• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 46
  • 24
  • 19
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 341
  • 162
  • 114
  • 112
  • 53
  • 53
  • 45
  • 42
  • 41
  • 38
  • 37
  • 35
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Análise transitória de faltas em geradores síncronos no contexto da energia eólica. / Internal fault transients analysis in synchronous generators in wind energy context.

Marina Linhares Anders 30 January 2018 (has links)
A comunidade internacional vem continuamente alertando sobre os riscos ambientais advindos da emissão de gases de efeito estufa. Considerada uma alternativa limpa, segura e de baixo impacto ambiental, a energia eólica tem se tornado uma alternativa para geração de eletricidade. No Brasil, tem-se realizado grandes investimentos na construção de parques eólicos e seu contínuo crescimento tem motivado a realização de estudos que proponham melhorias no funcionamento do sistema. Devido à característica inconstante do vento, os aerogeradores comerciais utilizados nos parques eólicos frequentemente possuem conversores de potência, desta forma, apresentam características diferentes em relação a sistemas de geração convencionais quando da ocorrência de faltas internas. Este estudo propõe a análise de transitórios eletromagnéticos em aerogeradores que utilizam geradores síncronos associados a conversores de potência, com ênfase nas faltas internas. Para tanto, foi realizado o equacionamento dinâmico do sistema que representa o aerogerador conectado à rede através do conversor back-to-back. A partir das funções de transferências obtidas, foram definidos os ajustes para os controladores através do método simétrico ótimo. Para a validação do sistema de controle foi elaborado o modelo computacional do sistema, a partir do qual foram gerados resultados que possibilitam melhor compreensão da atuação dos controladores e das formas de onda do sistema. Por fim, foram aplicadas faltas em diversos pontos do sistema, gerando como resultados gráficos que apresentam a interação entre as proteções dos conversores, local de ocorrência das faltas, resistência de falta e as grandezas analisadas. / The international community has been continuously warning of environmental risks arising from greenhouse gas emissions. For being considered as a clean, safe and low environmental impact alternative, wind energy has been considered attractive for electricity generation. Brazilian government have made great investments in the construction of wind farms, and its continued growth has motivated studies proposing improvements for the wind power generation systems. Commercial wind turbines used in wind farms, often employ power converters, behaving different from conventional electromechanical generation systems in the event of internal faults. This study proposes the analysis of electromagnetic transients in wind turbines that use synchronous generators in association with power converters, with emphasis in internal faults. For this, the dynamic behaviour of the system representing the wind turbine connected to the network through the backto-back converter was performed. Based on the transfer functions obtained, the settings for the controllers were defined by the optimal symmetric method. In order to validate the control system a computational model was elaborated, from which graphics were generated, allowing a better understanding of the controllers actuation and the waveforms of the system. Finally, faults were applied in multiple points of the system, generating as results, graphs that show the interaction between the protections of the converters, place of occurrence of faults, fault resistance and the parameters analyzed.
172

Fotofísica e propriedades dinâmicas de sistemas moleculares / Photophysics and dynamical properties of molecular systems

González, Yoelvis Orozco 31 October 2012 (has links)
A fotodinâmica de sistemas moleculares representa um dos principais tópicos atuais da físico-química molecular. O conhecimento das propriedades dos estados eletrônicos excitados tem permitido desenvolver áreas de vital importância como das energias renováveis, da fotomedicina, dos sensores fluorescentes, entre outras. O objetivo desta tese está orientado a estudar teoricamente a influência do meio (ou efeito de solvente) na fotofísica e nas propriedades dos estados eletrônicos excitados de sistemas moleculares. Nesta tese, primeiramente foi feito um estudo em fase gasosa da superfície de energia potencial do sistema molecular HSO2 e do efeito da energia rotacional na reação OH+SO. Na superfície de energia potencial foram caracterizadas um grande número de estruturas estacionárias e foi encontrado um estado de transição que liga a região mais energética da superfície com a menos energética. Em relação ao papel da energia rotacional na reação mencionada, foi realizado um estudo de trajetórias quase-clássicas, onde foi observado um decréscimo da reatividade com o aumento da energia rotacional total depositada nos reagentes. Posteriormente, foi estudado o efeito do solvente nas propriedades dos estados eletrônicos excitados e nos mecanismos de decaimento de três sistemas moleculares, acetona, 1-nitronaftaleno e daidzein. Na acetona, foi estudada a influência da polarização eletrônica do estado excitado n* provocada pelo solvente no deslocamento espectral da banda de fluorescência. A banda de emissão obtida em água mostra um deslocamento espectral muito pequeno em relação à fase gasosa, em concordância com as evidencias experimentais. Também foi observada pouca dependência do deslocamento espectral com o grau de polarização eletrônica desse estado excitado. O sistema molecular 1-nitronaftaleno foi estudado a fim de esclarecer a ultrarápida desativação eletrônica não fluorescente observada experimentalmente após a transição de absorção, assim como, caracterizar os espectros de absorção transitória também observados nos experimentos. Foi encontrado um intersystem crossing muito eficiente entre o primeiro estado excitado singleto e o segundo estado tripleto, que explica o decaimento não fluorescente deste sistema molecular. O modelo de decaimento proposto permite descrever corretamente os espectros de absorção transitória nos solventes metanol e etanol, através de transições de absorção dos estados eletrônicos tripletos. Finalmente, o sistema molecular daidzein foi estudado a fim de entender porque em solvente polar prótico, como a água, o sistema é fluorescente, mostrando um valor de Stokes shift consideravelmente grande e na presença de solvente polar aprótico, como a acetonitrila, não é observada fluorescência. Nesse sentido, foi estudada a evolução dos estados eletrônicos excitados, na presença dos solventes água e acetonitrila, após as transição de absorção. A topologia dos estados eletrônicos excitados é diferente para cada um dos solventes, em acetonitrila o sistema tem acesso a um intersystem crossing muito eficiente que permite o decaimento não fluorescente. Em água o panorama é diferente, neste caso, não é possível a ocorrência do intersystem crossing e o sistema decai por fluorescência para o estado fundamental. No estado eletrônico fluorescente é observada uma polarização eletrônica significativa que provoca o grande valor de Stokes shift observado experimentalmente. / The photodynamics of molecular systems represents one of the most important topics of the molecular physical chemistry today. The knowledge of the excited electronic states properties has allowed the development of several important areas, such as the renewable energies, the photomedicine, fluorescent sensors, etc. The aim of this thesis is oriented to the theoretical study of the solvent effect on the photophysics and on the excited electronic states properties of molecular systems. In this thesis, it was initially studied the potential energy surface of the HSO2 molecular system in gas phase and the rotational energy effect on the reactivity of the OH+SO reaction. In the potential energy surface a large number of stationary structures were characterized and it was found a transition state which connects the highest energetic region to the lowest one. Regarding the role of rotational energy on the mentioned reaction, a quasi-classical trajectories study was performed, indicating a decrease in the reactivity when the total rotational energy deposited in the reactants is increased. Subsequently, it was studied the solvent effect on the excited electronic states and on the deactivation mechanisms of three molecular systems, acetone, 1-nitronaphthalene and daidzein. In the acetone molecular system, it was studied the influence of the electronic polarization, caused by the solvent, in the fluorescence spectral shift of the n* excited state. The emission band obtained in water shows a small spectral shift compared to the gas phase, in agreement with the experimental evidences. It was also observed a little dependence of the spectral shift with the degree of the excited state polarization. The 1-nitronaphthalene molecular system was studied to clarify the ultrafast non-fluorescent deactivation mechanism experimentally observed after the absorption transitions, as well as to characterize the transient absorption spectra also observed in the experiments. A very efficient intersystem crossing was found between the first singlet excited state and the second triplet state, which explains the nonfluorescent decay of this molecular system. The proposed deactivation model allows properly describing the transient absorption spectra in methanol and ethanol solvents by absorption transitions from the triplet electronic states. Finally, the daidzein molecular system was studied to understand why in polar protic solvent, such as water, the system is fluorescent, showing a very large Stokes shift value and in polar aprotic solvent, such as acetonitrila, the fluorescence is not observed. In that sense, it was studied the evolution of the excited electronic states in water and in acetonitrile after the absorption transition. The topology of the excited electronic states is different for each solvent, in acetonitrile the system is accessible to a very efficient intersystem crossing that enables the non-fluorescent decay. In water the picture is different, the intersystem crossing is not possible to occur and the system decays by fluorescence to the ground electronic state. In the fluorescent state is observed a considerable electronic polarization that causes the so large Stokes shift value experimentally observed.
173

Lineare und nichtlineare optische Untersuchungen am synthetischen Eumelanin und Entwicklung eines Kaskadenmodells / Linear and nonlinear optical examinations of synthetical eumelanin and development of a cascade model

Seewald, Gunter January 2011 (has links)
Eumelanin ist ein Fluorophor mit teilweise recht ungewöhnlichen spektralen Eigenschaften. Unter anderem konnten in früheren Veröffentlichungen Unterschiede zwischen dem 1- und 2-photonen-angeregtem Fluoreszenzspektrum beobachtet werden, weshalb im nichtlinearen Anregungsfall ein schrittweiser Anregungsprozess vermutet wurde. Um diese und weitere optische Eigenschaften des Eumelanins besser zu verstehen, wurden in der vorliegenden Arbeit vielfältige messmethodische Ansätze der linearen und nichtlinearen Optik an synthetischem Eumelanin in 0,1M NaOH verfolgt. Aus den Ergebnissen wurde ein Modell abgeleitet, welches die beobachteten photonischen Eigenschaften konsistent beschreibt. In diesem kaskadierten Zustandsmodell (Kaskaden-Modell) wird die aufgenommene Photonenenergie schrittweise von Anregungszuständen hoher Übergangsenergien zu Anregungszuständen niedrigerer Übergangsenergien transferiert. Messungen der transienten Absorption ergaben dominante Anteile mit kurzen Lebensdauern im ps-Bereich und ließen damit auf eine hohe Relaxationsgeschwindigkeit entlang der Kaskade schließen. Durch Untersuchung der nichtlinear angeregten Fluoreszenz von verschieden großen Eumelanin-Aggregaten konnte gezeigt werden, dass Unterschiede zwischen dem linear und nichtlinear angeregten Fluoreszenzspektrum nicht nur durch einen schrittweisen Anregungsprozess bei nichtlinearer Anregung sondern auch durch Unterschiede in den Verhältnissen der Quantenausbeuten zwischen kleinen und großen Aggregaten beim Wechsel von linearer zu nichtlinearer Anregung begründet sein können. Durch Bestimmung des Anregungswirkungsquerschnitts und der Anregungspulsdauer-Abhängigkeit der nichtlinear angeregten Fluoreszenz von Eumelanin konnte jedoch ein schrittweiser 2-Photonen-Anregungsprozess über einen Zwischenzustand mit Lebendsdauern im ps-Bereich nachgewiesen werden. / Eumelanin is a fluorophor with some special spectral properties. In earlier publications for instance a difference between 1- and 2-photons-excited fluorescence (OPEF and TPEF) was observed. Therefore in the nonlinear case a stepwise excitation process was supposed. In this thesis extensive linear and nonlinear optical examinations of synthetical Eumelanin / 0,1M NaOH were done in order to reach a better understanding of this and further optical properties. A theoretical model could be formulated that describes the measured fluorescence behaviour consistently. In this so called cascade model the photonic energy of the excited molecule relaxes by a stepwise energy transfer between a multitude of electronic states with continuously decreasing energy. Examination of the nonlinear excited fluorescence of different aggregate sizes showed, that differences between the spectra of linear and nonlinear excited fluorescence can not only be explained by an stepwise excitation process by nonlinear excitation but also by the difference in the relation of quantum yields between smaller and bigger aggregates by the change from linear to nonlinear excitation. In spite of this a stepwise 2-photons-excitation-process via an intermediate state with a lifetime in the picosecond-range had also been proved by determinations of the excitation cross section and the TPEF-intensity dependency on the pulse duration.
174

Ground and Excited State Aromaticity : Design Tools for π-Conjugated Functional Molecules and Materials

Dahlstrand, Christian January 2012 (has links)
The main focus of this thesis is on the aromaticity of the ground state and electronically excited states of π-conjugated molecules and polymers, as well as how aromaticity is connected to their properties. The electronic structures of polybenzenoid hydrocarbons (PBHs) were explored through density functional theory (DFT) calculations and the π-component of the electron localization function (ELFπ). The study revealed how the π-electronic structure is influenced by the fusion of double bonds or benzene rings to the PBHs. We also demonstrated that the π-electrons of benzene extend to accommodate as much aromaticity as possible when bond length distorted.   The aromatic chameleon property displayed by fulvenes, isobenzofulvenes, fulvalenes, bis(fulvene)s, and polyfulvenes were investigated using DFT calculations. The tria-, penta-, and heptafulvenes were shown to possess ionization energies and electron affinities which can be tuned extensively by substitution, some of which even outperform TTF and TCNQ, the prototypical electron donor and acceptor, respectively. The singlet-triplet energy gap of pentafulvenes can be tuned extensively by substitution to the point that the triplet state is lower than the singlet state and thus becomes the ground state. The ELFπ of isobenzofulvene shows that the benzene ring in an electronically excited state can be more aromatic than the corresponding ring in the ground state. We have shown that the 6-ring of [5.6.7]quinarene is influenced by a Hückel aromatic resonance structure with 4n+2 π-electrons in the excited quintet state. The bis(fulvene)s which are composed of a donor type heptafulvene and an acceptor type pentafulvene, retain the basic donor-acceptor properties of the two fragments and could function as compact donor-acceptor dyads. A few of the designed polyfulvenes were found to have band gaps below 1 eV at the PBC-B3LYP/6-31G(d) level. Various 2,7-disubstituted fluorenones and dibenzofulvenes were synthesized and their excited state properties were investigated by absorption spectroscopy and time-dependent DFT calculations. It was found that the 1A → 1B transition of ππ* character can be tuned by substitution in the 2,7-positions. The 2,7-bis(N,N-dimethyl) derivatives of fluorenone and dibenzofulvene displayed low energy transitions at 2.18 and 1.61 eV, respectively, in toluene.
175

Consecutive Orthogonal Arrays on Design of Power Electronic Circuits

Yen, Hau-Chen 16 January 2003 (has links)
An approach with ¡§consecutive orthogonal arrays (COA)¡¨ is proposed for solving the problems in designing power electronic circuits. This approach is conceptually based on the orthogonal array method, which has been successfully implemented in quality engineering. The circuit parameters to be determined are assigned as the controlled variables of the orthogonal arrays. Incorporating with the inferential rules, the average effects of each control variable levels are used as the indices to determine the control variable levels of the subsequent orthogonal array. By manipulating on COA, circuit parameters with the desired circuit performances can be found from an effectively reduced number of numerical calculations or experimental tests. In this dissertation, the method with COA is implemented on solving four problems often encountered in the design of power electronic circuits. The first problem one has to deal with is to find a combination with the best performance from a great number of analyzed results. The illustrative example is the design of LC passive filters. Using COA method, the desired component values of the filter can be effectively and efficiently found with far fewer calculations. The second design problem arises from the non-linearity of circuit. An experienced engineer may be able to figure out circuit parameters with satisfactory performance based on their pre-knowledge on the circuit. Nevertheless, they are always questioned whether a better choice can be made. The typical case is the self-excited resonant electronic ballast with the non-linear characteristics of the saturated transformer and the power transistor storage-time. In this case, the average effects of COA obtained from experimental tests are used as the observational indexes to search a combination of circuit parameters for the desired lamp power. The third problem is that circuit functions are mutually exclusive. The designers are greatly perplexed to decide the circuit parameters, with which all functions should be met at the same time. The method with COA is applied to design a filter circuit to achieve the goals of low EMI noise and high power factor simultaneously. Finally, one has to cope with the effects of the uncontrolled variables, such as: ambient temperature, divergence among different manufacturers, and used hours. By applying COA with inferential rules, electronic ballasts can be robustly designed to operate fluorescent lamps at satisfied performance under the influence of these uncontrolled variables.
176

Photochemistry of Phenyl Halides

Karlsson, Daniel January 2008 (has links)
We have studied fundamental aspects of photo-induced dissociation kinetics and dynamics in several phenyl halides. By combining femtosecond pump-probe measurements with ab initio calculations we are able to account for several observations. In mixed phenyl halides, the dissociation kinetics is found to be dependent on the nature, the number, and the position of the substituents, and also on the excitation wavelength. A surprisingly large reduction in the dissociation time constant, compared to that of bromobenzene (~30 ps), is observed when having two or more fluorine atoms. For example, in bromopentafluorobenzene a subpicosecond time constant is obtained. This can be explained by a significant lowering of the repulsive potential energy curves (PEC) along the C-Br bond. However, several of the experimental results cannot be accounted for by one-dimensional PECs. Therefore, we suggest a refined model for the dissociation, in which the excited states of the same spin multiplicity are coupled by employing multidimensional potential energy surfaces. This model has been explicitly evaluated by quantum dynamics simulations in the case of 3-BrFPh, and it seems to be capable of capturing the main features in the measured kinetics. Thereby we are also able to clarify the role of spin-orbit coupling in these molecules.
177

Synthesis of Biomimetic Systems for Proton and Electron Transfer Reactions in the Ground and Excited State

Parada, Giovanny A. January 2015 (has links)
A detailed understanding of natural photosynthesis provides inspiration for the development of sustainable and renewable energy sources, i.e. a technology that is capable of converting solar energy directly into chemical fuels. This concept is called artificial photosynthesis. The work described in this thesis contains contributions to the development of artificial photosynthesis in two separate areas. The first one relates to light harvesting with a focus on the question of how electronic properties of photosensitizers can be tuned to allow for efficient photo-induced electron transfer processes. The study is based on a series of bis(tridentate)ruthenium(II) polypyridyl complexes, the geometric properties of which make them highly appealing for the construction of linear donor-photosensitizer-acceptor arrangements for efficient vectorial photo-induced electron transfer reactions. The chromophores possess remarkably long lived 3MLCT excited states and it is shown that their excited-state oxidation strength can be altered by variations of the ligand scaffold over a remarkably large range of 900 mV. The second area of relevance to natural and artificial photosynthesis that is discussed in this thesis relates to the coupled movement of protons and electrons. The delicate interplay between these two charged particles regulates thermodynamic and kinetic aspects in many key elementary steps of natural photosynthesis, and further studies are needed to fully understand this concept. The studies are based on redox active phenols with intramolecular hydrogen bonds to quinolines. The compounds thus bear a strong resemblance to the tyrosine/histidine couple in photosystem II, i.e. the water-plastoquinone oxidoreductase enzyme in photosynthesis. The design of the biomimetic models is such that the distance between the proton donor and acceptor is varied, enabling studies on the effect the proton transfer distance has on the rate of proton-coupled electron transfer reactions. The results of the studies have implications for the development of artificial photosynthesis, in particular in connection with redox leveling, charge accumulation, as well as electron and proton transfer. In addition to these two contributions, the excited-state dynamics of the intramolecular hydrogen-bonded phenols was investigated, thereby revealing design principles for technological applications based on excited-state intramolecular proton transfer and photoinduced tautomerization.
178

Photochemical and photophysical studies of Excited State Intramolecular Proton Transfer (ESIPT) in biphenyl compounds

Behin Aein, Niloufar 12 August 2010 (has links)
This Thesis aims to examine the effects of substituents on the adjacent proton accepting phenyl ring with respect to a new type of excited state intramolecular proton transfer (ESIPT) process discovered by Wan and co-workers. Therefore, a number of 2-phenylphenols 23-28 were synthesized with electron-donor and electron-acceptor substituents such as methyl, methoxy, and ketone moieties on the adjacent proton accepting phenyl ring. The results obtained from examination of photochemical deuterium exchange showed that all derivatives except for ketone 27 underwent deuterium exchange (Фex = 0.019 - 0.079), primarily at the 2’-position on photolysis in D2O-CH3CN. In general, compounds with methoxy moiety (ies) on the adjacent proton accepting ring showed higher deuterium exchange yields. Diol 28 has the potential to undergo photosolvolysis as well as ESIPT process since it has both a benzyl alcohol and a phenol chromophore on the same molecule. Irradiation of 28 in 1:1 H2O-CH3OH gave the corresponding methyl ether product in high yield. Photolysis of 28 in 1:1 D2O-CH3OH also showed that ESIPT competes very well with photosolvolysis. Thus, this work has established that ESIPT can compete efficiently with photosolvolysis. Semi-empirical AM1 (examination of HOMOs and LUMOs) calculations show a large degree of charge transfer in the electronic excited state (except 27), from the phenol ring to the attached phenyl ring of the studied compounds. The AM1 calculation for ketone 27 showed that the carbonyl oxygen is more basic than the carbon atoms of the benzene ring, which explains the lack of deuterium exchange observed for 27.
179

クリアランス内で衝突を伴うロータの非線形強制振動と自励振動 (非線形ばね・減衰モデルによる分数調波振動の解析)

稲垣, 瑞穂, INAGAKI, Mizuho, 石田, 幸男, ISHIDA, Yukio, 林, 晃正, HAYASHI, Akimasa 07 1900 (has links)
No description available.
180

Pressure Effects on Electric Field Spectra of Molecular Rydberg States

Altenloh, Daniel Dean 12 1900 (has links)
Electric field studies, electrochromism, were used to obtain excited-state data for analogous divalent sulfur compounds. The sulfides investigated were dimethyl sulfide and small cyclic sulfides including the three to six member ring compounds. The excited-state dipole moments and polarizabilities are reported for the first s, p, and d Rydberg absorption bands which occur in the near vacuum ultraviolet region from 230 to 170 nm. The excited-state data are interpreted in terms of the particular excited-state (s, p, or d) for the molecules and the bending differences due to the presence of the ring and the number of atoms in the ring. The next section describes the use of electrochromism to investigate the pressure effect of argon, carbon tetrafluoride and sulfur hexafluoride on the spectra for molecular Rydberg states.

Page generated in 0.4537 seconds