731 |
Abundance and Distribution of Early Life Stage Blue Crabs (Callinectes sapidus) in Lake PontchartrainLyncker, Lissa 07 August 2008 (has links)
I conducted a 12-month study of near-shore habitats in Lake Pontchartrain to assess spatiotemporal variation in the abundance of early life stage blue crabs (Callinectes sapidus). Collections were made using a 1 m2 throw trap and data showed that C. sapidus numbers varied over time and among sites. Two recruitment events occurred during the study. During the first recruitment in May-June, C. sapidus entered Lake Pontchartrain via the Inner Harbor Navigational Canal. In September-October, C. sapidus entered the Lake Pontchartrain via the Rigolets and Chef passes. My data suggest that C. sapidus utilize water circulation within the Lake Pontchartrain as a means of transportation throughout the estuary. MODerate-resolution Imaging Spectroradiometer (MODIS) 250 m data were analyzed to gain a large-scale view of suspended sediments patterns within Lake Pontchartrain and quantify water movement. Field sampling along with remote sensing proved to be beneficial when assessing estuarine-wide C. sapidus post-larval dispersal processes.
|
732 |
Sandy beach surf zones : what is their role in the early life history of Chinook salmon?Marin Jarrin, Jose R., 1980- 05 October 2012 (has links)
Early life stages of many marine and diadromous fish species use sandy beach surf zones, which occur along >50% of the world's marine coastlines. This extensive habitat can provide juvenile fishes with an abundant supply of potential prey and the ability to hide from predators in its shallow turbid waters. Chinook salmon is an anadromous species that migrates to the ocean during their first (subyearlings) or second (yearlings) year of life. The majority of subyearlings reside in estuaries during their first summer season; however, a small number of juveniles also use surf zones. Early marine residence is considered a critical period for Chinook salmon due to high mortality rates; however the role of surf zones in Chinook salmon life history is unclear. Therefore, I determined the distribution of juvenile Chinook salmon on beaches of the eastern North Pacific, compared the migration and growth patterns observed in surf zones and estuaries, identified the factors that accounted for variation in juvenile surf zone catch, explored the factors
that influence growth rate variation in surf zones and estuaries, and modeled how growth rates in these coastal habitats may vary in the near future with predicted changes in climate.
The majority (94%) of juveniles were caught in surf zones adjacent to estuaries with trough areas, which are beach sections where sand moved by currents and waves produce a trench-like shape. Surf zone fish were collected in significantly lower numbers than estuarine juveniles but entered brackish/ocean waters at similar sizes. Juveniles in surf zones consumed similar organisms (gammarid amphipods, crustacean larvae and insects) as in estuaries. Furthermore, stomach fullness indices (average = 2% of body weight) and growth rates (average = 0.4 mm day�����) were similar in surf zones and estuaries. At one surf zone, juvenile catch was positively correlated to short-term specific growth rates (14 days prior to capture). A bioenergetics modeling approach indicated that given current conditions, consumption rates accounted for more of the variation in growth than prey energetic content and temperature. Climate models predict future increases in fresh water temperature (1.5 to 5.8��C), sea surface temperature (1.2��C) and wave height (0.75 m) that could influence estuarine and surf zone use. Therefore, I developed a local mixing model based on these predictions to estimate future surf zone and estuarine water temperatures in two of the watersheds studied. Based on these temperature projections and the bioenergetics model, I predicted how juvenile specific growth rates would vary in both habitats. I determined that increases in water temperature in both habitats would reduce specific growth rates by 9 to 40% in surf zones and
estuaries if diet composition and consumption rates remain similar to present conditions. To compensate for the decline in growth, juveniles may increase their consumption rates or consume more energetically rich prey, if available. If they are not able to compensate, their size at the end of the season may be reduced, which could reduce their overall survival. These results confirm that a small number of suyearling Chinook salmon use sandy beach surf zones, mostly adjacent to estuary mouths, where they experience growth conditions comparable to estuaries. My findings indicate that, in certain situations, juvenile Chinook salmon surf zone use can be influenced by surf zone growth conditions, while variation in growth rates are themselves most strongly influenced by variation in consumption rates in surf zones and estuaries. Predicted changes in coastal western North American climate will likely modify juvenile growth conditions in the next 50 years, and potentially reduce overall survival. Additional insights into the potential impacts of climate change on juvenile salmon will require estimates of changes in the composition, energetic quality and abundance of prey communities inhabiting coastal environments. / Graduation date: 2013
|
733 |
Ictiofauna de las zonas someras litorales del Mar Menor (SE Península Ibérica): parámetros de su biología y relaciones con el hábitatVerdiell Cubedo, David 29 July 2009 (has links)
En la presente tesis doctoral se aborda el estudio de las comunidades de peces presentes en las zonas someras litorales del Mar Menor. La comunidad objeto de estudio estuvo conformada principalmente por individuos en estado de postlarva e individuos juveniles, junto con los adultos de especies de talla pequeña.Los objetivos planteados fueron:A) Caracterización específica de la ictiofauna.B) Análisis de la biología poblacional y relaciones con el hábitat de especies de peces bentónicos.C) Análisis de las relaciones entre los tipos de hábitats litorales y la comunidad de peces.Los resultados obtenidos ponen de manifiesto la elevada importancia de las zonas someras litorales de la laguna como hábitats esenciales para la multitud de especies ícticas, tanto aquellas que poseen interés pesquero comercial (familias Atherinidae, Mugilidae y Sparidae) como aquellas que presentan interés conservacionista (familias Cyprinodontidae y Syngnathidae). / The present PhD thesis investigates the small-sized fish assemblages in the shallow littoral areas of the Mar Menor coastal lagoon. The study was focused on juveniles of migrant fish species that recruit into the lagoon and short-lived resident fish species that spend their entire lives in it.The objectives were:A) To characterize the fish assemblages.B) To examine population biology and habitat associations of benthic fish species.C) To analyse the relationship between littoral habitat types and fish assemblages.The results pointed out the importance of shallow littoral areas of the lagoon as essential habitats for many fish species, both juvenile fish species of commercial interest (Atherinidae, Mugilidae and Sparidae families) and threatened fish species (Cyprinodontidae and Syngnathidae families).
|
734 |
Approaches to Empire: Hydrographic Knowledge and British State Activity in Northeastern North America, 1711-1783Marsters, Roger Sidney 07 December 2012 (has links)
This dissertation studies the intersection of knowledge, culture, and power in contested coastal and estuarine space in eighteenth-century northeastern North America. It examines the interdependence of vernacular pilot knowledge and directed hydrographic survey, their integration into practices of warfare and governance, and roles in assimilating American space to metropolitan scientific and aesthetic discourses. It argues that the embodied skill and local knowledge of colonial and Aboriginal peoples served vital and underappreciated roles in Great Britain’s extension of overseas activity and interest, of maritime empire. It examines the maritimicity of empire: empire as adaptation to marine environments through which it conducted political influence and commercial endeavour. The materiality of maritime empire—its reliance on patterns of wind and current, on climate and weather, on local relations of sea to land, on proximity of spaces and resources to oceanic circuits—framed and delimited transnational flows of commerce and state power. This was especially so in coastal and riverine littoral spaces of northeastern North America. In this local Atlantic, pilot knowledge—and its systematization in marine cartography through hydrographic survey—adapted processes of empire to the materiality of the maritime, and especially to the littoral, environment. Eighteenth-century British state agents acting in northeastern North America—in Mi’kmaqi/Acadia/Nova Scotia, Newfoundland and Labrador, Quebec, and New England—developed new means of adapting this knowledge to the tasks of maritime empire, creating potent tools with which to extend Britain’s imperial power and influence amphibiously in the eighteenth and nineteenth centuries. If the open Atlantic became a maritime highway in this period, traversed with increasing frequency and ease, inshore waters remained dangerous bypaths, subject to geographical and meteorological hazards that checked overseas commercial exchange and the military and administrative processes that constituted maritime empire. While patterns of oceanic circulation permitted extension of these activities globally in the early modern period, the complex interrelation of marine and terrestrial geography and climate in coastal and estuarine waters long set limits on maritime imperial activity. This dissertation examines the nature of these limits, and the means that eighteenth-century British commercial and imperial actors developed to overcome them.
|
735 |
Phytoplankton dynamics in a seasonal estuaryChan, Terence January 2006 (has links)
[Truncated abstract] The Swan River is a highly seasonal estuary in the south-west of Western Australia. Salinity may vary from fresh to marine at various times throughout the estuary, depending mostly on the intensity of freshwater discharge. There are occasional problematic dinoflagellate blooms which have spurred investigation of the dynamics of the phytoplankton community. The objective of this research was to examine how phytoplankton biomass and species' successions are influenced by the multiple variables in the aquatic ecosystem, and, if possible, to determine the dominant factors ... Comparisons of phytoplankton nutrient limitation simulations with experimental observations from field bioassays require further investigation, but reinforce findings that nutrients may only limit phytoplankton biomass when there is a convergence of favourable hydrological and hydrodynamic conditions. The Swan River estuary has undergone substantial hydrological modifications from pre-European settlement. Land clearing has increased freshwater discharge up to 5- fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased approximately 20-fold from pre-European levels. The individual and collective impacts of these hydrological changes on the Swan River estuary were examined using the hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation, producing increases in the frequency and biomass of blooms by both estuarine and freshwater phytoplankton. By comparison, changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics. Reductions of nutrient inputs into the Swan River estuary from its catchment will provide a long-term improvement in water quality but manipulations of freshwater discharge have the potential to provide a provisional short-term remediation measure allowing at least partial control of phytoplankton bloom potential and eutrophication.
|
736 |
Feeding dynamics of suspension-feeders in the nearshore marine environment adjacent to two contrasting estuaries in the Eastern Cape, South AfricaVermeulen, Ilke January 2012 (has links)
Coastal transition zones form important interlinking regions where marine ecosystems, rivers and estuarine environments significantly influence each other. Coastal rocky shores are key habitats that sustain a variety of primary producers and invertebrates and due to the dynamic nature of coastal ecosystems, suspension-feeders on rocky shores can be influenced by an array of autochthonous and allochthonous food sources. Fatty acid and stable isotope trophic markers were employed to distinguish between regional and temporal changes in the potential food sources to rocky shore suspension-feeders in the Eastern Cape Province of South Africa. The primary aim was to assess the spatial and temporal influences of contrasting river flows on the available food sources to three indigenous coastal suspensionfeeders, namely the volcano barnacle Tetraclita serrata, brown mussel Perna perna and tubebuilding polychaete Gunnarea capensis. This was done by examining the intra- and interspecific changes in the fatty acid and stable isotope signatures of the barnacles, mussels and polychaetes in the adjacent marine environment of a freshwater-restricted (Kariega) and freshwater-dominated (Great Fish) estuary during austral summer and winter. Multivariate and Kruskal-Wallis analyses of variance on the fatty acid and isotopic signatures, respectively, identified significant regional changes in the barnacles and mussels, while only stable isotopes distinguished between the Kariega and Great Fish polychaetes (P < 0.05). In addition, significant temporal changes were observed in consumer fatty acids and isotope values in both regions (P < 0.05). Bacterial sources, detritus and phytoplankton assemblages, which are influenced by hydrology and vegetation, differed between regions and were mainly responsible for the regional and temporal separations. Principal component analyses on the consumer fatty acid signatures distinguished between animals situated upstream (i.e. north) and downstream (i.e. south) of the Kariega Estuary mouth in summer. The north/south separation was mainly due to greater contributions of diatoms to northernlocated animals and dinoflagellates and detritus to southern-located consumers. In addition, the south-flowing Agulhas Current on the eastern shores of southern Africa appeared to influence the north/south separation in the Kariega region, as water leaving the estuary was probably entrained into the south-easterly flowing currents, thereby depositing estuarinederived detritus to southern populations. In general, diatoms and detritus were essential food sources to the filter-feeders in summer, and flagellates, diatoms, zooplankton and detritus were important in winter. Coastal macroalgae was a key food source in the Kariega and Great Fish regions during both seasons. Consistently large levels of diatom markers (16:1n-7 and 20:5n-3) and dinoflagellate markers (22:6n-3) in consumer tissues in the Kariega and Great Fish regions identified that phytoplankton was their dominant food source. The barnacles, mussels and polychaetes had similar fatty acid markers and a fairly narrow δ¹³C range (-16.5 to -14.4 ‰), suggesting that they probably consumed similar food. Carbon isotope analyses, however, separated the suspension-feeders into slightly depleted (barnacles; -16.5 to -16.1 ‰), intermediate (mussels; -15.8 to -15.0 ‰) and enriched (polychaetes; -15.0 to -14.4 ‰) consumers, but did not provide conclusive evidence of their preferences for specific phytoplankton. Conversely, fatty acid analyses highlighted that barnacles and mussels had greater proportions of dinoflagellate markers (22:6n-3; 7.0-15.3 % TFA), while polychaetes had larger diatom levels (20:5n-3; 15.1-22.2 % TFA). In addition, all three species had consistently large contributions from bacterial fatty acids (15:0, i-16:0, 17:0 and i-18:0; 4.2-13.6 % TFA) in summer and winter, and large proportions of saturated fatty acids (33.3-53.1 % TFA) including those with 14 to 18 carbons, indicating that bacterial and detritus food sources played an important role in their diets. Barnacles had small levels of terrestrial markers (18:2n-6 and 18:3n-3; <2.5 % TFA) and demonstrated increased omnivorous feeding compared with the other suspension-feeders [increased levels of 20:1n-11 and 20:1n-9, higher 18:1n-9/18:1n-7 ratios at ~2.1, enriched δ¹⁵N values at ~10.6 ‰; zooplankton (potentially including microzooplankton, larvae and protists) contribution of up to 61 % of the diet]. Mussels contained significant proportions of the terrestrial markers (18:2n-6 and 18:3n-3; >2.5 % TFA) and exhibited intermediate omnivory (intermediate levels of 20:1n-11 and 20:1n-9, intermediate 18:1n-9/18:1n-7 ratios at ~1.3, less enriched δ¹⁵N values at ~7.9 ‰; zooplankton contribution of 10-15 % of the diet). The more depleted nitrogen signatures in the mussels relative to the barnacles and polychaetes possibly illustrated a stronger preference for autotrophic food. Polychaetes mainly consumed plant food sources (i.e. microalgae, macroalgae and detritus; high levels of i-18:0, 18:1n-9, 18:4n-3 and 20:5n-3) and displayed little omnivory (low levels of 20:1n-11 and 20:1n-9, low 18:1n-9/18:1n-7 ratios at ~0.4, intermediate δ¹⁵N values at ~9.1 ‰; zooplankton contribution of <10 % of the diet). The barnacles, mussels and polychaetes are all suspension-feeders, originally presumed to consume the same food sources. The variations observed among the species, therefore, may result from differences in the proportional contributions of the various food sources to their diets as well as distinctions in metabolism. The distinct changes in the fatty acid and stable isotope signatures in all three filter-feeders in the Kariega and Great Fish regions are likely influenced by the diversity in regional vegetation and hydrology in the different systems, combined with interspecific differences in resource partitioning among the species.
|
737 |
Movement patterns of spotted grunter, Pomadasys commersonnii (Haemulidae), in a highly turbid South African estuaryChilds, Amber-Robyn January 2006 (has links)
The principal objective of this thesis was to gain an understanding of the movement patterns of spotted grunter Pomadasys commersonnii, an estuarine-dependent fishery species, in the turbid, freshwater dominated Great Fish Estuary. Both manual and automated telemetry methods were used to monitor the movements of spotted grunter during two separate studies conducted in summer and spring 2003 and 2004. Acoustic transmitters were surgically implanted into twenty spotted grunter with lengths between 263 and 387 mm TL in the first study and twenty spotted grunter ranging between 362 and 698 mm TL in the second study. The specific objectives were to gain an understanding of (i) the time spent in the estuarine environment (ii) the space use and home range size, and (iii) the abiotic factors governing the movement patterns of spotted grunter in the estuary. The nursery function of estuarine environments was highlighted in this study as adolescent spotted grunter spent a significantly larger proportion of their time in the estuary than adult fish (p < 0.0001; R² = 0.62). The increased frequency of sea trips, with the onset of sexual maturity, provided testimony of the end of the estuarinedependent phase of their life-cycle. Although considered to be predominantly marine, the adult spotted grunter in the Great Fish Estuary utilised the estuary for considerable periods. Adults are thought to frequent estuaries to forage, seek shelter and to possibly rid themselves of parasites. During this study, the number of sea trips made by tagged fish ranged from 0 to 53, and the duration ranged from 6 hours to 28 days. The tidal phase and time of day had a significant effect (p < 0.05) on the sea trips undertaken by fish. Most tagged spotted grunter left the estuary during the night (84%) on the outgoing tide, and most returned in the evening (77%) during the incoming tide. Sea temperature (p < 0.0001; R² = 0.34), barometric pressure (p = 0.004; R² = 0.19) and wind (p = 0.01) had a significant effect on the number of spotted grunter recorded in the estuary. Spotted grunter were more prone to return to the estuary after high barometric pressure, when low sea temperatures (upwelling events) prevailed. There was a significant positive relationship between home range size and fish length (p = 0.004; R² = 0.20). Small spotted grunter (< 450 mm TL) appeared to be highly resident, with a small home range (mean size = 129 167 m²), that was generally confined to a single core area. Larger individuals (> 450 mm TL) occupied larger home ranges (mean size = 218 435 m²) with numerous core areas. The home ranges of small and large spotted grunter overlapped considerably yielding evidence of two high use areas, situated 1.2 km and 7 km from the mouth of the Great Fish Estuary. Tagged spotted grunter were located in a wide range of salinity, turbidity and temperature, but were found to avoid temperatures below 16 ºC. The daily change in environmental variables (salinity, temperature and turbidity) had a significant effect on the change in fish position in the estuary (p < 0.0001; R² = 0.38). The distribution of tagged spotted grunter, particularly the larger individuals, in the Great Fish Estuary was influenced by the tidal phase (p < 0.05); they moved upriver on the incoming tide and downriver on the outgoing tide. This study provides an understanding of the movement patterns of spotted grunter in the estuary and between the estuarine and marine environments. Consequently, it provides information that will assist in the design of a management plan to promote sustainability of this important fishery species. The techniques used and developed in this study also have direct application for further studies on other important estuarinedependent fishery species.
|
738 |
Cardiotoxic effects of polycyclic aromatic hydrocarbons and abiotic stressors in early life stage estuarine teleostsElizabeth B Allmon (10724124) 29 April 2021 (has links)
<div>Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. The location and timing of the Deepwater Horizon surface slick coincided with the spawning seasons of many important pelagic and estuarine fish species. As such, there has been particular emphasis placed on the effects of PAHs on sensitive life history stages in fish, such as the embryonic and larval periods. Additionally, the spill occurred throughout the spring and summer months which, in estuaries, are marked by regular fluctuations in abiotic environmental factors such as dissolved oxygen, salinity, and temperature. Until recently, there has been little work done to elucidate the combined effects that PAHs from oil spills and adverse environmental conditions (hypoxia, increased salinity, and elevated temperatures).</div><div>Work presented in this dissertation uses next generation sequencing technology (RNA Seq) to determine differential gene expression in larval estuarine teleosts following exposure to adverse environmental conditions and PAHs. Downstream canonical pathway and toxicological function analysis were then applied to the identified differentially expressed genes (DEGs) to predict cardiotoxic responses at the organismal level. To verify the predicted responses, a phenotypic anchoring study was conducted and identified a cardiotoxic phenotype (pericardial edema) and reduced cardiac output in embryos exposed to oil. Finally, the mechano-genetic interplay governing the morphological development of the teleost heart was investigated and correlations between developmental gene expression and blood flow forces within the cardiovascular system were identified.</div>
|
739 |
An SEM Study of Blastodinium Parasitism of Estuarine Calanoid Copepods: Impact on MankindToma, Nicholas, Kunigelis, Stan C, PhD 07 April 2022 (has links)
Blastodinium, a genus of the phytoplanktonic dinoflagellates, was found to be inhabiting the gut region of the copepod species Labidocera. Copepods are ubiquitous in aquatic environments, being the most numerous multicellular organisms on planet earth. Being primary consumers, they play important ecological roles, passing energy from one trophic level to the next. As zooplankton, estuarine copepods contribute substantially to carbon cycling as they undergo diurnal migration to avoid daylight UV-B damage and surface water predation. Blastodinium are presumed to infect copepods via ingestion of zoospores by juvenile hosts, who function as microhabitats for acquiring nutrients in non-photosynthetic species or in nutrient-limited environments. Blastodinium may hinder reproduction of copepod hosts, thereby influencing local copepod populations and, by extension, food webs up to humanity. Copepod populations may also help contain disease spread, such as malaria and Dengue fever, through their consumption of mosquito larvae in standing water. Further evaluation of copepods for Blastodinium may help shed light on the limited knowledge of this species and the nature of its relationship with copepods, as well as its effects on copepod populations and the higher order consequences of its parasitism.
|
740 |
A radiocarbon method and multi-tracer approach to quantifying groundwater discharge to coastal watersGramling, Carolyn M January 2003 (has links)
Thesis (Ph. D.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), September 2003. / Includes bibliographical references. / Groundwater discharge into estuaries and the coastal ocean is an important mechanism for the transport of dissolved chemical species to coastal waters. Because many dissolved species are present in groundwater in concentrations that are orders of magnitude higher than typical river concentrations, groundwater-borne nutrients and pollutants can have a substantial impact on the chemistry and biology of estuaries and the coastal ocean. However, direct fluxes of groundwater into the coastal ocean (submarine groundwater discharge, or SGD) can be difficult to quantify. Geochemical tracers of groundwater discharge can reflect the cumulative SGD flux from numerous small, widely dispersed, and perhaps ephemeral sources such as springs, seeps, and diffuse discharge. The natural radiocarbon content (A14C) of dissolved inorganic carbon (DIC) was developed as a tracer of fresh, terrestrially driven fluxes from confined aquifers. This A14C method was tested during five sampling periods from November 1999 to April 2002 in two small estuaries in southeastern North Carolina. In coastal North Carolina, fresh water artesian discharge is characterized by a low A14C signature acquired from the carbonate aquifer rock. Mixing models were used to evaluate the inputs from potential sources of DIC-A'4C to each estuary, including seawater, springs, fresh water stream inputs, and salt marsh respiration DIC additions. These calculations showed that artesian discharge dominated the total fresh water input to these estuaries during nearly all sampling periods. / (cont.) These new A14C-based SGD estimates were compared with groundwater flux estimates derived from radium isotopes and from radon-222. It is clear that these tracers reflect different components of the total SGD. The fluxes of low-A14C and of 222Rn were dominated by artesian discharge. Estuarine 226Ra showed strong artesian influence, but also reflected the salt water SGD processes that controlled the other three radium isotopes. The flux of 228Ra seemed to reflect seepage from the terrestrial surficial aquifer as well as salt water recirculation through estuarine sediments. The fluxes of 224Ra and 223Ra were dominated by salt water recirculation through salt marsh sediments. This multi-tracer approach provides a comprehensive assessment of the various components contributing to the total SGD. / by Carolyn M. Gramling. / Ph.D.
|
Page generated in 0.3528 seconds