• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 21
  • 19
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 76
  • 40
  • 36
  • 31
  • 29
  • 29
  • 25
  • 21
  • 20
  • 18
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Interação fluido-estrutura com escoamentos incompressíveis utilizando o método dos elementos finitos / Incompressible fluid-structure interaction using the finite element method

Fernandes, Jeferson Wilian Dossa 01 March 2016 (has links)
A interação entre fluidos e estruturas caracteriza um problema multi-físico não linear e está presente numa grande variedade de áreas da engenharia. Este trabalho apresenta o desenvolvi mento de ferramentas computacionais com base no Método dos Elementos Finitos (MEF) para a análise de interação fluido-estrutura (IFE) considerando escoamentos com baixas velocidades. Dada a interdisciplinaridade do tema, se faz necessário o estudo em três diferentes assuntos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional, e o problema de acoplamento. No caso da dinâmica das estruturas empregar-se um elemento finito que seja adequado para a simulação de problemas de IFE, que claramente demandam uma análise não linear geométrica, optando-se pelo emprego de uma formulação descrita em posições, a qual evita problemas relativos à aproximação de rotações finitas. Quanto à dinâmica dos fluidos computacional, é empregado um método estável e ao mesmo tempo sensível à movimentação da estrutura, utilizando a descrição Lagrangeana-Euleriana Arbitrária (ALE). Os casos considerados neste trabalho, assim como muitos dos problemas de engenharia, ocorrem com escoamentos em baixas velocidades, implicando na incompressibilidade do fluido, o que demanda, para um método estável, a utilização de elementos que atendam à condição de Ladyzhenskaya-Babuska-Brezzi (LBB). Além disso, é necessário também o emprego de métodos que consigam neutralizar as variações espúrias decorrentes da não-linearidade de possíveis escoamentos com convecção dominante e que surgem com a aplicação do processo clássico de Galerkin. Para superar esse problema, é aplicado o método Streamline-Upwind/Petrov-Galerkin (SUPG), que adiciona difusividade artificial na direção do escoamento, controlando a amplitude dos termos convectivos. No que se refere ao acoplamento fluido-casca, buscam-se modularidade e versatilidade adotando-se o modelo particionado. O modelo de acoplamento implementado garante ainda a utilização de malhas do fluido e da estrutura sem a necessidade de coincidência de nós. / Interaction between fluids and structures characterizes a nonlinear multi-physics problem presente in a wide range of engineering fields. This works presets the development of computational tools based on finite element method (FEM) for fluid-structure interaction (FSI) analysis considering low speed flows (incompressible), as a great part of the engineering problems. Given the topic multidisciplinary nature, it is necessary to study three different subjects: the computational structural dynamics, the computational fluid mechanics and the coupling problem. Regarding structural mechanics, we seek to employ a finite element adequate to FSI simulation, what clearly demands a geometric nonlinear analysis. We chose to employ shell elements with formulation in terms of positions, which avoids problems related to finite rotations approximations. Concerning computational fluid dynamics, we employ a stable method, at same time sensible o structural movements, which is written in the arbitrary Lagrangian-Eulerian (ALE) description. The flow incompressibility demands, for a stable method, the use of elements according to the Ladyzhenskaya-Bbuska-Brezzi (LBB) condition. It is also necessary to employ methods able to neutralize the spurious variations that appears from convection dominated flows when applying the standard Galerking method. In order to overcome this problem, we apply the Streamline-Upwind/Petrov-Galerkin (SUPG) method, which adds artificial diffusivity to the streamline direction, controlling spurious variations. Considering the fluid-shell coupling, we seek modularity and versatility, adopting the partitioned model. The developed coupling model ensure the use of fluid and structure meshes with no need for matching nodes.
112

Simulação numérica de escoamentos bidimensionais com superfícies livres e linhas de contato dinâmicas / An arbitrary lagrangian-eulerian method for surface-tension dominated flows with contact lines

Silva, Alysson Alexander Naves 26 April 2010 (has links)
Um método lagrangeano-euleriano arbitrário para a resolução de escoamentos dominados por tensão superficial é apresentado neste trabalho. Tais escoamentos são importantes em muitas aplicações, especialmente em canais capilares que frequentemente aparecem em escoamentos em microescala. A resolução deste tipo de escoamento apresenta vários desafios que são abordados neste trabalho. O escoamento é resolvido somente para a fase líquida, com condições de contorno apropriadas para a superfície livre que delimita o líquido e o gás, que é representada por arestas e vértices da malha computacional. Esta se move e se deforma, sendo que sua qualidade é mantida sob controle para não degradar a solução numérica. As equações de Navier-Stokes são discretizadas pelo método de elementos finitos em um referencial arbitrário. O método de incorporação dos efeitos de tensão superficial e linha de contato é explicado em detalhes. Validações comprovam a precisão do método proposto, com comparações através de soluções pseudo-analíticas para casos simples. Finalmente alguns resultados sobre escoamentos em capilares são apresentados / An arbitrary lagrangian-eulerian finite element method to solve surface tension dominated flows is presented. Such flows are important in many applications, particularly in capillary channels, that appear in microscale flows. The resolution of such flows presents several challenges that are addressed in this work. The flow is solved only in the liquid phase, and proper boundary conditions are applied on the free-surface, bounding the liquid and gas, which is explicitly represented by vertices and edges of the computational mesh. The mesh is moved and deformed, but its quality is kept under control in order to control errors in the numerical solution. The Navier-Stokes equations are discretized by standard Galerkin finite element method in an arbitrary reference. Details of the computation of surface tension and contact line effects are presented. The methodology is validated for a number of simple test cases against known pseudo-analytical solutions, and numerical results are presented, showing the robustness and accuracy of the methodology. Finally, some results about surface-tension-driven flows in capillaries are presented
113

Modélisation et simulation numérique de la déformation et la rupture de la plaque d'athérosclérose dans les artères / Modeling and numerical simulation of the deformation and the rupture of the plaque of atherosclerosis in the arteries.

Abbas, Fatima 18 April 2019 (has links)
Cette thèse est consacrée à la modélisation mathématique du flux sanguin dans les artères en présence de la sténose à cause de l'athérosclérose. L'athérosclérose est une maladie vasculaire complexe caractérisée par la formation d'une plaque menant au rétrécissement de l'artère. Elle est responsable des crises cardiaques et des accidents vasculaires cérébraux. Quels que soient les nombreux facteurs de risque identifiés - cholestérol et lipides, pression, régime alimentaire malsain et obésité - seuls des facteurs mécaniques et hémodynamiques peuvent donner une cause précise de cette maladie. Dans la première partie de la thèse, nous introduisons le modèle mathématique tridimensionnel décrivant l'introduction entre le sang et la paroi artérielle. Le modèle consiste à coupler la dynamique du flux sanguin donnée par les équations de Navier-Stokes formulées dans le cadre Arbitrary Lagrangian Eulerian (ALE) avec les équations élastodynamiques décrivant l'élasticité de la paroi artérielle considérée comme un matériau hyperélastique modélisé par la loi de comportement non-linéaire de Saint Venant-Kirchhoff en tant que système d'interaction fluide-structure. Théoriquement, nous prouvons l'existence et l'unicité locale dans le temps de la solution pour ce système lorsque le fluide est supposé être un fluide homogène Newtonien incompressible et que la structure est décrite par la loi de comportement non-linéaire quasi-incompressible de Saint Venant-Kirchhoff. Les résultats sont établis en utilisant l'outil clé; le théorème du point fixe. La deuxième partie est consacrée à l'analyse numérique de ce modèle. Le sang est considéré comme un fluide non-Newtonien dont le comportement et les propriétés rhéologiques sont décrits par le modèle de Carreau, tandis que la paroi artérielle est un matériau homogène incompressible décrit par les équations élastodynamiques quasi-statiques. Les simulations sont effectuées dans l'espace à deux dimensions R^2 à l'aide du logiciel FreeFem ++ en utilisant la méthode des éléments finis. Nous nous concentrons sur l'étude de la viscosité, de la vitesse et des contraintes de cisaillement maximale. En outre, nous visons à localiser les zones de recirculation qui sont formées à la suite de l'existence de la sténose. En se basant sur de ces résultats, nous procédons à la détection de la zone de solidification où le sang passe de l'état liquide à un matériau de type gelée. Ensuite, nous spécifions que le sang solidifié est un matériau élastique linéaire qui obéit à la loi de Hooke et qui subit à une force de surface externe représentant la contrainte exercée par le sang sur la zone de solidification. Les résultats numériques concernant le sang solidifié sont obtenus en résolvant les équations d'élasticité linéaires à l'aide de FreeFem ++. Nous analysons principalement la déformation de cette zone ainsi que les contraintes de cisaillement la paroi. Les résultats obtenus vont nous permettre de proposer une hypothèse pour la formulation d'un modèle de rupture. / This thesis is devoted to the mathematical modeling of the blood flow in stenosed arteries due to atherosclerosis. Atherosclerosis is a complex vascular disease characterized by the build up of a plaque leading to the narrowing of the artery. It is responsible for heart attacks and strokes. Regardless of the many risk factors that have been identified- cholesterol and lipids, pressure, unhealthy diet and obesity- only mechanical and hemodynamic factors can give a precise cause of this disease. In the first part of the thesis, we introduce the three dimensional mathematical model describing the blood-wall setting. The model consists of coupling the dynamics of the blood flow given by the Navier-Stokes equations formulated in the Arbitrary Lagrangian Eulerian (ALE) framework with the elastodynamic equations describing the elasticity of the arterial wall considered as a hyperelastic material modeled by the non-linear Saint Venant-Kirchhoff model as a fluid-structure interaction (FSI) system. Theoretically, we prove local in time existence and uniqueness of solution for this system when the fluid is assumed to be an incompressible Newtonian homogeneous fluid and the structure is described by the quasi-incompressible non-linear Saint Venant-Kirchhoff model. Results are established relying on the key tool; the fixed point theorem. The second part is devoted for the numerical analysis of the FSI model. The blood is considered to be a non-Newtonian fluid whose behavior and rheological properties are described by Carreau model, while the arterial wall is a homogeneous incompressible material described by the quasi-static elastodynamic equations. Simulations are performed in the two dimensional space R^2 using the finite element method (FEM) software FreeFem++. We focus on investigating the pattern of the viscosity, the speed and the maximum shear stress. Further, we aim to locate the recirculation zones which are formed as a consequence of the existence of the stenosis. Based on these results we proceed to detect the solidification zone where the blood transits from liquid state to a jelly-like material. Next, we specify the solidified blood to be a linear elastic material that obeys Hooke's law and which is subjected to an external surface force representing the stress exerted by the blood on the solidification zone. Numerical results concerning the solidified blood are obtained by solving the linear elasticity equations using FreeFem++. Mainly, we analyze the deformation of this zone as well as the wall shear stress. These analyzed results will allow us to give our hypothesis to derive a rupture model.
114

Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos / On fluid-shell coupling using the finite element method

Sanches, Rodolfo André Kuche 30 March 2011 (has links)
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades. / This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
115

Combinatoire bijective des permutations et nombres de Genocchi / Bijective combinatorics of permutations and Genocchi numbers

Bigeni, Ange 24 November 2015 (has links)
Cette thèse a pour contexte la combinatoire énumérative et décrit la construction de plusieurs bijections entre modèles combinatoires connus ou nouveaux de suites d'entiers et polynômes, plus particulièrement celle des nombres de Genocchi (et de leurs extensions, les polynômes de Gandhi) qui interviennent dans diverses branches des mathématiques et dont les propriétés combinatoires sont de ce fait activement étudiées, et celles de polynômes q-eulériens associés aux quatre statistiques fondamentales de MacMahon sur les permutations ainsi qu'à des statistiques analogues. On commence par définir les permutations de Dumont normalisées, un modèle combinatoire des nombres de Genocchi médians normalisés q-étendus, notés ¯cn(q) et définis par Han et Zeng, puis l'on construit une première bijection entre ce modèle et l'ensemble des configurations de Dellac, autre interprétation combinatoire de ¯cn(q) mise en évidence par Feigin dans le contexte de la géométrie des grassmanniennes de carquois. En s'appuyant sur la théorie des fractions continues de Flajolet, on en construit finalement un troisième modèle combinatoire à travers les histoires de Dellac, que l'on relie aux premiers modèles sus-cités au moyen d'une seconde bijection. On s'intéresse ensuite à la classe combinatoire des k-formes irréductibles définies par Hivert et Mallet dans l'étude des k-fonctions de Schur, et qui faisaient l'objet d'une conjecture supposant que les polynômes de Gandhi sont générés par les k-formes irréductibles selon la statistique des k-sites libres. On construit une bijection entre les k-formes irréductibles et les pistolets surjectifs de hauteur k − 1 (connus pour générer les polynômes de Gandhi selon la statistique des points fixes) envoyant les k-sites libres des premières sur les points fixes des seconds, démontrant de ce fait la conjecture. Enfin, on établit une nouvelle identité combinatoire entre deux polynômes q-eulériens définis par des statistiques eulériennes et mahoniennes sur l'ensemble des permutations d'un ensemble fini, au moyen d'une dernière bijection sur les permutations, qui envoie une suite finie de statistiques sur une autre / This work is set in the context of enumerative combinatorics and constructs several statistic-preserving bijections between known or new combinatorial models of sequences of integers or polynomials, espacially the sequence of Genocchi numbers (and their extensions, the Gandhi polynomials) which appear in numerous mathematical theories and whose combinatorial properties are consequently intensively studied, and two sequences of q-Eulerian polynomials associated with the four fundamental statistics on permutations studied by MacMahon, and with analog statistics. First of all, we define normalized Dumont permutations, a combinatorial model of the q-extended normalized median Genocchi numbers ¯cn(q) introduced by Han and Zeng, and we build a bijection between the latter model and the set of Dellac configurations, which have been proved by Feigin to generate ¯cn(q) by using the geometry of quiver Grassmannians. Then, in order to answer a question raised by the theory of continued fractions of Flajolet, we define a new combinatorial model of ¯cn(q), the set of Dellac histories, and we relate them with the previous combinatorial models through a second statistic-preserving bijection. Afterwards, we study the set of irreducible k-shapes defined by Hivert and Mallet in the topic of k-Schur functions, which have been conjectured to generate the Gandhi polynomials with respect to the statistic of free ksites. We construct a statistic-preserving bijection between the irreducible k-shapes and the surjective pistols of height k−1 (well-known combinatorial interpretation of the Gandhi polynomials with respect to the fixed points statistic) mapping the free k-sites to the fixed points, thence proving the conjecture. Finally, we prove a new combinatorial identity between two eulerian polynomials defined on the set of permutations thanks to Eulerian and Mahonian statistics, by constructing a bijection on the permutations, which maps a finite sequence of statistics on another
116

Modélisation et étude de l’évaporation et de la combustion de gouttes dans les moteurs à propergol solide par une approche eulérienne Multi-Fluide / Eulerian Multi-Fluid modeling and simulation of evaporation and combustion of polydisperse sprays in solid rocket motors

Sibra, Alaric 27 November 2015 (has links)
En propulsion solide, l'ajout de particules d'aluminium dans le propergol améliore de façon significative les performances du moteur grâce à une augmentation sensible de la température de chambre. La présence de gouttes d'aluminium et de résidus d'alumine de différentes tailles et en quantité importante a un impact notoire sur le fonctionnement du moteur. Dans cette optique, nous souhaitons obtenir une meilleure prévision de la stabilité de fonctionnement en cas de déclenchement d'instabilités d'origine aéroacoustique ou thermoacoustique. Nous visons des calculs plus précis de l'étendue de la zone de combustion, de la chaleur dégagée par la combustion distribuée des gouttes et de la distribution en taille des résidus. Nos efforts ont porté sur la modélisation des échanges entre la phase gazeuse et cette phase dispersée composée de gouttes de nature et de taille très diverses. Le paramètre taille pilotant la dynamique du spray et le couplage avec le gaz, le suivi précis des changements de taille est un enjeu majeur.Dans cette contribution, nous avons choisi une approche cinétique pour la description des sprays polydisperses. L'équation cinétique de Williams-Boltzmann utilisée pour suivre l'évolution des propriétés du spray est résolue par une approche eulérienne. Les méthodes Multi-Fluide (MF) traitent naturellement les changements de taille tels que l'évaporation et la coalescence. Ces méthodes reposent sur une intégration continue de la variable taille sur des intervalles fixes appelés sections sur lesquels nous pouvons dériver des systèmes d'équations de conservation. Chaque système est vu comme un fluide qui est en couplage fort avec la phase gazeuse via des termes sources.Nous avons travaillé sur une méthode MF à deux moments en taille basée sur une famille de fonctions de forme polynomiale pour reconstruire la distribution en taille au sein des sections. Cette approche d'ordre deux en temps et en espace s'avère performante car elle décrit avec précision l'évolution de la distribution avec un nombre modéré de sections. Un travail original a été mené afin d'étendre l'approche MF à des gouttes bicomposants. Cette méthode ouvre la voie à des modèles de combustion des gouttes d'aluminium plus représentatifs. Dans le contexte des simulations instationnaires, nous avons porté une attention particulière à l'emploi d'une stratégie numérique robuste et précise pour le couplage entre les phases modélisées par une approche Euler-Euler. Nous montrons qu'une méthode de splitting séparant le traitement du transport des phases gazeuse/dispersée de celui des termes sources est particulièrement adaptée pour la résolution d'un problème multi-échelle spatial et temporel. Dans la mesure où les conditions de réalisabilité sur les moments en taille des méthodes MF ne sont pas garanties avec des méthodes d'intégration traditionnelles, nous avons développé des schémas innovants pour l'intégration des termes sources. Les travaux proposés dans cette contribution répond à deux exigences : 1- un ratio coût/précision attractif pour des simulations industrielles 2- une facilité d'implémentation des méthodes et une modularité assurant la pérennisation des codes industriels. Ces développements ont d'abord été vérifiés à l'aide d'un code ad hoc ; des cas test d'étude d'acoustique diphasique linéaire ont notamment souligné la pertinence de la technique de splitting pour restituer avec précision les interactions spray-acoustique. Les nouvelles méthodes ont ensuite été implémentées et validées au sein du code multi-physique CEDRE développé à l'ONERA. Des calculs de propulsion solide sur des configurations moteur réalistes ont finalement mis en évidence le niveau de maturité atteint par les méthodes eulériennes pour décrire avec fidélité la dynamique des sprays polydisperses. Les résultats de ces simulations ont mis en avant la sensibilité des niveaux d'instabilités en fonction de la distribution en taille des gouttes d'aluminium et des résidus. / The addition of a significant mass fraction of aluminum particle in the propellant of Solid Rocket Motors improves performance through an increase of the temperature in the combustion chamber. The distributed combustion of aluminum droplets in a portion of the chamber yields a massive amount of disperse aluminum oxide residues with a large size spectrum, called a polydisperse spray, in the entire volume. The spray can have a significant impact on the motor behavior and in particular on the onset/damping of instability. When dealing with aeroacoustical and thermoacoustical instabilities, the faithful prediction of the interactions between the gaseous phase and the spray is a determining step for understanding the physical mechanisms and for future solid rocket motor optimization. In such a harsh environment, experimental measurements have a hard time providing detailed explanation of the physical mechanisms and one has to resort to numerical simulation. For such a purpose, the distributed combustion zone and thermal profile therein, the heat generated by the combustion of the dispersed droplets and the large size distribution of the aluminum oxide residues and its coupling with he gaseous phase hydrodynamic and acoustic fields have to be accurately reproduced through a proper level of modeling and a high fidelity simulation including a precise resolution of size polydispersity, which is a key parameter.In this contribution, we choose a kinetic approach for the description of polydisperse sprays. The Williams-Boltzmann Equation is used to model the disperse phase and we derive a fully Eulerian approach through moment methods. The Multi-Fluid (MF) methods naturally treat droplet size evolution through phenomena such as evaporation and coalescence. These methods rely on the conservation of size moments on fixed intervals called sections and yield systems of conservation laws for a set of "fluids" of droplet of various sizes, which is strongly coupled with the gas phase via source terms. We derive a new optimal and flexible Two Size Moment MF method based on a family of polynomial reconstruction functions to describe the size distribution in the sections, which is second order accurate and particularly efficient at describing accurately the evolution of the size distribution with a moderate number of sections. An original work is also conducted in order to extend this approach to two-component droplets. For size moment MF methods, realizability of the moments is a crucial issue. Thus, we have developed innovative schemes for integrating source terms in moment conservation equations describing transport in phase space. This method enables the use of more representative aluminum droplet combustion models, and leads to more advanced studies of the distributed combustion zone. Moreover, for unsteady two-phase flow simulations, we have developed a robust and accurate coupling strategy between phases that are modeled by a fully Eulerian approach based on operator splitting in order to treat such spatial and temporal very multi-scale problems with reasonable computational time. All the proposed developments have been carried out following two criteria : 1- an attractive cost/accuracy ratio for industrial simulations in the context of high fidelity simulations 2- a preservation of industrial code legacy. Verification of the models and methods have been conducted first using an in-house reseach code and then in the context of a two-phase acoustic study thus emphasizing the relevance of the splitting technique to capture accurately spray-acoustic interactions.
117

ETUDE PHENOMENOLOGIQUE ET NUMERIQUE DE LA PROPAGATION DE POLLUANTS MISCIBLES DANS UN MILIEU A POROSITE MULTIPLE (application au transport des nitrates dans laquifère crayeux du Crétacé de Hesbaye

Biver, Pierre 02 June 1993 (has links)
ABSTRACT In the first part of this study, a determinist mathematical approach is used to describe any kind of pollutant migration in groundwater. This theoretical background is focused on the miscible displacement and the particularities of the multiporous media are discussed. Subsequently, an objective numerical tool is developed to solve the convection-dispersion equations including immobile water effect, degradation, and adsoption. Among all the available techniques, two finite element methods in fixed meshing grids have been programmed: -the F.U.P.G. method (Full Upwind Petrov Galerkin), using a space-time upwinded weighting function with optimized coefficients, -the H.E.L.M. method (Hybrid Eulerian Lagrangian Method), using the eulerian lagrangian approach with reverse node tracking. Those two schemes are tested on a large number of reference problems. The model have been applied to study the behaviour of solutes (nitrates mainly) in the cretaceous chalk of the Hesbaye area (Belgium). Experimentations have been performed on domains of increasing size (laboratory tests, in situ tracer tests). For each interpretation, the particularities of the context have been taken into account, and miscible transport coefficients have been objectively determined. Hence, the medium is well characterized and the scale effect is quantified. This leads to previsional applications. RESUME Ce travail débute par le développement dun formalisme mathématique déterministe pour décrire, en toute généralité, la propagation de polluants dans les eaux souterraines. Cette étude théorique permet de situer le problème posé (pollution miscible diluée) dans un cadre plus large, et de souligner les particularités dun milieu à porosité multiple. Dans un second temps, un outil numérique objectif est mis au point pour résoudre les équations de convection-dispersion avec effet deau immobile, dégradation, et adsorption. Parmi le grand nombre des procédés existants, deux méthodes par éléments finis en maillage fixe ont été programmées : -la méthode F.U.P.G. (Full Upwind Petrov Galerkin) basée sur un décentrage des fonctions de pondération, optimum dans le temps et lespace, -la méthode H.E.L.M. (Hybrid Eulerian Lagrangian Method) utilisant un processus eulerien lagrangian avec traçage inverse des positions nodales. Les deux schémas sont testés sur de nombreux problèmes de référence. Ensuite, ce modèle est appliqué à des situations pratiques pour étudier le comportement de solutés (nitrates notamment) dans laquifère crayeux du Crétacé de Hesbaye (Belgique). Des domaines de taille croissante sont étudiés (essais de laboratoire, traçage in situ). A chaque étape, les coefficients de transport miscible sont déterminés de façon objective, en tenant compte de la spécificité des tests. Ainsi, leffet déchelle peut être quantifié et il est possible denvisager des scénarios prévisionnels.
118

Mesh-Free Methods for Dynamic Problems. Incompressibility and Large Strain

Vidal Seguí, Yolanda 17 January 2005 (has links)
This thesis makes two noteworthy contributions in the are of mesh-free methods: a Pseudo-Divergence-Free (PDF) Element Free Galerkin (EFG) method which alleviates the volumetric locking and a Stabilized Updated Lagrangian formulation which allows to solve fast-transient dynamic problems involving large distortions. The thesis is organized in the following way. First of all, this thesis dedicates one chapter to the state of the art of mesh-free methods. The main reason is because there are many mesh-free methods that can be found in the literature which can be based on different ideas and with different properties. There is a real need of classifying, ordering and comparing these methods: in fact, the same or almost the same method can be found with different names in the literature. Secondly, a novel improved formulation of the (EFG) method is proposed in order to alleviate volumetric locking. It is based on a pseudo-divergence-free interpolation. Using the concept of diffuse derivatives an a convergence theorem of these derivatives to the ones of the exact solution, the new approximation proposed is obtained imposing a zero diffuse divergence. In this way is guaranteed that the method verifies asymptotically the incompressibility condition and in addition the imposition can be done a priori. This means that the main difference between standard EFG and the improved method is how is chosen the interpolation basis. Modal analysis and numerical results for two classical benchmark tests in solids corroborate that, as expected, diffuse derivatives converge to the derivatives of the exact solution when the discretization is refined (for a fixed dilation parameter) and, of course, that diffuse divergence converges to the exact divergence with the expected theoretical rate. For standard EFG the typical convergence rate is degrade as the incompressible limit is approached but with the improved method good results are obtained even for a nearly incompressible case and a moderately fine discretization. The improved method has also been used to solve the Stokes equations. In this case the LBB condition is not explicitly satisfied because the pseudo-divergence-free approximation is employed. Reasonable results are obtained in spite of the equal order interpolation for velocity and pressure. Finally, several techniques have been developed in the past to solve the well known tensile instability in the SPH (Smooth Particle Hydrodynamics) mesh-free method. It has been proved that a Lagrangian formulation removes completely the instability (but zero energy modes exist). In fact, Lagrangian SPH works even better than the Finite Element Method in problems involving distortions. Nevertheless, in problems with very large distortions a Lagrangian formulation will need of frequent updates of the reference configuration. When such updates are incorporated then zero energy modes are more likely to be activated. When few updates are carried out the error is small but when updates are performed frequently the solution is completely spoilt because of the zero energy modes. In this thesis an updated Lagrangian formulation is developed. It allows to carry out updates of the reference configuration without suffering the appearance of spurious modes. To update the Lagrangian formulation an incremental approach is used: an intermediate configuration will be the new reference configuration for the next time steps. It has been observed that this updated formulation suffers from similar numerical fracture to the Eulerian case. A modal analysis has proven that there exist zero energy modes. In the paper the updated Lagrangian method is exposed in detail, a stability analysis is performed and finally a stabilization technique is incorporated to preclude spurious modes.
119

Computational fluid dynamics (CFD) modelling of critical velocity for sand transport flow regimes in multiphase pipe bends

Tebowei, Roland January 2016 (has links)
The production and transportation of hydrocarbon fluids in multiphase pipelines could be severely hindered by particulate solids deposit such as produced sand particles which accompany hydrocarbon production. Knowledge of the flow characteristics of solid particles in fluids transported in pipelines is important in order to accurately predict solid particles deposition in pipelines. This research thesis presents the development of a three-dimensional (3D) Computational Fluids Dynamics (CFD) modelling technique for the prediction of liquid-solids multiphase flow in pipes, with special emphasis on the flow in V-inclined pipe bends. The Euler-Euler (two-fluid) multiphase modelling methodology has been adopted and the multiphase model equations and closure models describing the liquid-solids flow have been implemented and calculated using the finite volume method in a CFD code software. The liquid phase turbulence has been modelled using a two-equation k−ε turbulence model which contains additional terms to account for the effects of the solid-particles phase on the multiphase turbulence structure. The developed CFD numerical framework has been verified for the relevant forces and all the possible interaction mechanisms of the liquid-solids multiphase flow by investigating four different numerical frameworks, in order to determine the optimum numerical framework that captures the underlying physics and covers the interaction mechanisms that lead to sand deposition and the range of sand transport flow regimes in pipes. The flow of liquid-sand in pipe has been studied extensively and the numerical results of sand concentration distribution across pipe and other flow properties are in good agreement with published experimental data on validation. The numerical framework has been employed to investigate the multiphase flow in V-inclined pipe bends of ±4o−6o, seemingly small inclined bend angles. The predicted results which include the sand segregation, deposition velocity and flow turbulence modulation in the pipe bend show that the seemingly small pipe bends have significant effect on the flow differently from that of horizontal pipes. The pipe bend causes abrupt local change in the multiphase flow characteristic and formation of stationary sand deposit in the pipe at a relatively high flow velocity. The threshold velocity to keep sand entrained in liquid in pipe bends is significantly higher than that required for flow horizontal pipes. A critical implication of this is that the correlations for predicting sand deposition in pipelines must account for the effect of pipe bend on flow characteristics in order to provide accurate predictions of the critical sand transport velocity (MTV) in subsea petroleum flowlines, which V-inclined pipe bends are inevitable due to seabed topology.
120

Transported probability density function for the numerical simulation of flames characteristic of fire / Méthode de transport de la fonction densité de probabilité pour la modélisation des flammes caractéristiques des incendies

Burot, Daria 27 January 2017 (has links)
La simulation de scenarios d’incendie nécessite de modéliser de nombreux processus complexe, particulièrement la combustion gazeuse d’hydrocarbure incluant la production de suie et les transferts radiatifs dans un écoulement turbulent. La nature turbulente de l’écoulement fait apparaitre des interactions qui doivent être prises en compte entre ces processus. L’objectif de cette thèse est d’implémenter une méthode de transport de la fonction de densité de probabilité afin de modéliser ces interactions de manière précise. En conjonction avec un modèle de flammelettes, le modèle de Lindstedt et un modèle à large-bande k-corrélé, l’équation de transport de la PDF jointe de composition est résolue avec la méthode des Champs Eulérien Stochastiques. Le modèle est validé en simulant 12 flammes turbulentes recouvrant une large gamme de nombre de Reynolds et de propension à former de la suie par les combustibles. Dans un second temps, les effets des interactions rayonnement-turbulence (TRI) sur l’émission de la suie sont étudiés en détails, montrant que la TRI tend à augmenter l’émission radiative de la suie à cause des fluctuations de température, mais que cette augmentation est plus faible pour des nombres de Reynolds élevés ou des quantités de suie plus élevées. Ceci est dû à la corrélation négative entre le coefficient d’absorption des suies et la fonction de Planck. Finalement, l’influence de la corrélation entre la fraction de mélange et le paramètre de non-adiabaticité est étudiée sur une flamme d’éthylène, montrant qu’elle a peu d’effet sur la structure moyenne de flamme mais tend à limiter les fluctuations de température et les pertes radiatives. / The simulation of fire scenarios requires the numerical modeling of various complex process, particularly the gaseous combustion of hydrocarbons including soot production and radiative transfers in a turbulent. The turbulent nature of the flow induces interactions between these processes that need to be taken accurately into account. The purpose of this thesis is to implement a transported Probability Density function method to model these interactions precisely. In conjunction with the flamelet model, the Lindstedt model, and a wide-band correlated-k model, the composition joint-PDF transport equation is solved using the Stochastic Eulerian Fields method. The model is validated by simulating 12 turbulent jet flames covering a large range of Reynolds numbers and fuel sooting propensity. Model prediction are found to be in reasonable agreement with experimental data. Second, the effects of turbulence-radiation interactions (TRI) on soot emission are studied in details, showing that TRI tends to increase soot radiative emission due to temperature fluctuations, but that this increase is smaller for higher Reynolds numbers and higher soot loads. This is due to the negative correlation between soot absorption coefficient and the Planck function. Finally, the effects of taking into account the correlation between mixture fraction and enthalpy defect on flame structure and radiative characteristics are also studied on an ethylene flame, showing that it has weak effect on the mean flame structure but tends to inhibit both temperature fluctuations and radiative loss.

Page generated in 0.0497 seconds