Spelling suggestions: "subject:"espace vectorial"" "subject:"espace vectorielle""
1 |
Bases creuses en algèbre linéaire exacte et simplification algorithmique de modèles biologiques / Sparse basis in exact linear algebra and algorithmic simplification of biological modelsTemperville, Alexandre 11 July 2016 (has links)
Les nouveaux algorithmes présentés dans cette thèse contribuent à la thématique générale de la simplification des modèles biologiques : le calcul de bases creuses de lois de conservation, la simplification des systèmes d'équations différentielles paramétriques, fréquents en modélisation, et le reverse engineering des modèles. Les algorithmes de cette thèse sont basés sur de l'algèbre linéaire exacte. Le chapitre 2 présente un algorithme glouton exact et garanti permettant de calculer une base la plus creuse parmi toutes les bases d'un espace vectoriel. On l'applique au calcul de lois de conservation de modèles biologiques. Dans le chapitre 3, une variante de cet algorithme utilise la résolution de plusieurs programmes linéaires (avec l'algorithme du simplexe) en variables réelles. Cette variante permet de calculer des bases creuses sans garantir qu'elles soient complètes ou les plus creuses. Le chapitre 4 présente un algorithme permettant de calculer une base la plus creuse modulo un espace vectoriel. Il permet de simplifier des fractions rationnelles en effectuant des changements de variables. Enfin, le chapitre 5 présente un algorithme qui, dans le cas où l'ensemble des lois de conservation d'un modèle biologique n'admet pas de base complète de lois à coefficients positifs, suggère des modèles enrichis d'une ou plusieurs espèces. / The new algorithms introduced in this thesis contribute to the general theme of simplification of biological model : the computation of sparse bases of conservation laws, the simplification of parametric systems of differential equations, frequent in modelling, and the reverse engineering of models. The algorithms of this thesis are based on exact linear algebra. The chapter 2 introduces a greedy, exact and guaranteed algorithm which allows to compute a sparsest basis among all the bases of a vector space. We apply it to the computation of conservation laws of biological models. In the chapter 3, a variant of this algorithm uses the resolution of several linear programs (with the simplex algorithm) in real variables. This variant allows to compute sparse bases without guarantee they are complete or sparsest. The chapter 4 introduces an algorithm which allows to compute a sparsest basis modulo a vector space. It was developed with the aim to simplify rational fractions using changes of variables. The chapter 5 introduces an algorithm which suggests models enriched of one or several species, in the case where the set of conservation laws does not admit a complete basis of laws with nonnegative coefficients.
|
2 |
Composition automatique d'expressions faciales synthétiques à partir de capture de postures facialesKouadio, Cyriaque January 1997 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Catégories abéliennes en dimension 2Dupont, Mathieu 30 June 2008 (has links)
En algèbre de dimension 2, les 2-groupes symétriques (groupoïdes monoïdaux symétriques où tout objet a un inverse à isomorphisme près) jouent un rôle similaire à celui des groupes abéliens en algèbre de dimension 1. Le but de ce travail est de définir une notion de catégorie abélienne en dimension 2 qui soit aux 2-groupes symétriques ce que la notion de catégorie abélienne ordinaire est aux groupes abéliens. On donnera deux solutions à ce problème.
La première, les catégories enrichies dans les groupoïdes abéliennes, est une généralisation des catégories abéliennes ordinaires. Dans un tel contexte, on peut développer la théorie des suites exactes et de l'homologie d'une façon proche de l'homologie dans une catégorie abélienne : on y démontre plusieurs lemmes de diagrammes classiques ainsi que l'existence de la longue suite exacte d'homologie associée à une extension de complexes de chaînes. Cela généralise des résultats connus pour les 2-groupes symétriques.
L'autre solution, les catégories enrichies dans les groupoïdes 2-abéliennes (qui sont également abéliennes au sens du paragraphe précédent), imite les propriétés des 2-groupes symétriques plus spécifiques à la dimension 2, en particulier l'existence de deux systèmes de factorisation : surjectif/plein et fidèle, et plein et surjectif/fidèle. De plus, dans une catégorie enrichie dans les groupoïdes 2-abélienne, la catégorie des objets discrets est équivalente à celle des objets connexes et ces catégories sont abéliennes.
Les exemples incluent, outre les 2-groupes symétriques, les 2-modules sur un 2-anneau, qui forment une catégorie enrichie dans les groupoïdes 2-abélienne. Par ailleurs, les groupoïdes internes, foncteurs internes et transformations naturelles internes à une catégorie abélienne (et, en particulier, les 2-espaces vectoriels au sens de Baez-Crans) forment une catégorie enrichie dans les groupoïdes 2-abélienne si et seulement si l'axiome du choix est satisfait dans la catégorie abélienne.
|
4 |
Quelques questions d'analyse numérique traitées du point de vue de la calculabilitéBouhier, Marcel 28 February 1974 (has links) (PDF)
.
|
5 |
Applications d'algorithmes d'optimisation à des problèmes d'approximation avec contraintesVillemain, Danièle 25 June 1973 (has links) (PDF)
.
|
6 |
Quelques nouvelles méthodes pour le calcul numérique de la transformée inverse de LaplaceVeillon, Françoise 11 March 1972 (has links) (PDF)
.
|
7 |
Intégration d'un outil d'aide au tolérancement dans un logiciel de C.F.A.O.Gaëtan, Legrais 22 November 2005 (has links) (PDF)
Dans la plupart des systèmes de CFAO actuels, les tolérances sont indiquées grâce à des outils de représentation graphique symbolique (cotes, cadres de tolérances, repères, textes, ...). Cette représentation doit être correcte du point de vue syntaxique et sémantique. Les règles de bases de la syntaxe sont en général prises en compte par le logiciel, mais pas toutes. Il est encore possible d'écrire des tolérances qui ne sont pas correctes du fait même de leur écriture. Pour vérifier que la sémantique d'une tolérance est correcte, il faut pouvoir lui donner une interprétation conformément aux règles définies par les normes. Or ces règles sont complexes. Jusqu'à présent seul un technicien, avant une connaissance approfondie, est capable de vérifier si une tolérance indiquée sur le dessin est correcte du point de vue sémantique. Je développe un système intégré au logiciel TopSolid qui permet d'inscrire les tolérances sur le plan à partir du modèle 3D de la pièce. L'utilisateur travaillera sur un modèle 3D. Après avoir indiquer sur la pièce les surfaces tolérancées, le logiciel propose alors de contrôler les paramètres et les choix possibles de l'utilisateur. Le concepteur pourra ensuite définir des références de tolérance dont la cohérence avec le cadre de tolérance sera automatiquement vérifiée au fur et à mesure de leurs créations. Il s'agira, ensuite, d'aider le concepteur à déterminer quelles sont les surfaces à prendre en références et celles qui doivent être tolérancées. Cette partie permettra alors de définir un tolérancement complet à partir d'un ensemble de surfaces fonctionnelles hiérarchisées. Cette thése propose d'assister le concepteur dans sa démarche de tolérancement. Pour ce faire, je mets à sa disposition au travers de mes travaux un outil de transfert des connaissances sur le tolérancement et un atelier d'aide à la prise de décision.
|
8 |
L'algorithme d'échange en optimisation convexeCarasso, Claude 05 October 1973 (has links) (PDF)
.
|
9 |
Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généraliséesAscah-Coallier, Isabelle 04 1900 (has links)
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$
Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles. / In this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$.
After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.
|
10 |
Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généraliséesAscah-Coallier, Isabelle 04 1900 (has links)
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$
Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles. / In this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$.
After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.
|
Page generated in 0.0618 seconds