• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 18
  • 14
  • 10
  • 7
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 169
  • 40
  • 29
  • 24
  • 21
  • 20
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Modelling strategies for the healing of burn wounds

Denman, Paula Kerri January 2007 (has links)
Epidermal wound healing requires the coordinated involvement of complex cellular and biochemical processes. In the case of epidermal wounds associated with burns, the healing process may be less than optimal and may take a significant amount of time, possibly resulting in infection and scarring. An innovative method to assist in the repair of the epidermis (the outer layer of skin) is to use an aerosolised apparatus. This method involves taking skin cells from an area of the patient's undamaged skin, culturing the cells in a laboratory, encouraging them to rapidly proliferate, then harvesting and separating the cells from each other. The cells are then sprayed onto the wound surface. We investigate this novel treatment strategy for the healing of epidermal wounds, such as burns. In particular, we model the application of viable cell colonies to the exposed surface of the wound with the intent of identifying key factors that govern the healing process. Details of the evolution of the colony structure are explored in this two-dimensional model of the wound site, including the effect of varying the initial population cluster size and the initial distribution of cell types with different proliferative capacities. During injury, holoclones (which are thought to be stem cells) have a large proliferative capacity while paraclones (which are thought to be transient amplifying cells) have a more limited proliferative capacity. The model predicts the coverage over time for cells that are initially sprayed onto a wound. A detailed analysis of the underlying mathematical models yields novel mathematical results as well as insight into phenomena of healing processes under investigation. Two one-dimensional systems that are simplifications of the full model are investigated. These models are significant extensions of Fisher's equation and incorporate the mixed clonal population of quiescent and active cells. In the first model, an active cell type migrates and proliferates into the wound and undergoes a transition to a quiescent cell type that neither migrates nor proliferates. The analysis yields the identification of the key parameter constraints on the speed of the healing front of the cells on this model and hence the rate of healing of epidermal wounds. Approximations for the maximum cell densities are also obtained, including conditions for a less than optimal final state. The second model involves two active cell types with different proliferative capacity and a quiescent cell type. This model exhibits two distinct behaviours: either both cell types coexist or one of them dies out as the wound healing progresses leaving the other cell type to fill the wound space. Conditions for coexistence are explored.
152

Rôle des microARN dans la différenciation de l'épithélium respiratoire humain : caractérisation de miR-449 comme acteur central de la multiciliogenèse conservé chez les vertébrés / Role of microRNAs in human airway epithelium differentiation : characterization of miR-449 as a central player in multiciliogenesis conserved in vertebrates

Chevalier, Benoît 17 December 2013 (has links)
Chez les vertébrés, le battement coordonné des cils motiles présents par centaines à la surface apicale des cellules multiciliées (MCC) est requis pour propulser directionnellement les fluides biologiques à l’intérieur de certains organes (voies respiratoires, ventricules cérébraux, trompes utérines ou certaines structures embryonnaires). De nombreuses pathologies humaines sont associées à des défauts ciliaires ou à une perte des MCC (dyskinésies ciliaires, mucoviscidose, asthme,...). Dans ce contexte, mon travail de thèse a consisté à élucider les mécanismes complexes contrôlant la différenciation des MCC et donc la formation des cils motiles (multiciliogenèse). Par des approches de génomiques fonctionnelles à partir de deux modèles d’épithéliums multiciliés évolutivement éloignés (épithélium respiratoire humain et épiderme d’embryon de Xénope) nous avons identifié la famille des microARN (petits ARN non-codants régulateurs de l’expression génique) miR-449 comme majoritairement exprimée dans les MCC. Nous avons montré que miR-449 contrôle la multiciliogenèse i) en bloquant le cycle cellulaire, ii) en réprimant directement la voie de signalisation Notch et iii) en inhibant l’expression de la petite GTPase R-Ras. Enfin, nos travaux montrent que l’ensemble de ces mécanismes est conservé chez les vertébrés. En conclusion, miR-449 est un nouveau régulateur clé de la multiciliogenèse conservé au cours de l’évolution. Nos résultats pourraient ouvrir la voie à de nouvelles stratégies thérapeutiques utilisant des petits ARN régulateurs dans le traitement de certaines pathologies associées à des défauts ciliaires. / In vertebrates, the coordinated beating of hundreds of motile cilia present at the apical surface of multiciliated cells (MCC) is required for propel directionally flow of biological fluids inside some organs (airways, cerebral ventricles, fallopian tubes or some embryonic structures). Many human diseases are associated with ciliary defects or loss of MCC (ciliary dyskinesia, cystic fibrosis, asthma ...). In this context, my thesis has sought to elucidate the complex mechanisms that control the differentiation of MCC and thus the formation of motile cilia (multiciliogenesis). By functional genomic approaches from two evolutionarily distant models of multiciliated epithelia (human respiratory epithelium and epidermis of Xenopus embryo) we identified the miR-449 family of microRNAs (small non-coding RNAs regulating gene expression) as mainly expressed in MCC. Then, we showed that miR-449 controlled multiciliogenesis by i) blocking the cell cycle ii) directly suppressing the Notch pathway and iii) by inhibiting the expression of the small GTPase R-Ras. Finally, we have demonstrated that all these mechanisms were conserved in vertebrates. In conclusion, miR-449 is a new key and conserved regulator of multiciliogenesis. Our findings could pave the way for new therapeutic strategies using small regulatory RNAs in the treatment of several diseases associated with ciliary defects.
153

The Role of DNA Damage in Skin Stem Cells

Karambela, Andriana 01 June 2017 (has links)
The accurate maintenance of genomic integrity in stem cells (SCs) is essential for tissue homeostasis and its deregulation leads to developmental defects, cancer and ageing. We have shown that Brca1, key homologous recombination (HR) gene and critical regulator of the choice of the DNA double strand break (DSB) repair pathway, is specifically required for hair follicle formation and the establishment and maintenance of adult hair follicle SC pool in a conditional knock-out (CKO) mouse model. Brca1 loss leads to DNA damage-induced cell death in the hair follicle (HF), particularly in the matrix transient amplifying progenitors and moderately so in prospective quiescent adult HF SCs. This cell loss causes compensatory hyper-proliferation of the prospective HF SCs and their subsequent depletion. In striking contrast, the interfollicular epidermis (IFE) and its resident SCs remain unaffected by Brca1 deletion. I uncovered two mechanisms underlying the ability of the SCs and progenitors of the IFE to survive the deletion of Brca1. Collectively, this data reveals how distinct SCs and progenitors respond differently to Brca1 loss. Furthermore we show how the IFE can survive Brca1 loss through the use of two particular mechanisms as to sustain tissue homeostasis. The mechanisms uncovered here are likely to be relevant in other tissue-specific SCs and will have important implications in understanding cancer initiation and ageing. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
154

Etude in situ par RMN HRMAS sur des épidermes reconstruits du métabolisme et de la réactivité de xénobiotiques allergisants / In situ study of metabolism and reactivity of allergenic molecules on reconstructed human epidermis by HR-MAS NMR

Moss, Éric 16 January 2015 (has links)
L’allergie de contact est une pathologie de la peau particulièrement répandue dans les pays industrialisés. Aucune thérapie ne permet actuellement de la soigner et seule l’éviction de l’allergène permet de la prévenir. Historiquement, l’évaluation du potentiel sensibilisant des molécules mises sur le marché a toujours été réalisée au moyen de tests sur l’animal. Cependant, le champ d’action de ces tests est aujourd’hui limité en raison de la nouvelle législation européenne sur les cosmétiques. Dans ce contexte, le développement de méthodes alternatives ne reposant pas sur l’utilisation d’animaux devient capital. L’allergie de contact repose sur une étape chimique clé : la formation d’un complexe antigénique allergène-protéine capable d’activer le système immunitaire cutané. Le but de ce travail de thèse a été d’étudier le comportement in situ d’allergènes au sein d’épidermes reconstruits de type SkinEthic®. A l’aide d’une technique d’analyse non invasive, la spectroscopie RMN HRMAS, il a été possible de suivre le devenir de différents allergènes, de leur éventuelle activation par voie métabolique, jusqu’à leur fixation sur les protéines épidermiques. / Contact dermatitis is a skin pathology particularly prevalent in industrialized countries. No therapy currently exists and only complete avoidance of the particular allergen can prevent an allergic reaction. Historically, the assessment of skin sensitisation potential of molecules placed on the market was always carried out by animal testing. However, the scope of this testing method is now limited by the new European cosmetics legislation. In this way, the development of alternative methods, not based on animal experimentation, become an important issue. Contact dermatitis results of a chemical key step: the formation of an antigenic complex allergen-protein complexe able to activate the cutaneous immune system. The aim of this PhD work was to study the in situ behaviour of allergens in reconstructed human epidermis (SkinEthic® model). By using an appropriate non-invasive analysis technique, HR-MAS NMR spectroscopy, it has been possible to study the mode of action of different allergens, from their possible activation through the metabolic pathway to the binding with epidermal proteins.
155

Mathematical approaches to modelling healing of full thickness circular skin wounds

Bowden, Lucie Grace January 2015 (has links)
Wound healing is a complex process, in which a sequence of interrelated events at both the cell and tissue levels interact and contribute to the reduction in wound size. For diabetic patients, many of these processes are compromised, so that wound healing slows down and in some cases halts. In this thesis we develop a series of increasingly detailed mathematical models to describe and investigate healing of full thickness skin wounds. We begin by developing a time-dependent ordinary differential equation model. This phenomenological model focusses on the main processes contributing to closure of a full thickness wound: proliferation in the epidermis and growth and contraction in the dermis. Model simulations suggest that the relative contributions of growth and contraction to healing of the dermis are altered in diabetic wounds. We investigate further the balance between growth and contraction by developing a more detailed, spatially-resolved model using continuum mechanics. Due to the initial large retraction of the wound edge upon injury, we adopt a non-linear elastic framework. Morphoelasticity theory is applied, with the total deformation of the material decomposed into an addition of mass and an elastic response. We use the model to investigate how interactions between growth and stress influence dermal wound healing. The model reveals that contraction alone generates unrealistically high tension in the dermal tissue and, hence, volumetric growth must contribute to healing. We show that, in the simplified case of homogeneous growth, the tissue must grow anisotropically in order to reduce the size of the wound and we postulate mechanosensitive growth laws consistent with this result. After closure the surrounding tissue remodels, returning to its residually stressed state. We identify the steady state growth profile associated with this remodelled state. The model is used to predict the outcome of rewounding experiments as a method of quantifying the amount of stress in the tissue and the application of pressure treatments to control tissue synthesis. The thesis concludes with an extension to the spatially-resolved mechanical model to account for the effects of the biochemical environment. Partial differential equations describing the dynamics of fibroblasts and a regulating growth factor are coupled to equations for the tissue mechanics, described in the morphoelastic framework. By accounting for biomechanical and biochemical stimuli the model allows us to formulate mechanistic laws for growth and contraction. We explore how disruption of mechanical and chemical feedback can lead to abnormal wound healing and use the model to identify specific treatments for normalising healing in these cases.
156

Evaluation of physico-chemical properties of biorefinery-derived amphiphilic molecules and their effects on multi-scale biological models / Evaluation des propriétés physico-chimiques de molécules amphiphiles dérivées de la bio-raffinerie et leurs effets sur des modèles biologiques multi-échelles

Lu, Biao 16 October 2015 (has links)
Aujourd'hui, un grand nombre de nouvelles molécules peuvent être synthétisées à partir de la biomasse. Les tensioactifs dérivés de sucre sont notamment considérés comme une alternative aux tensioactifs fossiles en raison de leur biodégradabilité et de leur biocompatibilité. Cependant, les études associant la caractérisation physico-chimique et les propriétés biologiques de ce type de tensio-actifs sont limitées. Il est ainsi difficile de prédire les propriétés d'un tensioactif à partir de sa structure chimique. L'établissement d'une méthodologie permettant de relier la structure des surfactants à leurs propriétés apparait pertinent. Dans ce travail, quatre surfactants dérivés de sucre ayant chacun une chaîne C8 liée à une tête glucose ou maltose par un groupe amide ont été caractérisés par leurs propriétés tensio-actives dans différentes solutions (eau et milieu biologique). Leurs interactions avec des protéines ont également été analysées. Concernant l'évaluation des propriétés biologiques, des tests de cytotoxicité/irritation ont été effectués sur trois modèles in-vitro : 1) modèle cellulaire 20 (cellules L929 cultivées en monocouche), Il) modèle cellulaire 30 (cellules L929 cultivées dans un gel de collagène), Ill) épiderme humain reconstitué. Les résultats indiquent que les quatre surfactants synthétisés présentent de bonnes propriétés tensio-actives et trois d'entre eux sont moins cytotoxiques que des tensioactifs de référence. Plusieurs hypothèses permettant de relier la structure chimique des molécules à leurs propriétés physico-chimiques et biologiques ont été proposées. Des travaux futurs permettront d'enrichir la base de données sur les relations structure-propriétés des tensioactifs issus de la biomasse, et de l'utiliser pour synthétiser des surfactants présentant des propriétés adaptées aux applications envisagées. / Nowadays, a wide variety of new molecules can derive from biomass. Among them, the family of sugar-based surfactants, which are considered as alternatives to fossil-based surfactants, due to their relatively high biodegradability and biocompatibility, exhibit interesting properties both in terms of their self-assembly and their ability to induce biological responses. In the study, for the purpose to analyse these properties, different methodologies have been established. In this work, physico-chemistry and cellular biology methodologies are associated to analyse the properties of pre-selected molecules characterized by gradua) structure modifications. Firstly, we have screened synthesized sugar-based surfactants according to their solubility and their ability to reduce surface tension of water. Four pre-selected molecules, with a C8 chain linked to a glucose or maltose head through an amide functional group, either under the form of carbamoyl (carbohydrate scaffold bearing the carbonyl) or alkylcarboxamide (the alkyl chain bearing the carbonyl), were then dissolved in water/ cell culture media for surface tension measurements. Their behaviors in solutions were characterized by Krafft points, Critical Micellar Concentrations or self-assembling properties through different methods. To evaluate the cytotoxic/ irritant effects of these molecules on cells and tissues, 3 in-vitro models were established: I) 2D cell culture mode! (L929 cell monolayer) II) 3D ce!! culture mode! (L929 cells embedded in collagen gel) and III) Reconstituted human epidermis (differentiated human keratinocytes). Corresponding experiments were carried out on these models with increasing complexity. Results show that the synthesized sugar-based surfactants, GlulamideC8, Glu6amideC8, Glu6amideC8' and MallamideC8 can reduce the surface tension of water solution to the came level as standard surfactants (Tween 20 and Hecameg). In the meantime, GlulamideC8, Glu6amideC8' and MallamideC8 present Iess cytotoxicity effects on L929 cells both in the monolayer model and the 3D mode! than Tween 20 and Hecameg. All synthesized and standard surfactants (GlulamideC8, Glu6amideC8, Gu6amideC8', MallamideC8, Tween 20 and Hecameg) have no significant cytotoxic/ irritant effects on reconstituted human epidermis at 1000 ig/mL after 48 h of topical application. Discussions have been made according to the results of experiments to establish possible structures/ physico-chemical properties - cytotoxicity relationships of these surfactants.
157

Snímač otisku prstu / Realization of fingerprint scanner

Kovář, Martin January 2015 (has links)
This master’s thesis deals with the issue of scanning human fingerprints, which is currently very topical and represents the most widespread biometric technology. The theoretical part of the work acquaints the reader with basics of dactyloscopy and biometrics and concerns technologies used for fingerprinting, image preprocessing methods and commercially available contactless optical scanners. The practical part is a realisation of a contactless optical scanner based on a Raspberry Pi minicomputer, implementation of preprocessing algorithms in Python and testing of the device from the perspective of image quality.
158

Charakterizace role SPINK 6 v epidermis za použití transgenních modelů / Characterization of the role of SPINK 6 in the epidermis using transgenic models

Buryová, Halka January 2011 (has links)
Epidermal homeostasis, including proper turnover of keratinocytes, plays important role in the barrier function and serine proteases and their inhibitors are the key players. Activated proteases cleave desmosomes in uppermost layer and thus shed the cells from the epidermal surface. Therefore the serine protease inhibitors are secreted in lower epidermal layers to prevent premature activation of proteases and consequent disruption of epidermal barrier. The most studied inhibitors in epidermis belong to Serine proteases inhibitors Kazal-type family (SPINK). This diploma thesis is aimed to investigate function of murine SPINK6 in epidermal compartment in vivo. To achieve this, the transgenic mice overexpressing mSPINK6 under modified human involucrin promoter was generated. Two of five transgenic lines exhibited higher expression of mSPINK6 at mRNA and protein levels. The mSPINK6 transgenic mice are viable with no apparent phenotype. The small but in most cases not significant differences were observed on microscopic level among mSPINK6 transgenic and wild type animals In conclusion, this work showed that mSPINK6 does not play major role in skin homeostasis but gains significant importance under specific challenges of epidermal barrier. Therefore mSPINK6 transgenic mice, in combination with other deletion or...
159

MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes

Ahmed, Mohammed I., Mardaryev, Andrei N., Lewis, Christopher J., Sharov, A.A., Botchkareva, Natalia V. 17 June 2011 (has links)
Yes / Bone morphogenetic proteins (BMPs) play essential roles in the control of skin development, postnatal tissue remodelling and tumorigenesis. To explore whether some of the effects of BMP signalling are mediated by microRNAs, we performed genome-wide microRNA (miRNA) screening in primary mouse keratinocytes after BMP4 treatment. Microarray analysis revealed substantial BMP4-dependent changes in the expression of distinct miRNAs, including miR-21. Real-time PCR confirmed that BMP4 dramatically inhibits miR-21 expression in the keratinocytes. Consistently, significantly increased levels of miR-21 were observed in transgenic mice overexpressing the BMP antagonist noggin under control of the K14 promoter (K14-noggin). By in situ hybridization, miR-21 expression was observed in the epidermis and hair follicle epithelium in normal mouse skin. In K14-noggin skin, miR-21 was prominently expressed in the epidermis, as well as in the peripheral portion of trichofolliculoma-like hair follicle-derived tumours that contain proliferating and poorly differentiated cells. By transfecting keratinocytes with a miR-21 mimic, we identified the existence of two groups of the BMP target genes, which are differentially regulated by miR-21. These included selected BMP-dependent tumour-suppressor genes (Pten, Pdcd4, Timp3 and Tpm1) negatively regulated by miR-21, as well as miR-21-independent Id1, Id2, Id3 and Msx2 that predominantly mediate the effects of BMPs on cell differentiation. In primary keratinocytes and HaCaT cells, miR-21 prevented the inhibitory effects of BMP4 on cell proliferation and migration. Thus, our study establishes a novel mechanism for the regulation of BMP-induced effects in the skin and suggests miRNAs are important modulators of the effects of growth factor signalling pathways on skin development and tumorigenesis.
160

Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice

Lyubimova, A., Garber, J.J., Upadhyay, G., Sharov, A.A., Anastasoaie, F., Yajnik, V., Cotsarelis, G., Dotto, G.P., Botchkarev, Vladimir A., Snapper, S.B. January 2010 (has links)
No / The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.

Page generated in 0.0554 seconds