Die Gewinnung von Proben und deren Charakterisierung fand in enger Zusammenarbeit mit den beiden Arbeitsgruppen der anorganischen Chemie und der Koordinationschemie an der TU-Chemnitz statt. Die eingesetzten Charakterisierungsmethoden sind Raman-Spektroskopie, Infrarotspektroskopie, Rasterelektronenmikroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung, Röntgenbeugung, energiedispersive Röntgenspektroskopie, Rasterkraftmikroskopie und elektrische Charakterisierung wie die Aufnahme von Strom- Spannungs-Kennlinien und Widerstandsmessung per Vierpunktkontaktierung.
8

Dünne Siliziumschichten für photovoltaische Anwendungen hergestellt durch ein Ultraschall-Sprühverfahren

Seidel, Falko 19 December 2014 (has links)
Der hauptsächliche Bestandteil dieser Arbeit ist die Entwicklung einer kostengünstigen Methode zur Produktion von auf Silizium basierenden Dünnschicht-Solarzellen durch Sprühbeschichtung. Hier wird untersucht inwiefern sich diese Methode für die Herstellung großflächiger photovoltaische Anlagen eignet. Als Grundsubstanz für entsprechende Lacke werden Mischungen aus Organosilizium und nanokristallines Silizium verwendet. Eine Idee ist das Verwenden von Silizium-Kohlenstoff-Verbindungen als Si-Precursor (Cyclo-, Poly-, Oligo- und Monosilane). In jedem Fall, Organosilizium und Silizium- Nanopartikel, ist eine Umwandlung durch äußere Energiezufuhr nötig, um die Precursor-Substanz in photovoltaisch nutzbares Silizium umzuwandeln. Die Versuchsreihen werden mithilfe photothermischer Umwandlung (FLA-„flash lamp annealing“, einige 1 J/cm² bei Pulslängen von einigen 100 μs) unter N2-Atmosphäre durchgeführt. Zur Bereitstellung eines auf Laborgröße skalierten Produktionsprozesses wurden ein Spraycoater, eine Heizplatte, ein Blitzlampensystem und ein In-Line Ellipsometer in einem Aufbau innerhalb einer Glovebox unter N2-Atmosphäre kombiniert. Die Gewinnung von Proben und deren Charakterisierung fand in enger Zusammenarbeit mit den beiden Arbeitsgruppen der anorganischen Chemie und der Koordinationschemie an der TU-Chemnitz statt. Die eingesetzten Charakterisierungsmethoden sind Raman-Spektroskopie, Infrarotspektroskopie, Rasterelektronenmikroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung, Röntgenbeugung, energiedispersive Röntgenspektroskopie, Rasterkraftmikroskopie und elektrische Charakterisierung wie die Aufnahme von Strom- Spannungs-Kennlinien und Widerstandsmessung per Vierpunktkontaktierung.:I Bibliographische Beschreibung II Abkürzungsverzeichnis III Abbildungsverzeichnis IV Tabellenverzeichnis 1 Einleitung 1 2 Grundlagen 3 2.1 Dioden und Photodioden 3 2.1.1 Schottky-Dioden 3 2.1.1.1 Schottky-Kontakt oder Ohmscher Kontakt 3 2.1.1.2 Schottky-Barriere 3 2.1.1.3 Arbeitsweise der Schottky-Diode 5 2.1.1.4 Ladungstransport durch eine Schottky-Diode 6 2.1.2 Schottky-Photodioden 8 2.2 Solarzellen 9 2.2.1 Aufbau einer Solarzelle 10 2.2.2 Charakterisierung einer Solarzelle 10 2.3 Moderne Photovoltaik 12 2.4 Transparente leitfähige Oxide (TCO) 13 2.5 Ultraschalldüse und Sprühnebel 14 2.6 Blitzlampenbehandlung (FLA) 17 3 Methoden zur Charakterisierung 18 3.1 Fourier-Transformations-Infrarotspektroskopie (FTIRS) 18 3.2 Lichtstreuung an Materie 20 3.2.1 Raman-Spektroskopie 20 3.2.1.1 Klassische Deutung des Raman-Effektes 21 3.2.1.2 Quantenmechanische Deutung des Raman-Effektes 22 3.2.1.3 Räumlich eingeschränkte Phononen 23 3.3 Änderung der Lichtpolarisation an Materie 26 3.3.1 Fresnel-Formeln 26 3.3.2 Jones-Formalismus 27 3.3.3 Spektroskopische Ellipsometrie (SE) 27 3.4 Röntgenbeugung (XRD) 29 3.4.1 Kalibrierung des Einfallswinkels 31 3.4.2 Kristallitgröße 31 3.5 Elektronenmikroskopie (EM) 31 3.5.1 Transmissionselektronmikroskopie (TEM) 32 3.5.2 Rasterelektronenmikroskopie (SEM und EDX) 33 3.6 Rasterkraftmikroskopie (AFM) 34 4 Experimentelles 37 4.1 Prozessaufbauten 37 4.2 Messgeräte 39 4.3 Probenherstellung 40 4.3.1 Lösungen und Dispersionen 41 4.3.2 Sprühlack 41 4.3.3 Substratreinigung 42 4.3.4 Drop- und Spraycoating 42 4.3.4.1 Dropcoating und Rohrofenprozess 43 4.3.4.2 Sprühen und Blitzlampenbehandlung 43 4.4 Infrarotspektroskopie 46 4.4.1 DRIFT-Spektroskopie an Silizium-Nanopartikeln im MIR 47 4.4.2 DRIFT-Spektroskopie an Silizium-Precursoren im MIR 48 4.4.3 Transmissions- und Reflexionsspektroskopie an Si-Schichten im FIR 49 4.5 Lichtstreuung 49 4.5.1 Mie-Streuung an Silizium-Nanopartikeln 49 4.5.2 Raman-Streuung an Silizium-Precursoren und –Schichten 50 4.6 AFM an Silizium-Schichten 51 4.7 Elektronenmikroskopie 51 4.7.1 SEM und EDX an Silizium-Schichten und –Folien 52 4.7.2 TEM an Silizium-Nanopartikeln und –Folien 53 4.8 XRD an Silizium-Folien 54 4.9 Elektrische Messungen an Silizium-Schichten und –Folien 55 5 Ergebnisse und Diskussion 56 5.1 Silizium-Nanopartikel als Pulver 56 5.1.1 Dispersionen von Silizium-Nanopartikeln 56 5.1.2 Oxidationsgrad von Silizium-Nanopartikeln 58 5.1.3 Verteilung von Silizium-Nanopartikeln in getrocknetem Ethanol 61 5.2 Gesprühte Silizium-Nanopartikel 64 5.2.1 Ellipsmetrie als In-Line Prozessmethode im Spraycoating 64 5.2.2 Oberflächenrauheit von Schichten von Silizium-Nanopartikeln 66 5.2.3 Effekt des FLA auf Schichten von Silizium-Nanopartikeln 69 5.2.4 Simulationen zum Phonon-Confinement 74 5.3 Organosilizium als Silizium-Precursoren 80 5.3.1 Vorversuche: Zersetzung von Phenylsilanen im Rohrofen 80 5.3.2 Photothermische Zersetzung von Monosilanen durch FLA 82 5.4 Monosilane als Haftmittel zwischen Silizium-Nanopartikeln 89 5.4.1 Bestandteile des verwendeten Lacks 90 5.4.2 Filme hergestellt von Si-Nanopartikeln gemischt mit Si-Precursor 92 5.4.3 Folien hergestellt von Si-Nanopartikeln gemischt mit Si-Precursor 106 5.5 Realisierung von Diodenstrukturen 120 6 Zusammenfassung 124 Literaturverzeichnis Anhang
9

Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischer Dünnfilme und Heterostrukturen

Zippel, Jan 04 December 2012 (has links) (PDF)
In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Untersuchung der Auswirkungen einer Modifikation der zugänglichen Prozessparameter auf die funktionalen Eigenschaften oxidischer Dünnfilme während der gepulsten Laserabscheidung (PLD) gelegt. Der erste Teil der Arbeit stellt die Herstellung von BaTiO3/SrTiO3-Mehrfach-Heterostrukturen auf thermisch und chemisch vorbehandelten SrTiO3-Substraten mittels gepulster Laserabscheidung (PLD) vor. Die zugängliche in-situ Wachstumskontrolle durch ein reflection high-energy electron diffraction (RHEED)-System ermöglicht es die Wachstumsprozesse in Echtzeit zu überwachen. Angestrebt wird ein stabiler zwei-dimensionaler Wachstumsmodus, der neben glatten Grenzflächen auch eine hohe Dünnfilmqualität ermöglicht. Es wird erstmals die prinzipielle Anwendbarkeit von BaTiO3/SrTiO3-Heterostrukturen als Bragg-Spiegel aufgezeigt. Für BaTiO3- sowie SrTiO3-Dünnfilme wurden die PLD-Parameter Substrattemperatur, Sauerstoffpartialdruck, Energiedichte des Lasers sowie Flussdichte der Teilchen variiert und die Auswirkungen auf die strukturellen, optischen und Oberflächeneigenschaften mittels Röntgendiffraktometrie (XRD), spektraler Ellipsometrie (SE) und Rasterkraftmikroskopie (AFM) beleuchtet. Im zweiten Teil werden ZnO/MgxZn1−xO-Quantengrabenstrukturen hetero- und homoepitaktisch auf thermisch vorbehandelten a-Saphir- respektive m- und a-orientierten ZnO-Einkristallen vorgestellt. Die Realisierung eines zwei-dimensionalen „layer-by-layer“ Wachstumsmodus wird für die Quantengrabenstrukturen aufgezeigt. Die Quantengrabenbreite lässt sich aus beobachteten RHEED-Oszillationen exakt bestimmen. Ein Vergleich zwischen, mittels Photolumineszenz gemessenen Quantengrabenübergangsenergien als Funktion der Grabenbreite mit theoretisch ermittelten Werten wird vorgestellt, wobei der Unterschied zwischen polaren und nicht-polaren Strukturen mit Blick auf eine Anwendung aufgezeigt wird. Für c-orientierte ZnO-Dünnfilme wird das Wachstum im Detail untersucht und ein alternativer Abscheideprozess im so genannten Intervall PLD-Verfahren vorgestellt. Die Verifizierung der theoretischen Prognose einer ferromagnetischen Ordnung mit einer Curie-Temperatur oberhalb Raumtemperatur (RT) für kubische, Mangan stabilisierte Zirkondioxid (MnSZ)-Dünnfilme stellt den dritten Teil der Arbeit dar. Die strukturellen Eigenschaften der Dünnfilme werden mittels XRD, AFM sowie Transmissionselektronenmikroskopie (TEM) untersucht. Die Bedingungen einer erfolgreichen Stabilisierung der kubischen Kristallphase durch den Einbau von Mn wird aufgezeigt. Mittels Röntgenphotoelektronenspektroskopie (XPS) sowie Elektronenspinresonanz (EPR) wird der Ladungszustand der, in der Zirkondioxidmatrix eingebauten, Mn-Ionen ermittelt. Die elektrischen Eigenschaftenwerden durch Strom-Spannungsmessungen(IU) sowie der Leitungstyp durch Seebeck-Effekt Messungen charakterisiert. Zur Erhöhung der Leitfähigkeit werden die MnSZ Dünnfilme in verschiedenen Atmosphären thermisch behandelt und Veränderungen durch IU-Messungen aufgezeigt. Ergebnisse von optischen Untersuchungen mittels Transmissionsmessungen und KL werden präsentiert. Superconducting quantum interference device (SQUID)-Magnetometrie wird zur Charakterisierung der magnetischen Eigenschaften genutzt. Magnetische Ordnungen im Bereich zwischen 5 K ≤ T ≤ 300 K werden untersucht und der Einfluss von Defekten sowie einer thermischen Behandlung in verschiedenen Atmosphären auf die magnetischen Eigenschaften diskutiert.
10

Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischer Dünnfilme und Heterostrukturen: Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischerDünnfilme und Heterostrukturen

Zippel, Jan 09 November 2012 (has links)
In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Untersuchung der Auswirkungen einer Modifikation der zugänglichen Prozessparameter auf die funktionalen Eigenschaften oxidischer Dünnfilme während der gepulsten Laserabscheidung (PLD) gelegt. Der erste Teil der Arbeit stellt die Herstellung von BaTiO3/SrTiO3-Mehrfach-Heterostrukturen auf thermisch und chemisch vorbehandelten SrTiO3-Substraten mittels gepulster Laserabscheidung (PLD) vor. Die zugängliche in-situ Wachstumskontrolle durch ein reflection high-energy electron diffraction (RHEED)-System ermöglicht es die Wachstumsprozesse in Echtzeit zu überwachen. Angestrebt wird ein stabiler zwei-dimensionaler Wachstumsmodus, der neben glatten Grenzflächen auch eine hohe Dünnfilmqualität ermöglicht. Es wird erstmals die prinzipielle Anwendbarkeit von BaTiO3/SrTiO3-Heterostrukturen als Bragg-Spiegel aufgezeigt. Für BaTiO3- sowie SrTiO3-Dünnfilme wurden die PLD-Parameter Substrattemperatur, Sauerstoffpartialdruck, Energiedichte des Lasers sowie Flussdichte der Teilchen variiert und die Auswirkungen auf die strukturellen, optischen und Oberflächeneigenschaften mittels Röntgendiffraktometrie (XRD), spektraler Ellipsometrie (SE) und Rasterkraftmikroskopie (AFM) beleuchtet. Im zweiten Teil werden ZnO/MgxZn1−xO-Quantengrabenstrukturen hetero- und homoepitaktisch auf thermisch vorbehandelten a-Saphir- respektive m- und a-orientierten ZnO-Einkristallen vorgestellt. Die Realisierung eines zwei-dimensionalen „layer-by-layer“ Wachstumsmodus wird für die Quantengrabenstrukturen aufgezeigt. Die Quantengrabenbreite lässt sich aus beobachteten RHEED-Oszillationen exakt bestimmen. Ein Vergleich zwischen, mittels Photolumineszenz gemessenen Quantengrabenübergangsenergien als Funktion der Grabenbreite mit theoretisch ermittelten Werten wird vorgestellt, wobei der Unterschied zwischen polaren und nicht-polaren Strukturen mit Blick auf eine Anwendung aufgezeigt wird. Für c-orientierte ZnO-Dünnfilme wird das Wachstum im Detail untersucht und ein alternativer Abscheideprozess im so genannten Intervall PLD-Verfahren vorgestellt. Die Verifizierung der theoretischen Prognose einer ferromagnetischen Ordnung mit einer Curie-Temperatur oberhalb Raumtemperatur (RT) für kubische, Mangan stabilisierte Zirkondioxid (MnSZ)-Dünnfilme stellt den dritten Teil der Arbeit dar. Die strukturellen Eigenschaften der Dünnfilme werden mittels XRD, AFM sowie Transmissionselektronenmikroskopie (TEM) untersucht. Die Bedingungen einer erfolgreichen Stabilisierung der kubischen Kristallphase durch den Einbau von Mn wird aufgezeigt. Mittels Röntgenphotoelektronenspektroskopie (XPS) sowie Elektronenspinresonanz (EPR) wird der Ladungszustand der, in der Zirkondioxidmatrix eingebauten, Mn-Ionen ermittelt. Die elektrischen Eigenschaftenwerden durch Strom-Spannungsmessungen(IU) sowie der Leitungstyp durch Seebeck-Effekt Messungen charakterisiert. Zur Erhöhung der Leitfähigkeit werden die MnSZ Dünnfilme in verschiedenen Atmosphären thermisch behandelt und Veränderungen durch IU-Messungen aufgezeigt. Ergebnisse von optischen Untersuchungen mittels Transmissionsmessungen und KL werden präsentiert. Superconducting quantum interference device (SQUID)-Magnetometrie wird zur Charakterisierung der magnetischen Eigenschaften genutzt. Magnetische Ordnungen im Bereich zwischen 5 K ≤ T ≤ 300 K werden untersucht und der Einfluss von Defekten sowie einer thermischen Behandlung in verschiedenen Atmosphären auf die magnetischen Eigenschaften diskutiert.:Inhaltsverzeichnis 1. Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1. Thermodynamische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Konzept der Übersättigung . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2. Beschreibung der Grenz- bzw. Oberfläche . . . . . . . . . . . . . . 10 2.2. Keimbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1. Thermodynamische Grundlagen der Keimbildung . . . . . .. . . . 12 2.2.2. Atomistische Beschreibung der Keimbildung . . . . . . . . . . . . . 14 2.3. Besonderheiten der Schichtbildung in Homo- und Heteroepitaxie 16 2.3.1. Homoepitaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2. Heteroepitaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4. Wachstumskinetik in der gepulsten Laserabscheidung . . . . . . . 19 3. Experimentelle Details 21 3.1. Probenherstellung – Gepulste Laser Abscheidung (PLD) . . . . . . 21 3.1.1. Allgemeine Grundlagen der PLD . . . . . . . .. . . . . . . . . . . . . . . . 21 3.1.2. Reflection high-energy electron diffraction . . . . . . . . . . . . . . . 23 3.1.3. PLD-Kammer mit in-situ RHEED . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.4. PLD-Kammer ohne in-situ RHEED . . . . . . . . . . . . . . . . . . . . . . 28 3.2. Strukturelle und chemische Charakterisierung . . . . . . . . . . . . . 29 3.2.1. Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2. Rasterkraftmikroskopie . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 31 3.2.3. Transmissionselektronenmikroskopie . . . . . . . . . . . . . . . . . . . 33 3.2.4. Energiedispersive Röntgenspektroskopie . . . . . . . . . . . . . . . . 33 3.2.5. Rutherford-Rückstreuspektrometrie und Partikel-induzierte Röntgenemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.6. Röntgenphotoelektronenspektroskopie . . . . . . . . . . . . . . . . . . 34 3.3. Optische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1. Transmissionsmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2. Lumineszenzmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3. Spektroskopische Ellipsometrie . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.4. Raman-Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4. Magnetische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1. Messungen der Magnetisierung mit einem SQUID-Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 39 3.4.2. Elektronenspinresonanz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5. Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.1. Strom-Spannungs-Messungen . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2. Seebeck Effekt Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Die Herstellung und Charakterisierung von BaTiO3/SrTiO3-Bragg-Spiegeln mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2. Bragg-Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3. Die Materialien Strontiumtitanat und Bariumtitanat . . . . . . . . . . 45 4.3.1. Kristallstruktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.2. Substrateigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4. Epitaktische BaTiO3-Dünnfilme . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.1. Heteroepitaktische BaTiO3-Dünnfilme auf SrTiO3 (001)-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.2. Initiale Wachstumsphasen von BaTiO3-Dünnfilmen auf SrTiO3 (001)-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.3. Auswirkung der PLD-Abscheideparameter auf epitaktische BaTiO3-Dünnfilme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 4.4.4. Veränderung der optischen Konstanten durch die Modifikation der PLD-Abscheideparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5. Epitaktische SrTiO3-Dünnfilmen . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.6. Abscheidung von BaTiO3/SrTiO3-Bragg-Spiegel . . . . . . . . . . . . . 73 4.6.1. BaTiO3/SrTiO3-Einfach–Heterostrukturen . . . . . . . . . . . . . . . . 73 4.6.2. BaTiO3/SrTiO3-Mehrfach–Heterostrukturen . . . . . . . . . . . . . . . 78 4.6.3. BaTiO3/SrTiO3-Bragg-Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6.4. Abschlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5. Die Herstellung und Charakterisierung von ZnO/MgxZn1−xO-Quantengräben mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2. Die Materialien ZnO und MgxZn1−xO . . . . . . . . . . . . . . . . . . . . . 88 5.2.1. ZnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.2. MgxZn1−xO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3. Quantengrabenstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.1. Exzitonen im Zinkoxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.2. Quantum-Confined Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4. Die Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.1. Heteroepitaktische Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen auf a-Saphir-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4.2. Homoepitaktische Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen auf verschiedenen ZnO-Substraten . . . . . . . . . . . . . . . . 106 5.5. Die Herstellung von ZnO/MgxZn1−xO-Quantengrabenstrukturen auf verschiedenen Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.5.1. Heteroepitaktische Quantengrabenstrukturen auf a-Saphir-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.5.2. Anmerkungen zu homoepitaktischen Quantengrabenstrukturen abgeschieden auf c-ZnO-Substraten . . . . . . . . . . . . . . . . . . . . . . . . 143 5.5.3. Homoepitaktischen Quantengrabenstrukturen abgeschieden auf nicht-polaren ZnO-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.5.4. Abschlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6. Die Herstellung und Charakterisierung von Mangan stabilisierten Zirkondioxid als potentieller verdünnter magnetischer Halbleiter mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2. Theoretische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2.1. Spintronik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2.2. Verdünnte magnetische Halbleiter . . . . . . . . . . . . . . . . . . . . . 158 6.2.3. Ferromagnetische Kopplung in verdünnten magnetische Halbleitern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3. Mangan stabilisiertes Zirkondioxid als möglicher DMS . . . . . . . . 162 6.4. Das Material Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4.1. Die Phasen des Zirkondioxids . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.5. Substrateigenschaften von (001) und (111) orientiertem Yttrium stabilisierten Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.6. Untersuchungen an Mangan stabilisierten Zirkondioxid Dünnfilmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 6.6.1. Strukturelle und chemische Charakterisierung . . . . . . . . . . . . 177 6.6.2. Analyse der unterschiedlichen Phasen im Mangan stabilisierten Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 6.6.3. Elektrische und optische Charakterisierung . . . . . . . . . . . . . . 203 6.6.4. Magnetische Charakterisierung von Mangan stabilisiertem Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 6.6.5. Magnetische Charakterisierung von nominell undotiertem Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 6.6.6. MnSZ-Mehrfach-Heterostrukturen . . . . . . . . . . . . . . . . . . . . . 224 6.6.7. Einfluss einer thermischen Behandlung auf die magnetischen Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 6.6.8. Zusammenfassung der Messergebnisse . . . . . . . . . . . . . . . . 232 6.7. Abschlussbemerkung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7. Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . 237 8. Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 A. Symbole und Abkürzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 B. Liste der Veröffentlichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 C. Danksagung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 D. Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 E. Selbstständigkeitserklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Page generated in 0.1048 seconds