• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 43
  • 26
  • 18
  • 12
  • 12
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 204
  • 47
  • 45
  • 44
  • 44
  • 44
  • 43
  • 43
  • 43
  • 43
  • 43
  • 43
  • 40
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Antarctic Station-based Pressure Reconstructions from 1905-2011 using Principal Component Regression

Lee, Ming Yeung 13 June 2013 (has links)
No description available.
202

Variations actuelles du niveau de la mer / Present day sea level variations

Dieng, Habib Boubacar 10 January 2017 (has links)
Depuis le début des années 1990 on suit l'évolution globale du niveau de la mer grâce aux satellites altimétriques. Ils observent une hausse du niveau moyen global de la mer (GMSL) de 3.4 ± 0.4 mm/an sur la période 1993-2016 (ce qui représente le double de ce qui a été observé au cours du 20ème siècle par les marégraphes, hausse à 1.7 mm/an entre 1900 et 1990). Le GMSL présente aussi des fluctuations interannuelles qui peuvent atteindre quelques millimètres, surtout pendant les épisodes ENSO. Cette hausse n'est pas régionalement uniforme : elle a été 3 fois plus rapide que la hausse moyenne globale dans certaines zones entre 1993 et 2016. Au cours du 21ème siècle, on s'attend à une hausse accrue du GMSL pouvant aller jusqu'à 1 m à l'horizon 2100, avec une forte variabilité régionale. Il est donc important de comprendre l'évolution actuelle du niveau des océans qui constitue une menace sérieuse pour de nombreuses régions côtières basses souvent très peuplées. Cette thèse s'inscrit dans le contexte du projet niveau de la mer CCI (Climate Change Initiative) de l'Agence Spatiale Européenne (ESA) ayant pour objectif de fournir de meilleurs produits du niveau de la mer combinant les missions Topex/Poseidon, Jason-1/2, ERS-1/2 et Envisat. L'objectif premier de cette thèse est de valider ces produits SL_CCI du niveau de la mer en utilisant différentes approches, en particulier par l'étude du bilan (comparaison du GMSL observé avec la somme des différentes contributions : composante stérique, fonte des glaces continentales et transferts d'eau depuis les terres émergées). Un autre objectif est d'estimer les composantes du niveau de la mer mal connues, et tout particulièrement le contenu thermique de l'océan profond non mesurable par le système Argo, et la contribution du stock d'eau sur les continents. Ces travaux ont montré que la contribution de l'océan profond en dessous de 2000m est faible sur la période 2005-2013 et contenue dans la barre d'incertitudes des données (erreurs qui proviennent essentiellement, (1) des produits niveau de la mer altimétriques et des lacunes de la couverture géographique des données Argo dans la région Indonésienne pour la tendance et (2) des produits GRACE et Argo pour la variabilité interannuelle). Nos résultats et la méthode utilisée montrent que le niveau de la mer et ses composantes sont encore entachés d'erreurs importantes. Dans la deuxième partie, nous avons analysé l'influence du phénomène ENSO (El Niño et La Niña) sur les variations interannuelles du GMSL. Nous montrons que lors des évènements La Niña comme celui de 2010-2011, le déficit de précipitations sur l'océan (et l'excès sur les continents) conduit à une baisse temporaire de la masse de l'océan global et donc du niveau de la mer. C'est essentiellement la variation de masse de l'océan qui explique la variabilité interannuelle du niveau de la mer lors des évènements ENSO, et le déficit (La Niña) ou excès (El Niño) de masse se trouve confiné dans l'océan Pacifique tropical Nord. Pour finir, nous analysons l'évolution de la température moyenne de l'air et de l'océan en surface sur la période du "hiatus" (2003-2013). Nous montrons que ce hiatus, c'est à dire le ralentissement récent de la hausse de la température moyenne globale de la Terre est un phénomène quasi global, même si le Pacifique tropical Est s'est fortement refroidi. Cette "supposée" pause récente s'explique par la variabilité naturelle interne du climat. La Terre est toujours en état de déséquilibre énergétique dû à l'accumulation de gaz à effet de serre. Nous mettons en évidence le rôle de la variabilité naturelle à court terme sur les changements à plus long terme associés au réchauffement climatique anthropique. / Since the early 1990s sea level is routinely measured using high-precision altimeter satellites. These observe a rise in global mean sea level (GMSL) of 3.4 ± 0.4 mm/yr over the 1993-2016 period (which is twice what has been observed during the 20th century by the tide gauges, with a rise of 1.7 +/- 0.3 mm/yr). The interannual variability in the GMSL can reach several millimeters, especially during ENSO events. The rate of sea level rise is not regionally uniform. During the altimetry era, it was three times faster than the global mean in some areas. During the 21st century, we expect a greater rise of the GMSL than today, up to 1 m in 2100, with strong regional variability. It is therefore important to understand the current evolution of the sea level, since it represents a serious threat to many low coastal areas, often densely populated of the planet. My thesis research deals with the Sea Level CCI (Climate Change Initiative) project of the European Space Agency (ESA) which objective is to provide improved sea level products combining several altimetry missions, including Topex/Poseidon, Jason-1/2, ERS-1/2 and Envisat. The primary objective of my thesis was to validate the CCI sea level products using different approaches, in particular the sea level budget approach. It consists of comparing the observed GMSL with the sum of different contributions : the steric component, melting of continental ice and transfers of water between the land surface and oceans. Another objective was to estimate the poorly known components to sea level rise, in particular the heat content of the deep ocean not measurable by Argo, and the contribution of water storage on the land. My work has shown that the contribution of the deep ocean below 2000m to the rising sea level is small over the 2005-2013 periods and not significant compared to the data uncertainties. The main uncertainties come from: (1) -in terms of trend- the altimetry sea level products and gaps in the geographical coverage of Argo data in the Indonesian region, and (2) -in terms of interannual variability- the GRACE and Argo products. My results and the method used show that the sea level and its components are still affected by important errors. In the second part, I analyzed the influence of ENSO (El Niño and La Niña) on the interannual variations of the GMSL. I showed that during La Niña events, like that of 2010-2011, the rainfall deficit over the ocean (and excess over the continents) leads to a temporary decrease in the global ocean mass and therefore in the GMSL. This is essentially the ocean mass variation that explains the interannual variability of the GMSL during ENSO events. Furthermore, the deficit (La Niña) or excess (El Niño) ocean mass is confined in the north tropical Pacific Ocean. Finally, I analyzed the evolution of the average temperature of air and ocean surface over the period of the "hiatus" (2003-2013). I showed that this hiatus, i.e. the recent slowdown in the rise of the global mean Earth's temperature is an almost global phenomenon, though cooling of the tropical eastern Pacific has slightly contributed. This recent pause is attributable to natural internal climate variability. The Earth is indeed still in a state of energetic imbalance due to the accumulation of greenhouse gases. I highlighted the role of the natural variability that is superimposed to the anthropogenic global warming.
203

Le sous-courant équatorial et les échanges de masse et de chaleur associés dans le Pacifique tropical : variabilité, liens avec les événements El Niño-La Niña

IZUMO, Takeshi 05 December 2003 (has links) (PDF)
Le sous-courant équatorial (EUC), en alimentant l'upwelling équatorial, peut avoir une forte influence sur la température de surface (SST) du Pacifique équatorial Est et donc sur la variabilité associée à El Niño. L'EUC et les cellules de circulation méridienne (shallow subtropical/tropical overturning cells, STCs/TCs) l'alimentant sont étudiés en combinant données in situ et modélisation. Les trajectoires de masses d'eau sont calculées dans des simulations réalistes (le modèle OPA forcé par les vents des réanalyses NCEP sur 1948-1999 ou des satellites ERS sur 1992-1999). Leur analyse met en évidence des cheminements des masses d'eaux propres aux évènements El Niño-La Niña de 1997-1998, avec des recharges et décharges de la bande équatoriale complexes et asymétriques. Cette analyse montre aussi l'apport d'eaux froides par les STCs et l'EUC lors de la brusque transition vers La Niña en mai 1998. Les données de courant et de température des mouillages TAO/TRITON le long de l'équateur à 170°W, 140°W et 110°W sont méthodiquement bouchées sur 1980-2002. On montre que des séries continues du débit, de la température, de la profondeur et de l'énergie cinétique de l'EUC sur toute son extension méridienne peuvent alors être construites. Leur analyse révèle que la forte variabilité interannuelle du débit de l'EUC est une réponse linéaire et quasi-stationnaire à la tension de vent zonale équatoriale intégrée zonalement dans le Pacifique Ouest et central. La température de l'EUC, indispensable pour l'estimation du transport de chaleur, varie elle linéairement avec la différence des profondeurs de la thermocline et de l'EUC dans le Pacifique central. Le modèle numérique, validé entre autre à l'aide des séries de l'EUC, est utilisé pour étudier sur 1951-1999 la circulation équatoriale associée à l'EUC: la convergence dans la pycnocline, l'upwelling équatorial et la divergence en surface à 5°N et 5°S. Leurs variabilités en débit sont quasi-égales à celle de l'EUC, qui est donc un bon indicateur de la force des STCs. Ces variabilités sont principalement causées par la tension de vent zonale intégrée zonalement sur tout le bassin, en accord avec des théories linéaires. Des déphasages avec la SST équatoriale, notamment l'avance de 5 mois de l'upwelling et de la divergence sur la SST, révèlent des relations de cause à effet très intéressantes, confirmées par les bilans de chaleur. La différence de température entre la divergence et la convergence a des variations interannuelles et à plus long-terme égales à celles de la SST équatoriale. Les conséquences sur les bilans et échanges de masse et de chaleur dans la bande équatoriale sont ensuite quantifiées. La variabilité du transport de chaleur méridien associé à la convergence/divergence est due aussi bien aux variations de débit que de température de la convergence et de la divergence. Ainsi, pendant un événement El Niño, la baisse des débits aura tendance à réchauffer la bande équatoriale (recharge), alors que l'augmentation de la différence entre les températures de la divergence et de la convergence aura l'effet contraire (décharge). Pour le Pacifique Est, les variations interannuelles du débit dominent celles de la température de l'EUC pour le transport de chaleur de l'EUC. Les liens avec les théories d'El Niño et sa variabilité décennale sont discutés.
204

Impact Of Large-Scale Coupled Atmospheric-Oceanic Circulation On Hydrologic Variability And Uncertainty Through Hydroclimatic Teleconnection

Maity, Rajib 01 January 2007 (has links)
In the recent scenario of climate change, the natural variability and uncertainty associated with the hydrologic variables is of great concern to the community. This thesis opens up a new area of multi-disciplinary research. It is a promising field of research in hydrology and water resources that uses the information from the field of atmospheric science. A new way to identify and capture the variability and uncertainty associated with the hydrologic variables is established through this thesis. Assessment of hydroclimatic teleconnection for Indian subcontinent and its use in basin-scale hydrologic time series analysis and forecasting is the broad aim of this PhD thesis. The initial part of the thesis is devoted to investigate and establish the dependence of Indian summer monsoon rainfall (ISMR) on large-scale Oceanic-atmospheric circulation phenomena from tropical Pacific Ocean and Indian Ocean regions. El Niño-Southern Oscillation (ENSO) is the well established coupled Ocean-atmosphere mode of tropical Pacific Ocean whereas Indian Ocean Dipole (IOD) mode is the recently identified coupled Ocean-atmosphere mode of tropical Indian Ocean. Equatorial Indian Ocean Oscillation (EQUINOO) is known as the atmospheric component of IOD mode. The potential of ENSO and EQUINOO for predicting ISMR is investigated by Bayesian dynamic linear model (BDLM). A major advantage of this method is that, it is able to capture the dynamic nature of the cause-effect relationship between large-scale circulation information and hydrologic variables, which is quite expected in the climate change scenario. Another new method, proposed to capture the dependence between the teleconnected hydroclimatic variables is based on the theory of copula, which itself is quite new to the field of hydrology. The dependence of ISMR on ENSO and EQUINOO is captured and investigated for its potential use to predict the monthly variation of ISMR using the proposed method. The association of monthly variation of ISMR with the combined information of ENSO and EQUINOO, denoted by monthly composite index (MCI), is also investigated and established. The spatial variability of such association is also investigated. It is observed that MCI is significantly associated with monthly rainfall variation all over India, except over North-East (NE) India, where it is poor. Having established the hydroclimatic teleconnection at a comparatively larger scale, the hydroclimatic teleconnection for basin-scale hydrologic variables is then investigated and established. The association of large-scale atmospheric circulation with inflow during monsoon season into Hirakud reservoir, located in the state of Orissa in India, has been investigated. The strong predictive potential of the composite index of ENSO and EQUINOO is established for extreme inflow conditions. So the methodology of inflow prediction using the information of hydroclimatic teleconnection would be very suitable even for ungauged or poorly gauged watersheds as this approach does not use any information about the rainfall in the catchment. Recognizing the basin-scale hydroclimatic association with both ENSO and EQUINOO at seasonal scale, the information of hydroclimatic teleconnection is used for streamflow forecasting for the Mahanadi River basin in the state of Orissa, India, both at seasonal and monthly scale. It is established that the basin-scale streamflow is influenced by the large-scale atmospheric circulation phenomena. Information of streamflow from previous month(s) alone, as used in most of the traditional modeling approaches, is shown to be inadequate. It is successfully established that incorporation of large-scale atmospheric circulation information significantly improves the performance of prediction at monthly scale. Again, the prevailing conditions/characteristics of watershed are also important. Thus, consideration of both the information of previous streamflow and large-scale atmospheric circulations are important for basin-scale streamflow prediction at monthly time-scale. Adopting the developed approach of using the information of hydroclimatic teleconnection, hydrologic variables can be predicted with better accuracy which will be a very useful input for better management of water resources.

Page generated in 0.2771 seconds