• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of multi-channel ground penetrating radar and stream monitoring to investigate the seasonal evolution of englacial and subglacial drainage aystems at the terminus of Exit Glacier, Alaska

Kilgore, Susan Marlena 01 July 2013 (has links)
Concerns regarding the issue of climate change and, in particular, the rapid retreat of glaciers around the world, have placed great importance on glacial monitoring. Some of the methods most commonly used to observe glacial change--direct mass balance measurements and remote sensing--provide valuable information about glacier change. However, these methods do not address the englacial and subglacial environments. Surface meltwater that enters englacial and subglacial hydrological networks can contribute to acceleration of ice flow, increased calving on marine-terminating glaciers, surges or outburst floods, and greater overall ablation rates. Because subsurface drainage systems often freeze during the winter and re-form each summer, examining the seasonal evolution of these networks is crucial for assessing the impact that internal drainage may have on the behavior of a glacier each year. The goal of this study is to determine the role englacial and subglacial drainage system evolution plays in influencing summer ablation and discharge at the terminus of Exit Glacier, a small valley glacier located in South-central Alaska. During the summers of 2010 and 2011, we used ground-penetrating radar (GPR) to locate internal drainage features on the lower 100 meters of the glacier. GPR surveys were conducted in June and August of each year in an effort to observe the evolution of the drainage systems over the course of an ablation season. Three antenna frequencies--250, 500, and 800 MHz--were used on a dual frequency GPR so that various resolutions and depths in the ice could be viewed simultaneously. Stream monitoring was conducted to document discharge in the proglacial stream throughout the 2011 season. These data were compared with weather records to differentiate noticeable meltwater releases from precipitation events. Additionally, morphological changes in the glacier were observed through photographic documentation. Throughout the observation period, significant subglacial tunnels appeared, followed by the collapse of terminal ice above the tunnels. This phenomenon was most noticeable in 2011. These observations indicate that the internal drainage systems near the terminus of Exit Glacier became very well-developed each summer, and contributed approximately 75 meters of ice loss between June, 2010 and August, 2011.
2

Thermal state uncertainty assessment of glaciers and ice sheets: Detecting promising Oldest Ice sites in Antarctica

Van Liefferinge, Brice 02 March 2018 (has links) (PDF)
In a warming world, glaciers and ice sheets have an increasingly large influence on the environment, particularly through their contribution to sea level rise. Their response to anthropogenic climate change, in addition to natural variability, has a critical impact on dependent populations and will be key to predict future climates. Understanding the past natural transitions is also important as if the natural variability of the climate system is not well understood, we stand little change of accurately predicting future climate changes, especially in the context of rapid global warming. Ice cores represent the best time capsules for the recovery of paleo-climate informations. For that, the recovery of a suitable 1.5 million-year-old ice core in Antarctica is fundamental to better understand the natural climate reorganisation which occurred between 0.9 and 1.2 Ma. Constraining the englacial and basal temperature evolution of glaciers and ice sheets through time is the first step in understanding their temporal stability and therefore potential impacts on climate. Furthermore, obtaining the best constraints on basal conditions is essential as such million-year-old ice will be located very near to the bedrock, where the thermal regime has the strongest impact. However, measurements of current englacial and basal temperature have only been obtained at a few drill sites for glaciers and ice sheets. We must therefore turn to thermodynamical models to provide theoretical and statistical constraints on governing thermal processes. Thermodynamical models rely on a suite of governing equations, which we describe in this thesis. Our first study area is the McCall glacier, in Alaska (USA), where we show that the glacier cooled down in the warming climate of the last 50 years using a 1D thermodynamical model. We calculate the present-day englacial temperature distribution using recently acquired data in the form of englacial temperature measurements and radio-echo sounding surveys of the glacier. We show the important of absence of latent heat release due to the refreezing of meltwater inside an active surface layer and reconstruct the last 50 years of equilibrium line altitude (ELA) elevation changes. In the context of Beyond Epica Oldest Ice, a European project aimed at recovering a 1.5 million year-old ice core, we propose for the first time a map of the location of adequate drilling sites for the entire Antarctic Ice Sheet. We use a 3D thermomechanical model to calculate a new basal temperature map of the Antarctic Ice Sheet, as well as a 1D thermodynamical model to constrain the poorly known geothermal heat flux (GHF). These combined model runs use the latest acquired data sets for the GHF, ice flow velocity, ice thickness and subglacial lakes. In order to take into account 2 Ma of Antarctic climate history, we use a transient 1D thermodynamical model to provide constraints on GHF by calculating the maximum value of GHF allowed to keep frozen basal conditions everywhere underneath the ice sheet. These values are then statistically compared to published GHF data sets to propose a probabilistic map of frozen and thawed bedrock locations. This transient model uses high spatial resolution radar data acquired over the Dome Fuji and Dome C regions to examine their likelihood of having preserved 1.5-million-year ice. We define a number of important criteria such as GHF, bedrock variability, ice thickness and other parameter values for Oldest Ice survival. We anticipate that our methods will be highly relevant for Oldest Ice prospection in other areas of the ice sheet that so far remain little or un-surveyed, as well as for the thermal modelling of other glaciers and ice sheets, and in particular, of the Greenland Ice Sheet. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
3

<b>FACTORS AFFECTING THE PRESERVATION OF THE ISOTOPIC FINGERPRINT OF GLACIAL MELTWATER IN MOUNTAIN GROUNDWATER SYSTEMS</b>

Ayobami O Oladapo (19218853) 26 July 2024 (has links)
<p dir="ltr">Alpine glacier meltwater is an important source of recharge supporting groundwater flow processes in the high mountains. In the face of rapid ice loss, knowledge of response times of mountain aquifers to loss of glacial ice is critical in evaluating the sustainability of alpine water resources for human communities and alpine ecosystems. Glaciers are very sensitive to changes in climate, they advance during periods of global or regional cooling, and they retreat in response to global or regional warming conditions. When the glaciers grow, the equilibrium-line altitude separating the zone of accumulation and zone of ablation on the glacier moves downslope; it moves upslope when they retreat. The latter is not a sustainable condition for the glacier. Previous studies have shown that glacial meltwater is an important source of groundwater recharge. However, we lack fundamental information on the importance of glacial meltwater in mountain groundwater processes such as supporting baseflow generation to alpine streams, perennial flow to alpine springs, and the geochemical evolution of groundwater in mountain aquifers. Thus, continued glacial ice loss may have severe consequences for alpine hydrological and hydrogeological systems.</p><p dir="ltr">Glacier National Park (GNP) and Mount Hood National Forest (MH), both have alpine glaciers. These two study sites show different responses to climate change since their glaciers are in different states of retreat. GNP glaciers are in advanced stages of retreat compared to MH glaciers. Groundwater samples were collected from springs, seasonal snow, glacial ice, and glacial melt (subglacial flow) in GNP and MH. The samples were analyzed for a suite of environmental isotopes and geochemical tracers to address the following questions: 1) How are isotopic fingerprints of glacial meltwater preserved in mountain-block aquifers? What does the isotopic fingerprint of subglacial flow tell us about melting, meltwater processes, and mixing processes? 2) Is the preservation of the isotopic fingerprint of glacial meltwater affected by aspect controls on ice preservation? Aspect is defined as the compass direction of the slope where the glacier is found. 3) What controls groundwater flow and flowpath connectivity from high elevations (near glacier) to lower elevations? What geologic units support groundwater flow to local- and regional-scale springs and flowpath connectivity across spatial scales in each study site?</p><p dir="ltr">The flow of groundwater in mountainous terrain is heavily dependent on the hydraulic properties of the bedrock including presence/absence of dipping layers and structural features, primary and secondary porosity, and presence/absence of ongoing tectonic activity. Strontium isotopes (<sup>87</sup>Sr/<sup>86</sup>Sr) were used to identify the rock units that host groundwater flowpaths and to quantify flowpath connectivity across spatial scales in both study sites. The <sup>87</sup>Sr/<sup>86</sup>Sr data show that flowpaths in GNP are primarily hosted in the Helena Formation and permeable facies in the Snowslip Formation. Groundwater also flows through alluvium and younger bedrock units, and there is some flow along or through the volcanic sill in the Helena Formation. Hydrostratigraphy also affects groundwater flow and the spatial distribution of alpine springs in GNP. At MH, the rock units hosting flowpaths are young reworked volcanic rock units that are Quaternary in age. Flowpaths in MH appear to be connected across spatial scales since warm springs emerging along the lower southern slopes of Mount Hood preserve stable isotopic signatures of glacial meltwater. In comparison, nearly all the sampled springs in GNP emerge on south-facing slopes. This is not an indication of ice preservation, instead it’s controlled by hydrostratigraphy. In fact, it’s unlikely that high-elevation groundwater is strongly connected to low-elevation sites due to hydrostratigraphy. There are more springs on south-facing slopes at MH as well; however, they do not preserve an isotopic signature of recharge from glacial meltwater except for the warm springs. Springs on north-facing slopes in MH, however, do preserve the signature.</p><p dir="ltr">Tritium (<sup>3</sup>H) and chlorine-36 (<sup>36</sup>Cl/Cl) were measured to assess how the isotopic fingerprint of glacial meltwater is preserved in mountain aquifers. The <sup>3</sup>H activities in spring water are elevated in GNP and it’s difficult to differentiate between modern precipitation and glacial meltwater. Tritium activities are lower in MH, but it’s also difficult to differentiate between potential endmembers. This discrepancy could imply that glacial meltwater doesn’t contribute to groundwater recharge, but this doesn’t support the Bayesian stable isotope mixing model results of an earlier study. Instead, I infer that englacial mixing processes are affecting the isotopic fingerprint of subglacial melt. An englacial mixing model (EMM) was developed to explain how the isotopic fingerprint of subglacial flow (glacial meltwater) changes in relation to the stage of retreat. The stage of retreat is important because it controls the proportion of glacial meltwater to runoff from snowmelt and rain that enters the englacial network from the surface of the glacier. Mixing occurs in the englacial network, and the mixed water is transported to the base of the glacier. Englacial mixing in conduits, fractures, and moulins affects the <sup>3</sup>H and <sup>36</sup>Cl/Cl fingerprint of subglacial flow and will, in turn, affect the isotopic fingerprint of recharge from glacial meltwater. For this study, the <sup>3</sup>H is not robust by itself; however, <sup>36</sup>Cl/Cl shows some additional benefits over <sup>3</sup>H. The EMM suggests that the impact of englacial mixing and the influence of modern precipitation on the isotopic composition of subglacial flow increases as the glacier retreats in both GNP and MH. This model is novel to the best of our knowledge. Additional testing of the EMM should be prioritized in the near future.</p>
4

Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings

Lindbäck, Katrin January 2015 (has links)
The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet. / De ökade temperaturerna i Arktis påskyndar förlusten av landbaserad is lagrad i glaciärer och permafrost. Grönlands inlandsis är den största ismassan på norra halvklotet och lagrar ca 10% av allt sötvatten på jorden, vilket motsvarar ca 7 meter global havsnivåhöjning. För ett par decennier sedan var inlandsisens massbalans dåligt känd och antogs ha liten inverkan på dagens havsnivåhöjning. Utvecklingen av regionala klimatmodeller och satellitbaserad fjärranalys av inlandsisen har under de senaste decenniet påvisat en betydande massförlust. För att förutse vilken inverkan inlandsisen har på framtida havsnivåhöjningar krävs en förståelse för de fysikaliska processerna som styr dess massbalans och isrörelse. I de sydöstra och centrala västra delarna av inlandsisen domineras massförlusten av dynamiska processer i isströmmar som kalvar ut i havet. Massförlusten i de centrala norra, sydvästra och nordöstra delarna domineras av isytans massbalans. Ytterst lite är känt om hur det hydrologiska systemet ser ut under inlandsisen; hur väl det hydrologiska systemet är utvecklat avgör vattnets påverkan på isrörelsen. I denna doktorsavhandling har jag använt markbaserade radarmätningar för att kartlägga den subglaciala topografin för en del av den västra landbaserade inlandsisen. Denna kunskap är en viktig förutsättning för att kunna modellera den subglaciala hydrologin. Med hjälp av rumsligt högupplöst data över istjockleken och bottentopografin har jag gjort följande specifika studier: Först har jag analyserat de geologiska och glaciologiska förhållandena i regionen genom att jämföra proglacial och subglacial spektralanalys av terrängens ytojämnheter. Sedan har jag analyserat den subglaciala vattenavrinningen och påvisat en potential för att avrinningsområdena kan ändras beroende på vattentryckförhållandena på botten. Slutligen har jag tittat mer i detalj på englaciala radarstrukturer som ofta observerats i radardata från västra Grönland. Sammanfattningsvis belyser avhandlingen behovet av inte bara noggranna rumsligt högupplösta subglaciala digitala höjdmodeller, utan även regionalt optimerad interpolering när detaljerade hydrologiska studier ska utföras på Grönlands inlandsis.

Page generated in 0.0346 seconds