• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 4
  • 3
  • 1
  • Tagged with
  • 127
  • 79
  • 72
  • 60
  • 58
  • 55
  • 54
  • 41
  • 40
  • 40
  • 30
  • 29
  • 25
  • 24
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Explainable Artificial Intelligence for Radio Resource Management Systems : A diverse feature importance approach / Förklarande Artificiell Intelligens inom System för Hantering av Radioresurser : Metoder för klassifisering av betydande predikatorer

Marcu, Alexandru-Daniel January 2022 (has links)
The field of wireless communications is arguably one of the most rapidly developing technological fields. Therefore, with each new advancement in this field, the complexity of wireless systems can grow significantly. This phenomenon is most visible in mobile communications, where the current 5G and 6G radio access networks (RANs) have reached unprecedented complexity levels to satisfy diverse increasing demands. In such increasingly complex environments, managing resources is becoming more and more challenging. Thus, experts employed performant artificial intelligence (AI) techniques to aid radio resource management (RRM) decisions. However, these AI techniques are often difficult to understand by humans, and may receive unimportant inputs which unnecessarily increase their complexity. In this work, we propose an explainability pipeline meant to be used for increasing humans’ understanding of AI models for RRM, as well as for reducing the complexity of these models, without loss of performance. To achieve this, the pipeline generates diverse feature importance explanations of the models with the help of three explainable artificial intelligence (XAI) methods: Kernel SHAP, CERTIFAI, and Anchors, and performs an importance-based feature selection using one of three different strategies. In the case of Anchors, we formulate and utilize a new way of computing feature importance scores, since no current publication in the XAI literature suggests a way to do this. Finally, we applied the proposed pipeline to a reinforcement learning (RL)- based RRM system. Our results show that we could reduce the complexity of the RL model between ∼ 27.5% and ∼ 62.5% according to different metrics, without loss of performance. Moreover, we showed that the explanations produced by our pipeline can be used to answer some of the most common XAI questions about our RL model, thus increasing its understandability. Lastly, we achieved an unprecedented result showing that our RL agent could be completely replaced with Anchors rules when taking RRM decisions, without a significant loss of performance, but with a considerable gain in understandability. / Området trådlös kommunikation är ett av de snabbast utvecklande tekniska områdena, och varje framsteg riskerar att medföra en signifikant ökning av komplexiteten för trådlösa nätverk. Det här fenomenet är som tydligast i mobil kommunikaiton, framför allt inom 5G och 6G radioaccessnätvärk (RANs) som har nåt nivåer av komplexitet som saknar motstycke. Detta för att uppfylla de ökande kraven som ställs på systemet. I dessa komplexa system blir resurshantering ett ökande problem, därför används nu artificiell intelligens (AI) allt mer för att ta beslut om hantering av radioresurser (RRM). Dessa AI tekniker är dock ofta svåra att förstå för människor, och kan således ges oviktig input vilket leder till att öka AI modellernas komplexitet. I detta arbete föreslås en förklarande pipeline vars mål är att användas för att öka människors förståelse av AI modeller för RRM. Målet är även att minska modellernas komplexitet, utan att förlora prestanda. För att åstadkomma detta genererar pipelinen förklaringar av betydande predikatorer för modellen med hjälp av tre metoder för förklarande artificiell intelligens (XAI). Dessa tre metoder är, Kernel SHAP, CERTIFAI och Anchors. Sedan görs ett predikatorurval baserat på predikatorbetydelse med en av dessa tre metoder. För metoden Anchors formuleras ett nytt sätt att beräkna betydelsen hos predikatorer, eftersom tidigare forskning inte föreslår någon metod för detta. Slutligen appliceras den föreslagna pipelinen på en förstärkt inlärnings- (RL) baserat RRM system. Resultaten visar att komplexiteten av RL modellen kunde reduceras med mellan ∼ 27, 5% och ∼ 62, 5% baserat på olika nyckeltal:er, utan att förlora någon prestanda. Utöver detta visades även att förklaringarna som producerats kan användas för att svara på de vanligaste XAI frågoran om RL modellen, och på det viset har även förståelsen för modellen ökat. Sistnämnt uppnåddes enastående resultat som visade att RL modellen helt kunde ersättas med regler producerade av Anchor-metoden för beslut inom RRM, utan någon störra förlust av prestanda, men med an stor vinst i förståelse.
122

Explainable Reinforcement Learning for Gameplay

Costa Sánchez, Àlex January 2022 (has links)
State-of-the-art Machine Learning (ML) algorithms show impressive results for a myriad of applications. However, they operate as a sort of a black box: the decisions taken are not human-understandable. There is a need for transparency and interpretability of ML predictions to be wider accepted in society, especially in specific fields such as medicine or finance. Most of the efforts so far have focused on explaining supervised learning. This project aims to use some of these successful explainability algorithms and apply them to Reinforcement Learning (RL). To do so, we explain the actions of a RL agent playing Atari’s Breakout game, using two different explainability algorithms: Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). We successfully implement both algorithms, which yield credible and insightful explanations of the mechanics of the agent. However, we think the final presentation of the results is sub-optimal for the final user, as it is not intuitive at first sight. / De senaste algoritmerna för maskininlärning (ML) visar imponerande resultat för en mängd olika tillämpningar. De fungerar dock som ett slags ”svart låda”: de beslut som fattas är inte begripliga för människor. Det finns ett behov av öppenhet och tolkningsbarhet för ML-prognoser för att de ska bli mer accepterade i samhället, särskilt inom specifika områden som medicin och ekonomi. De flesta insatser hittills har fokuserat på att förklara övervakad inlärning. Syftet med detta projekt är att använda några av dessa framgångsrika algoritmer för att förklara och tillämpa dem på förstärkning lärande (Reinforcement Learning, RL). För att göra detta förklarar vi handlingarna hos en RL-agent som spelar Ataris Breakout-spel med hjälp av två olika förklaringsalgoritmer: Shapley Additive Explanations (SHAP) och Local Interpretable Model-agnostic Explanations (LIME). Vi genomför framgångsrikt båda algoritmerna, som ger trovärdiga och insiktsfulla förklaringar av agentens mekanik. Vi anser dock att den slutliga presentationen av resultaten inte är optimal för slutanvändaren, eftersom den inte är intuitiv vid första anblicken. / Els algoritmes d’aprenentatge automàtic (Machine Learning, ML) d’última generació mostren resultats impressionants per a moltes aplicacions. Tot i això, funcionen com una mena de caixa negra: les decisions preses no són comprensibles per a l’ésser humà. Per tal que les prediccion preses mitjançant ML siguin més acceptades a la societat, especialment en camps específics com la medicina o les finances, cal transparència i interpretabilitat. La majoria dels esforços que s’han fet fins ara s’han centrat a explicar l’aprenentatge supervisat (supervised learning). Aquest projecte pretén utilitzar alguns d’aquests existosos algoritmes d’explicabilitat i aplicar-los a l’aprenentatge per reforç (Reinforcement Learning, RL). Per fer-ho, expliquem les accions d’un agent de RL que juga al joc Breakout d’Atari utilitzant dos algoritmes diferents: explicacions additives de Shapley (SHAP) i explicacions model-agnòstiques localment interpretables (LIME). Hem implementat amb èxit tots dos algoritmes, que produeixen explicacions creïbles i interessants de la mecànica de l’agent. Tanmateix, creiem que la presentació final dels resultats no és òptima per a l’usuari final, ja que no és intuïtiva a primera vista.
123

Explaining Neural Networks used for PIM Cancellation / Förklarandet av Neurala Nätverk menade för PIM-elimination

Diffner, Fredrik January 2022 (has links)
Passive Intermodulation is a type of distortion affecting the sensitive receiving signals in a cellular network, which is a growing problem in the telecommunication field. One way to mitigate this problem is through Passive Intermodulation Cancellation, where the predicted noise in a signal is modeled with polynomials. Recent experiments using neural networks instead of polynomials to model this noise have shown promising results. However, one drawback with neural networks is their lack of explainability. In this work, we identify a suitable method that provides explanations for this use case. We apply this technique to explain the neural networks used for Passive Intermodulation Cancellation and discuss the result with domain expertise. We show that the input space as well as the architecture could be altered, and propose an alternative architecture for the neural network used for Passive Intermodulation Cancellation. This alternative architecture leads to a significant reduction in trainable parameters, a finding which is valuable in a cellular network where resources are heavily constrained. When performing an explainability analysis of the alternative model, the explanations are also more in line with domain expertise. / Passiv Intermodulation är en typ av störning som påverkar de känsliga mottagarsignalerna i ett mobilnät. Detta är ett växande problem inom telekommunikation. Ett tillvägagångssätt för att motverka detta problem är genom passiv intermodulations-annullering, där störningarna modelleras med hjälp av polynomiska funktioner. Nyligen har experiment där neurala nätverk används istället för polynomiska funktioner för att modellera dessa störningar påvisat intressanta resultat. Användandet av neurala nätverk är dock förenat med vissa nackdelar, varav en är svårigheten att tyda och tolka utfall av neurala nätverk. I detta projekt identifieras en passande metod för att erbjuda förklaringar av neurala nätverk tränade för passiv intermodulations-annullering. Vi applicerar denna metod på nämnda neurala nätverk och utvärderar resultatet tillsammans med domänexpertis. Vi visar att formatet på indatan till neurala nätverket kan manipuleras, samt föreslår en alternativ arkitektur för neurala nätverk tränade för passiv intermodulations-annullering. Denna alternativa arkitektur innebär en avsevärd reduktion av antalet träningsbara parametrar, vilket är ett värdefullt resultat i samband med mobilnät där det finns kraftiga begränsningar på hårdvaruresurser. När vi applicerar metoder för att förklara utfall av denna alternativa arkitektur finner vi även att förklaringarna bättre motsvarar förväntningarna från domänexpertis.
124

Computationally Efficient Explainable AI: Bayesian Optimization for Computing Multiple Counterfactual Explanantions / Beräkningsmässigt Effektiv Förklarbar AI: Bayesiansk Optimering för Beräkning av Flera Motfaktiska Förklaringar

Sacchi, Giorgio January 2023 (has links)
In recent years, advanced machine learning (ML) models have revolutionized industries ranging from the healthcare sector to retail and E-commerce. However, these models have become increasingly complex, making it difficult for even domain experts to understand and retrace the model's decision-making process. To address this challenge, several frameworks for explainable AI have been proposed and developed. This thesis focuses on counterfactual explanations (CFEs), which provide actionable insights by informing users how to modify inputs to achieve desired outputs. However, computing CFEs for a general black-box ML model is computationally expensive since it hinges on solving a challenging optimization problem. To efficiently solve this optimization problem, we propose using Bayesian optimization (BO), and introduce the novel algorithm Separated Bayesian Optimization (SBO). SBO exploits the formulation of the counterfactual function as a composite function. Additionally, we propose warm-starting SBO, which addresses the computational challenges associated with computing multiple CFEs. By decoupling the generation of a surrogate model for the black-box model and the computation of specific CFEs, warm-starting SBO allows us to reuse previous data and computations, resulting in computational discounts and improved efficiency for large-scale applications. Through numerical experiments, we demonstrate that BO is a viable optimization scheme for computing CFEs for black-box ML models. BO achieves computational efficiency while maintaining good accuracy. SBO improves upon this by requiring fewer evaluations while achieving accuracies comparable to the best conventional optimizer tested. Both BO and SBO exhibit improved capabilities in handling various classes of ML decision models compared to the tested baseline optimizers. Finally, Warm-starting SBO significantly enhances the performance of SBO, reducing function evaluations and errors when computing multiple sequential CFEs. The results indicate a strong potential for large-scale industry applications. / Avancerade maskininlärningsmodeller (ML-modeller) har på senaste åren haft stora framgångar inom flera delar av näringslivet, med allt ifrån hälso- och sjukvårdssektorn till detaljhandel och e-handel. I jämn takt med denna utveckling har det dock även kommit en ökad komplexitet av dessa ML-modeller vilket nu lett till att även domänexperter har svårigheter med att förstå och tolka modellernas beslutsprocesser. För att bemöta detta problem har flertalet förklarbar AI ramverk utvecklats. Denna avhandling fokuserar på kontrafaktuella förklaringar (CFEs). Detta är en förklaringstyp som anger för användaren hur denne bör modifiera sin indata för att uppnå ett visst modellbeslut. För en generell svarta-låda ML-modell är dock beräkningsmässigt kostsamt att beräkna CFEs då det krävs att man löser ett utmanande optimeringsproblem. För att lösa optimeringsproblemet föreslår vi användningen av Bayesiansk Optimering (BO), samt presenterar den nya algoritmen Separated Bayesian Optimization (SBO). SBO utnyttjar kompositionsformuleringen av den kontrafaktuella funktionen. Vidare, utforskar vi beräkningen av flera sekventiella CFEs för vilket vi presenterar varm-startad SBO. Varm-startad SBO lyckas återanvända data samt beräkningar från tidigare CFEs tack vare en separation av surrogat-modellen för svarta-låda ML-modellen och beräkningen av enskilda CFEs. Denna egenskap leder till en minskad beräkningskostnad samt ökad effektivitet för storskaliga tillämpningar.  I de genomförda experimenten visar vi att BO är en lämplig optimeringsmetod för att beräkna CFEs för svarta-låda ML-modeller tack vare en god beräknings effektivitet kombinerat med hög noggrannhet. SBO presterade ännu bättre med i snitt färre funktionsutvärderingar och med fel nivåer jämförbara med den bästa testade konventionella optimeringsmetoden. Både BO och SBO visade på bättre kapacitet att hantera olika klasser av ML-modeller än de andra testade metoderna. Slutligen observerade vi att varm-startad SBO gav ytterligare prestandaökningar med både minskade funktionsutvärderingar och fel när flera CFEs beräknades. Dessa resultat pekar på stor potential för storskaliga tillämpningar inom näringslivet.
125

DS-Fake : a data stream mining approach for fake news detection

Mputu Boleilanga, Henri-Cedric 08 1900 (has links)
L’avènement d’internet suivi des réseaux sociaux a permis un accès facile et une diffusion rapide de l’information par toute personne disposant d’une connexion internet. L’une des conséquences néfastes de cela est la propagation de fausses informations appelées «fake news». Les fake news représentent aujourd’hui un enjeu majeur au regard de ces conséquences. De nombreuses personnes affirment encore aujourd’hui que sans la diffusion massive de fake news sur Hillary Clinton lors de la campagne présidentielle de 2016, Donald Trump n’aurait peut-être pas été le vainqueur de cette élection. Le sujet de ce mémoire concerne donc la détection automatique des fake news. De nos jours, il existe un grand nombre de travaux à ce sujet. La majorité des approches présentées se basent soit sur l’exploitation du contenu du texte d’entrée, soit sur le contexte social du texte ou encore sur un mélange entre ces deux types d’approches. Néanmoins, il existe très peu d’outils ou de systèmes efficaces qui détecte une fausse information dans la vie réelle, tout en incluant l’évolution de l’information au cours du temps. De plus, il y a un manque criant de systèmes conçues dans le but d’aider les utilisateurs des réseaux sociaux à adopter un comportement qui leur permettrait de détecter les fausses nouvelles. Afin d’atténuer ce problème, nous proposons un système appelé DS-Fake. À notre connaissance, ce système est le premier à inclure l’exploration de flux de données. Un flux de données est une séquence infinie et dénombrable d’éléments et est utilisée pour représenter des données rendues disponibles au fil du temps. DS-Fake explore à la fois l’entrée et le contenu d’un flux de données. L’entrée est une publication sur Twitter donnée au système afin qu’il puisse déterminer si le tweet est digne de confiance. Le flux de données est extrait à l’aide de techniques d’extraction du contenu de sites Web. Le contenu reçu par ce flux est lié à l’entrée en termes de sujets ou d’entités nommées mentionnées dans le texte d’entrée. DS-Fake aide également les utilisateurs à développer de bons réflexes face à toute information qui se propage sur les réseaux sociaux. DS-Fake attribue un score de crédibilité aux utilisateurs des réseaux sociaux. Ce score décrit la probabilité qu’un utilisateur puisse publier de fausses informations. La plupart des systèmes utilisent des caractéristiques comme le nombre de followers, la localisation, l’emploi, etc. Seuls quelques systèmes utilisent l’historique des publications précédentes d’un utilisateur afin d’attribuer un score. Pour déterminer ce score, la majorité des systèmes utilisent la moyenne. DS-Fake renvoie un pourcentage de confiance qui détermine la probabilité que l’entrée soit fiable. Contrairement au petit nombre de systèmes qui utilisent l’historique des publications en ne prenant pas en compte que les tweets précédents d’un utilisateur, DS-Fake calcule le score de crédibilité sur la base des tweets précédents de tous les utilisateurs. Nous avons renommé le score de crédibilité par score de légitimité. Ce dernier est basé sur la technique de la moyenne Bayésienne. Cette façon de calculer le score permet d’atténuer l’impact des résultats des publications précédentes en fonction du nombre de publications dans l’historique. Un utilisateur donné ayant un plus grand nombre de tweets dans son historique qu’un autre utilisateur, même si les tweets des deux sont tous vrais, le premier utilisateur est plus crédible que le second. Son score de légitimité sera donc plus élevé. À notre connaissance, ce travail est le premier qui utilise la moyenne Bayésienne basée sur l’historique de tweets de toutes les sources pour attribuer un score à chaque source. De plus, les modules de DS-Fake ont la capacité d’encapsuler le résultat de deux tâches, à savoir la similarité de texte et l’inférence en langage naturel hl(en anglais Natural Language Inference). Ce type de modèle qui combine ces deux tâches de TAL est également nouveau pour la problématique de la détection des fake news. DS-Fake surpasse en termes de performance toutes les approches de l’état de l’art qui ont utilisé FakeNewsNet et qui se sont basées sur diverses métriques. Il y a très peu d’ensembles de données complets avec une variété d’attributs, ce qui constitue un des défis de la recherche sur les fausses nouvelles. Shu et al. ont introduit en 2018 l’ensemble de données FakeNewsNet pour résoudre ce problème. Le score de légitimité et les tweets récupérés ajoutent des attributs à l’ensemble de données FakeNewsNet. / The advent of the internet, followed by online social networks, has allowed easy access and rapid propagation of information by anyone with an internet connection. One of the harmful consequences of this is the spread of false information, which is well-known by the term "fake news". Fake news represent a major challenge due to their consequences. Some people still affirm that without the massive spread of fake news about Hillary Clinton during the 2016 presidential campaign, Donald Trump would not have been the winner of the 2016 United States presidential election. The subject of this thesis concerns the automatic detection of fake news. Nowadays, there is a lot of research on this subject. The vast majority of the approaches presented in these works are based either on the exploitation of the input text content or the social context of the text or even on a mixture of these two types of approaches. Nevertheless, there are only a few practical tools or systems that detect false information in real life, and that includes the evolution of information over time. Moreover, no system yet offers an explanation to help social network users adopt a behaviour that will allow them to detect fake news. In order to mitigate this problem, we propose a system called DS-Fake. To the best of our knowledge, this system is the first to include data stream mining. A data stream is a sequence of elements used to represent data elements over time. This system explores both the input and the contents of a data stream. The input is a post on Twitter given to the system that determines if the tweet can be trusted. The data stream is extracted using web scraping techniques. The content received by this flow is related to the input in terms of topics or named entities mentioned in the input text. This system also helps users develop good reflexes when faced with any information that spreads on social networks. DS-Fake assigns a credibility score to users of social networks. This score describes how likely a user can publish false information. Most of the systems use features like the number of followers, the localization, the job title, etc. Only a few systems use the history of a user’s previous publications to assign a score. To determine this score, most systems use the average. DS-Fake returns a percentage of confidence that determines how likely the input is reliable. Unlike the small number of systems that use the publication history by taking into account only the previous tweets of a user, DS-Fake calculates the credibility score based on the previous tweets of all users. We renamed the credibility score legitimacy score. The latter is based on the Bayesian averaging technique. This way of calculating the score allows attenuating the impact of the results from previous posts according to the number of posts in the history. A user who has more tweets in his history than another user, even if the tweets of both are all true, the first user is more credible than the second. His legitimacy score will therefore be higher. To our knowledge, this work is the first that uses the Bayesian average based on the post history of all sources to assign a score to each source. DS-Fake modules have the ability to encapsulate the output of two tasks, namely text similarity and natural language inference. This type of model that combines these two NLP tasks is also new for the problem of fake news detection. There are very few complete datasets with a variety of attributes, which is one of the challenges of fake news research. Shu et al. introduce in 2018 the FakeNewsNet dataset to tackle this issue. Our work uses and enriches this dataset. The legitimacy score and the retrieved tweets from named entities mentioned in the input texts add features to the FakeNewsNet dataset. DS-Fake outperforms all state-of-the-art approaches that have used FakeNewsNet and that are based on various metrics.
126

FACTS-ON : Fighting Against Counterfeit Truths in Online social Networks : fake news, misinformation and disinformation

Amri, Sabrine 03 1900 (has links)
L'évolution rapide des réseaux sociaux en ligne (RSO) représente un défi significatif dans l'identification et l'atténuation des fausses informations, incluant les fausses nouvelles, la désinformation et la mésinformation. Cette complexité est amplifiée dans les environnements numériques où les informations sont rapidement diffusées, nécessitant des stratégies sophistiquées pour différencier le contenu authentique du faux. L'un des principaux défis dans la détection automatique de fausses informations est leur présentation réaliste, ressemblant souvent de près aux faits vérifiables. Cela pose de considérables défis aux systèmes d'intelligence artificielle (IA), nécessitant des données supplémentaires de sources externes, telles que des vérifications par des tiers, pour discerner efficacement la vérité. Par conséquent, il y a une évolution technologique continue pour contrer la sophistication croissante des fausses informations, mettant au défi et avançant les capacités de l'IA. En réponse à ces défis, ma thèse introduit le cadre FACTS-ON (Fighting Against Counterfeit Truths in Online Social Networks), une approche complète et systématique pour combattre la désinformation dans les RSO. FACTS-ON intègre une série de systèmes avancés, chacun s'appuyant sur les capacités de son prédécesseur pour améliorer la stratégie globale de détection et d'atténuation des fausses informations. Je commence par présenter le cadre FACTS-ON, qui pose les fondements de ma solution, puis je détaille chaque système au sein du cadre : EXMULF (Explainable Multimodal Content-based Fake News Detection) se concentre sur l'analyse du texte et des images dans les contenus en ligne en utilisant des techniques multimodales avancées, couplées à une IA explicable pour fournir des évaluations transparentes et compréhensibles des fausses informations. En s'appuyant sur les bases d'EXMULF, MythXpose (Multimodal Content and Social Context-based System for Explainable False Information Detection with Personality Prediction) ajoute une couche d'analyse du contexte social en prédisant les traits de personnalité des utilisateurs des RSO, améliorant la détection et les stratégies d'intervention précoce contre la désinformation. ExFake (Explainable False Information Detection Based on Content, Context, and External Evidence) élargit encore le cadre, combinant l'analyse de contenu avec des insights du contexte social et des preuves externes. Il tire parti des données d'organisations de vérification des faits réputées et de comptes officiels, garantissant une approche plus complète et fiable de la détection de la désinformation. La méthodologie sophistiquée d'ExFake évalue non seulement le contenu des publications en ligne, mais prend également en compte le contexte plus large et corrobore les informations avec des sources externes crédibles, offrant ainsi une solution bien arrondie et robuste pour combattre les fausses informations dans les réseaux sociaux en ligne. Complétant le cadre, AFCC (Automated Fact-checkers Consensus and Credibility) traite l'hétérogénéité des évaluations des différentes organisations de vérification des faits. Il standardise ces évaluations et évalue la crédibilité des sources, fournissant une évaluation unifiée et fiable de l'information. Chaque système au sein du cadre FACTS-ON est rigoureusement évalué pour démontrer son efficacité dans la lutte contre la désinformation sur les RSO. Cette thèse détaille le développement, la mise en œuvre et l'évaluation complète de ces systèmes, soulignant leur contribution collective au domaine de la détection des fausses informations. La recherche ne met pas seulement en évidence les capacités actuelles dans la lutte contre la désinformation, mais prépare également le terrain pour de futures avancées dans ce domaine critique d'étude. / The rapid evolution of online social networks (OSN) presents a significant challenge in identifying and mitigating false information, which includes Fake News, Disinformation, and Misinformation. This complexity is amplified in digital environments where information is quickly disseminated, requiring sophisticated strategies to differentiate between genuine and false content. One of the primary challenges in automatically detecting false information is its realistic presentation, often closely resembling verifiable facts. This poses considerable challenges for artificial intelligence (AI) systems, necessitating additional data from external sources, such as third-party verifications, to effectively discern the truth. Consequently, there is a continuous technological evolution to counter the growing sophistication of false information, challenging and advancing the capabilities of AI. In response to these challenges, my dissertation introduces the FACTS-ON framework (Fighting Against Counterfeit Truths in Online Social Networks), a comprehensive and systematic approach to combat false information in OSNs. FACTS-ON integrates a series of advanced systems, each building upon the capabilities of its predecessor to enhance the overall strategy for detecting and mitigating false information. I begin by introducing the FACTS-ON framework, which sets the foundation for my solution, and then detail each system within the framework: EXMULF (Explainable Multimodal Content-based Fake News Detection) focuses on analyzing both text and image in online content using advanced multimodal techniques, coupled with explainable AI to provide transparent and understandable assessments of false information. Building upon EXMULF’s foundation, MythXpose (Multimodal Content and Social Context-based System for Explainable False Information Detection with Personality Prediction) adds a layer of social context analysis by predicting the personality traits of OSN users, enhancing the detection and early intervention strategies against false information. ExFake (Explainable False Information Detection Based on Content, Context, and External Evidence) further expands the framework, combining content analysis with insights from social context and external evidence. It leverages data from reputable fact-checking organizations and official social accounts, ensuring a more comprehensive and reliable approach to the detection of false information. ExFake's sophisticated methodology not only evaluates the content of online posts but also considers the broader context and corroborates information with external, credible sources, thereby offering a well-rounded and robust solution for combating false information in online social networks. Completing the framework, AFCC (Automated Fact-checkers Consensus and Credibility) addresses the heterogeneity of ratings from various fact-checking organizations. It standardizes these ratings and assesses the credibility of the sources, providing a unified and trustworthy assessment of information. Each system within the FACTS-ON framework is rigorously evaluated to demonstrate its effectiveness in combating false information on OSN. This dissertation details the development, implementation, and comprehensive evaluation of these systems, highlighting their collective contribution to the field of false information detection. The research not only showcases the current capabilities in addressing false information but also sets the stage for future advancements in this critical area of study.
127

ANALYSIS OF LATENT SPACE REPRESENTATIONS FOR OBJECT DETECTION

Ashley S Dale (8771429) 03 September 2024 (has links)
<p dir="ltr">Deep Neural Networks (DNNs) successfully perform object detection tasks, and the Con- volutional Neural Network (CNN) backbone is a commonly used feature extractor before secondary tasks such as detection, classification, or segmentation. In a DNN model, the relationship between the features learned by the model from the training data and the features leveraged by the model during test and deployment has motivated the area of feature interpretability studies. The work presented here applies equally to white-box and black-box models and to any DNN architecture. The metrics developed do not require any information beyond the feature vector generated by the feature extraction backbone. These methods are therefore the first methods capable of estimating black-box model robustness in terms of latent space complexity and the first methods capable of examining feature representations in the latent space of black box models.</p><p dir="ltr">This work contributes the following four novel methodologies and results. First, a method for quantifying the invariance and/or equivariance of a model using the training data shows that the representation of a feature in the model impacts model performance. Second, a method for quantifying an observed domain gap in a dataset using the latent feature vectors of an object detection model is paired with pixel-level augmentation techniques to close the gap between real and synthetic data. This results in an improvement in the model’s F1 score on a test set of outliers from 0.5 to 0.9. Third, a method for visualizing and quantifying similarities of the latent manifolds of two black-box models is used to correlate similar feature representation with increase success in the transferability of gradient-based attacks. Finally, a method for examining the global complexity of decision boundaries in black-box models is presented, where more complex decision boundaries are shown to correlate with increased model robustness to gradient-based and random attacks.</p>

Page generated in 0.0543 seconds