• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • 1
  • Tagged with
  • 23
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Pétrologie et rhéologie des glaces planétaires de haute pression

Journaux, Baptiste 17 December 2013 (has links) (PDF)
La glace de H2O est présente dans de nombreux environnements planétaires, et notamment sous forme de polymorphe de haute pression au sein des satellites de glaces ainsi que dans le manteau des planètes extrasolaires, dites planètes océan. La diversité des conditions thermodynamiques prédite au sein de ces corps planétaires a souligné le besoin de nouvelles données de laboratoire et de calculs sur les glaces de H2O afin de pouvoir modéliser leur évolution et leur structure interne.Si les propriétés structurales et spectroscopiques des pôles purs de ces glaces sont déjà relativement bien connues, une description pétrologique plus réaliste des solutions solides et des phases riches en impureté, manque encore à la communauté. Ce travail de thèse s'est concentré sur l'étude de la fusion des glaces VI et VII dans le binaire H2O-NaCl grâce aux techniques de cellules à enclumes en diamants et la spectroscopie vibrationelle Raman. Ces données ont été complétées par des mesures du fractionnement du sel analogue RbI entre les glace VI et VII et le fluide aqueux en utilisant la cartographie de fluorescence X et de diffraction des rayons X réalisées à l'European Synchrotron Research Facility (Grenoble). Ceci as permis de mettre en évidence une inversion de densité entre le fluide riche en sel et la glace VI et de révéler une forte différence de partage du sel entre la glace VI et la glace VII avec un coefficient de partage du RbI estimé à Kd(VI-VII)=4.5(±2.7)10-2.Au sein des plus gros corps riches en H2O appelés planète océan, le manteau de glace potentiellement épais de plus de 1000 km abrite un type de glace de ultra haute pression appelé glace X. Cette phase de la glace d'eau est unique de part sa structure cristallographique ionique, contrairement aux autres glaces de plus basse pression, toutes de structure moléculaire. Cette caractéristique structurale et l'absence de données concernant ses propriétés mécaniques ont motivé l'étude de ses propriétés élastiques et plastiques. Ainsi à partir de calcul ab initio et du modèle de Peierls Nabarro, j'ai pu déterminer une forte variation de l'anisotropie élastique avec la pression, les différentes structures de cœurs des dislocations vis et coin et les systèmes de glissement préférentiels au sein de la glace X dans son champ de stabilité de 100 à 350 GPa. Nos calculs suggèrent que la déformation de la glace X est toujours localisée sur le plan {110} et que le système <110>{110} contrôle la déformation plastique en dessous de 250 GPa et que le système <100>{110} est dominant à plus haute pression. Nos résultats montrent aussi que si l'anisotropie élastique augmente rapidement avec la pression, la plasticité de la glace X devient quasi-isotrope à 350 GPa.
22

Étude interférométrique du formiate de méthyle et d’autres molécules complexes dans la nébuleuse d’Orion Kleinmann-Low

Favre, Cécile 10 December 2010 (has links)
Un peu plus de 150 molécules ont été détectées dans le milieu interstellaire et circumstellaire. Parmi elles, nous dénombrons une soixantaine de molécules complexes composées d'au moins 6 atomes. La chimie du milieu interstellaire, synthétisant des molécules plus ou moins complexes à la surface des grains ou en phase gazeuse, est très différente de celle connue sur Terre. À ce jour, seules l'observation et l'analyse de l'émission des différentes espèces moléculaires permettent de contraindre les modèles de chimie interstellaire.Au cours de cette thèse, j'ai recherché des molécules complexes au sein de la nébuleuse d'Orion Kleinmann-Low qui est la région de formation d'étoiles massives la plus proche de nous. De nombreuses étoiles de faible masse s'y forment également. Je me suis intéressée en particulier à la molécule du formiate de méthyle HCOOCH3 qui est une molécule complexe abondante et qui s'est révélée être un traceur de température et de structure de l'ensemble de la région étudiée. Grâce à des observations millimétriques de hautes résolutions spatiales et spectrales (respectivement de 7’’ à 2’’ et de 2.3 km/s à 0.4 km/s), obtenues avec l'interféromètre du Plateau de Bure de l'IRAM, j'ai réalisé une étude détaillée de l'émission cette molécule oxygénée dans la région du Compact Ridge. Notre étude montre que cette région particulière semble être chauffée par des mécanismes externes tels des chocs. De plus, nos observations en direction du Compact Ridge et de son voisinage tendent à confirmer la désorption suite à un choc du formiate de méthyle, ou d'un de ses précurseurs, formé à la surface des grains interstellaires.J'ai également recherché les deux isomères de formule [C2H4O2] du formiate de méthyle : le glycolaldéhyde et l'acide acétique. Leur étude a montré la difficulté de détecter des molécules peu abondantes dans Orion K-L en raison d'une confusion spectrale importante, mettant ainsi en évidence la nécessité d'observations de hautes résolutions aussi bien spatiale que spectrale pour la recherche de molécules comme le permettra l'interféromètre ALMA. Les limites supérieures de densité de colonne déduites de nos données pour le pré-sucre glycolaldehyde (CH2OHCHO, détecté dans SgrB2) sont très contraignantes pour les modèles de chimie. Nos résultats pourraient permettre une avancée dans la compréhension de l'origine de cette espèce moléculaire. / Over 150 different molecular species have been detected in the interstellar and circumstellar media. Among these, approximatively 60 are complex molecules and contain 6 or more atoms. The interstellar chemical processes that form more or less complex molecules, either on the surface of dust grains or in gas phase, are different from the processes we know on Earth. The only way to constrain chemical models relies on the observation and the analysis of the emission coming from various molecular species.The main goal of my PhD is to look for complex molecules in the nearest star forming region with both high and low mass stars, the Orion Kleinmann-Low nebula. I specially studied the emission of the methyl formate molecule (HCOOCH3) which appeared to be an abundant molecule and a good probe of the temperature and structure of Orion K-L.Using high spectral and spatial resolution millimetre observations (from 7’’ to 2’’ and from 2.3 km/s to 0.4 km/s, respectively) from the IRAM Plateau de Bure Interferometer, I carried out a detailed study of the emission of this O-bearing molecule towards the Compact Ridge component. Our study shows that this region seems to be heated by external mechanisms (e.g. shocks).Moreover, our observations toward the Compact Ridge region and its surroundings tend to confirm that methyl formate or a precursor seems to be formed on grain surfaces and is subsequently desorbed due to shocks.I also looked for the two isomers of methyl formate [C2H4O2] : glycolaldehyde and acetic acid. Owing to strong spectral confusion in the region, it is very difficult to detect low abundance molecules such as these two isomers. In order to lower the confusion level, higher spatial as well as spectral resolutions must be achieved which ALMA will soon allow.We derived upper limits for the column density of glycolaldehyde, a precursor of sugar (CH2OHCHO that has been detected towards SgrB2), these limits provide strong constraints for chemical models.
23

Pétrologie et rhéologie des glaces planétaires de haute pression / Petrology and rheology of high pressure planetary ices

Journaux, Baptiste 17 December 2013 (has links)
La glace de H2O est présente dans de nombreux environnements planétaires, et notamment sous forme de polymorphe de haute pression au sein des satellites de glaces ainsi que dans le manteau des planètes extrasolaires, dites planètes océan. La diversité des conditions thermodynamiques prédite au sein de ces corps planétaires a souligné le besoin de nouvelles données de laboratoire et de calculs sur les glaces de H2O afin de pouvoir modéliser leur évolution et leur structure interne.Si les propriétés structurales et spectroscopiques des pôles purs de ces glaces sont déjà relativement bien connues, une description pétrologique plus réaliste des solutions solides et des phases riches en impureté, manque encore à la communauté. Ce travail de thèse s’est concentré sur l’étude de la fusion des glaces VI et VII dans le binaire H2O-NaCl grâce aux techniques de cellules à enclumes en diamants et la spectroscopie vibrationelle Raman. Ces données ont été complétées par des mesures du fractionnement du sel analogue RbI entre les glace VI et VII et le fluide aqueux en utilisant la cartographie de fluorescence X et de diffraction des rayons X réalisées à l’European Synchrotron Research Facility (Grenoble). Ceci as permis de mettre en évidence une inversion de densité entre le fluide riche en sel et la glace VI et de révéler une forte différence de partage du sel entre la glace VI et la glace VII avec un coefficient de partage du RbI estimé à Kd(VI-VII)=4.5(±2.7)10-2.Au sein des plus gros corps riches en H2O appelés planète océan, le manteau de glace potentiellement épais de plus de 1000 km abrite un type de glace de ultra haute pression appelé glace X. Cette phase de la glace d’eau est unique de part sa structure cristallographique ionique, contrairement aux autres glaces de plus basse pression, toutes de structure moléculaire. Cette caractéristique structurale et l’absence de données concernant ses propriétés mécaniques ont motivé l’étude de ses propriétés élastiques et plastiques. Ainsi à partir de calcul ab initio et du modèle de Peierls Nabarro, j’ai pu déterminer une forte variation de l’anisotropie élastique avec la pression, les différentes structures de cœurs des dislocations vis et coin et les systèmes de glissement préférentiels au sein de la glace X dans son champ de stabilité de 100 à 350 GPa. Nos calculs suggèrent que la déformation de la glace X est toujours localisée sur le plan {110} et que le système <110>{110} contrôle la déformation plastique en dessous de 250 GPa et que le système <100>{110} est dominant à plus haute pression. Nos résultats montrent aussi que si l’anisotropie élastique augmente rapidement avec la pression, la plasticité de la glace X devient quasi-isotrope à 350 GPa. / H2O ice is found in a variety of planetary environments, notably in the form of high pressure polymorphs inside icy moons and extrasolar ocean planets. The great diversity of thermodynamic conditions predicted inside such planetary bodies, reveals the need for new experimental and computational data to allow modeling of their internal structure and dynamics.Structural and spectral properties of H2O pure ices have been intensively studied, but surprisingly there is a lack of petrological data on impurities rich ice solid solutions. This Ph.D. thesis work focused on the study of ice VI and ice VII fusion curves in the H2O-NaCl binary, using diamond anvil cell and Raman spectroscopy. We later determined the partitioning of the NaCl analog salt, RbI, between ice VI and VII and the aqueous fluid using X- ray fluorescence and X-ray diffraction techniques at the European Synchrotron Research Facility (Grenoble). Our results enable us to observe a density inversion between ice VI and the salty fluid, and to measure a strong difference in salt partitioning between ice VI and ice VII with a partition coefficient of Kd(VI-VII)=4.5(±2.7)10-2. Inside the largest H2O rich planetary bodies, called ocean planets, the icy mantle, putatively more than 1000 km thick, shelters an ultra high pressure ice form called ice X. This H2O ice phase is unique because of its ionic crystallographic structure, in contrast with lower pressure ices polymorphs, all being molecular solids. This characteristic coupled with the fact that no data are available yet on its mechanical properties, encouraged us to study its elastic and plastic properties. Using ab initio calculations and the Peierls Nabarro model, I showed the strong variation of elastic anisotropy with increasing pressure and determined the dominant slip system inside the structure of ice X over its entire pressure stability range from 100 to 350 GPa. Our calculations suggest that plasticity in ice X is dominated by displacement always occurring on the {110} glide plane. Also, it reveals that the <110>{110} glide system is dominant below 250 GPa and that the <100>{110} slip system controls the plasticity of ice X. Our results also show that, if elastic anisotropy of ice X is strongly increasing with increasing pressure, the plasticity becomes almost isotropic at 350 GPa.

Page generated in 0.0583 seconds