• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 4
  • 3
  • 1
  • Tagged with
  • 122
  • 74
  • 70
  • 58
  • 55
  • 53
  • 52
  • 41
  • 40
  • 39
  • 29
  • 29
  • 24
  • 24
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Leveraging Explainable Machine Learning to Raise Awareness among Preadolescents about Gender Bias in Supervised Learning / Användning av förklarningsbar maskininlärning för att öka medvetenhet bland ungdomar om könsbias i övervakad inlärning

Melsion Perez, Gaspar Isaac January 2020 (has links)
Machine learning systems have become ubiquitous into our society. This has raised concerns about the potential discrimination that these systems might exert due to unconscious bias present in the data, for example regarding gender and race. Whilst this issue has been proposed as an essential subject to be included in the new AI curricula for schools, research has shown that it is a difficult topic to grasp by students. This thesis aims to develop an educational platform tailored to raise the awareness of the societal implications of gender bias in supervised learning. It assesses whether using an explainable model has a positive effect in teaching the impacts of gender bias to preadolescents from 10 to 13 years old. A study was carried out at a school in Stockholm employing an online platform with a classifier incorporating Grad-CAM as the explainability technique that enables it to visually explain its own predictions. The students were divided into two groups differentiated by the use of the explainable model or not. Analysis of the answers demonstrates that preadolescents significantly improve their understanding of the concept of bias in terms of gender discrimination when they interact with the explainable model, highlighting its suitability for educational programs. / Maskininlärningssystemen har blivit allmänt förekommande i vårt samhälle, vilket har lett till oro över den potentiella diskriminering som dessa system kan utöva när det gäller kön och ras. Detta med orsak av det bias som finns i datan. Även om detta problem har föreslagits som ett viktigt ämne som ska ingå i de nya AI-läroplanerna för skolor, har forskning visat att det är ett svårt ämne att förstå för studenter. Detta examensarbete syftar till att utveckla en utbildningsplattform för att öka medvetenhet om de samhälleliga konsekvenserna av könsbias inom övervakad maskinlärning. Det utvärderar huruvida användning av en förklaringsbar modell har en positiv effekt vid inlärning hos ungdomar mellan 10 och 13 år när det kommer till konsekvenserna av könsbias. En studie genomfördes på en skola i Stockholm med hjälp av en onlineplattform som använder en klassificeringsalgoritm med Grad-CAM förklaringsbar teknik som gör det möjligt för den att visuellt förklara sina egna förutsägelser. Eleverna delades in i två grupper som åtskiljdes genom att den ena gruppen använde den förklarbara modellen medan den andra inte gjorde det. Analysen av svaren visar att ungdomar markant förbättrar sin förståelse av könsdiskrimineringsbias när de interagerar med den förklarbara modellen, vilket lyfter fram dess lämplighet för användning inom utbildningsprogram.
112

[en] A CRITICAL VIEW ON THE INTERPRETABILITY OF MACHINE LEARNING MODELS / [pt] UMA VISÃO CRÍTICA SOBRE A INTERPRETABILIDADE DE MODELOS DE APRENDIZADO DE MÁQUINA

JORGE LUIZ CATALDO FALBO SANTO 29 July 2019 (has links)
[pt] À medida que os modelos de aprendizado de máquina penetram áreas críticas como medicina, sistema de justiça criminal e mercados financeiros, sua opacidade, que impede que as pessoas interpretem a maioria deles, se tornou um problema a ser resolvido. Neste trabalho, apresentamos uma nova taxonomia para classificar qualquer método, abordagem ou estratégia para lidar com o problema da interpretabilidade de modelos de aprendizado de máquina. A taxonomia proposta que preenche uma lacuna existente nas estruturas de taxonomia atuais em relação à percepção subjetiva de diferentes intérpretes sobre um mesmo modelo. Para avaliar a taxonomia proposta, classificamos as contribuições de artigos científicos relevantes da área. / [en] As machine learning models penetrate critical areas like medicine, the criminal justice system, and financial markets, their opacity, which hampers humans ability to interpret most of them, has become a problem to be solved. In this work, we present a new taxonomy to classify any method, approach or strategy to deal with the problem of interpretability of machine learning models. The proposed taxonomy fills a gap in the current taxonomy frameworks regarding the subjective perception of different interpreters about the same model. To evaluate the proposed taxonomy, we have classified the contributions of some relevant scientific articles in the area.
113

Artificial Drivers for Online Time-Optimal Vehicle Trajectory Planning and Control

Piccinini, Mattia 12 April 2024 (has links)
Recent advancements in time-optimal trajectory planning, control, and state estimation for autonomous vehicles have paved the way for the emerging field of autonomous racing. In the last 5-10 years, this form of racing has become a popular and challenging testbed for autonomous driving algorithms, aiming to enhance the safety and performance of future intelligent vehicles. In autonomous racing, the main goal is to develop real-time algorithms capable of autonomously maneuvering a vehicle around a racetrack, even in the presence of moving opponents. However, as a vehicle approaches its handling limits, several challenges arise for online trajectory planning and control. The vehicle dynamics become nonlinear and hard to capture with low-complexity models, while fast re-planning and good generalization capabilities are crucial to execute optimal maneuvers in unforeseen scenarios. These challenges leave several open research questions, three of which will be addressed in this thesis. The first explores developing accurate yet computationally efficient vehicle models for online time-optimal trajectory planning. The second focuses on enhancing learning-based methods for trajectory planning, control, and state estimation, overcoming issues like poor generalization and the need for large amounts of training data. The third investigates the optimality of online-executed trajectories with simplified vehicle models, compared to offline solutions of minimum-lap-time optimal control problems using high-fidelity vehicle models. This thesis consists of four parts, each of which addresses one or more of the aforementioned research questions, in the fields of time-optimal vehicle trajectory planning, control and state estimation. The first part of the thesis presents a novel artificial race driver (ARD), which autonomously learns to drive a vehicle around an obstacle-free circuit, performing online time-optimal vehicle trajectory planning and control. The following research questions are addressed in this part: How optimal is the trajectory executed online by an artificial agent that drives a high-fidelity vehicle model, in comparison with a minimum-lap-time optimal control problem (MLT-OCP), based on the same vehicle model and solved offline? Can the artificial agent generalize to circuits and conditions not seen during training? ARD employs an original neural network with a physics-driven internal structure (PhS-NN) for steering control, and a novel kineto-dynamical vehicle model for time-optimal trajectory planning. A new learning scheme enables ARD to progressively learn the nonlinear dynamics of an unknown vehicle. When tested on a high-fidelity model of a high-performance car, ARD achieves very similar results as an MLT-OCP, based on the same vehicle model and solved offline. When tested on a 1:8 vehicle prototype, ARD achieves similar lap times as an offline optimization problem. Thanks to its physics-driven architecture, ARD generalizes well to unseen circuits and scenarios, and is robust to unmodeled changes in the vehicle’s mass. The second part of the thesis deals with online time-optimal trajectory planning for dynamic obstacle avoidance. The research questions addressed in this part are: Can time-optimal trajectory planning for dynamic obstacle avoidance be performed online and with low computational times? How optimal is the resulting trajectory? Can the planner generalize to unseen circuits and scenarios? At each planning step, the proposed approach builds a tree of time-optimal motion primitives, by performing a sampling-based exploration in a local mesh of waypoints. The novel planner is validated in challenging scenarios with multiple dynamic opponents, and is shown to be computationally efficient, to return near-time-optimal trajectories, and to generalize well to new circuits and scenarios. The third part of the thesis shows an application of time-optimal trajectory planning with optimal control and PhS-NNs in the context of autonomous parking. The research questions addressed in this part are: Can an autonomous parking framework perform fast online trajectory planning and tracking in real-life parking scenarios, such as parallel, reverse and angle parking spots, and unstructured environments? Can the framework generalize to unknown variations in the vehicle’s parameters and road adherence, and operate with measurement noise? The autonomous parking framework employs a novel penalty function for collision avoidance with optimal control, a new warm-start strategy and an original PhS-NN for steering control. The framework executes complex maneuvers in a wide range of parking scenarios, and is validated with a high-fidelity vehicle model. The framework is shown to be robust to variations in the vehicle’s mass and road adherence, and to operate with realistic measurement noise. The fourth and last part of the thesis develops novel kinematics-structured neural networks (KS-NNs) to estimate the vehicle’s lateral velocity, which is a key quantity for time-optimal trajectory planning and control. The KS-NNs are a special type of PhS-NNs: their internal structure is designed to incorporate the kinematic principles, which enhances the generalization capabilities and physical explainability. The research questions addressed in this part are: Can a neural network-based lateral velocity estimator generalize well when tested on a vehicle not used for training? Can the network’s parameters be physically explainable? The approach is validated using an open dataset with two race cars. In comparison with traditional and neural network estimators of the literature, the KS-NNs improve noise rejection, exhibit better generalization capacity, are more sample-efficient, and their structure is physically explainable.
114

<b>Explaining Generative Adversarial Network Time Series Anomaly Detection using Shapley Additive Explanations</b>

Cher Simon (18324174) 10 July 2024 (has links)
<p dir="ltr">Anomaly detection is an active research field that widely applies to commercial applications to detect unusual patterns or outliers. Time series anomaly detection provides valuable insights into mission and safety-critical applications using ever-growing temporal data, including continuous streaming time series data from the Internet of Things (IoT), sensor networks, healthcare, stock prices, computer metrics, and application monitoring. While Generative Adversarial Networks (GANs) demonstrate promising results in time series anomaly detection, the opaque nature of generative deep learning models lacks explainability and hinders broader adoption. Understanding the rationale behind model predictions and providing human-interpretable explanations are vital for increasing confidence and trust in machine learning (ML) frameworks such as GANs. This study conducted a structured and comprehensive assessment of post-hoc local explainability in GAN-based time series anomaly detection using SHapley Additive exPlanations (SHAP). Using publicly available benchmarking datasets approved by Purdue’s Institutional Review Board (IRB), this study evaluated state-of-the-art GAN frameworks identifying their advantages and limitations for time series anomaly detection. This study demonstrated a systematic approach in quantifying the extent of GAN-based time series anomaly explainability, providing insights for businesses when considering adopting generative deep learning models. The presented results show that GANs capture complex time series temporal distribution and are applicable for anomaly detection. The analysis from this study shows SHAP can identify the significance of contributing features within time series data and derive post-hoc explanations to quantify GAN-detected time series anomalies.</p>
115

From Traditional to Explainable AI-Driven Predictive Maintenance : Transforming Maintenance Strategies at Glada Hudikhem with AI and Explainable AI

Rajta, Amarildo January 2024 (has links)
Detta arbete undersöker integreringen av artificiell intelligens (AI) och maskininlärning (ML) teknologier i prediktivt underhåll (PdM) vid Glada Hudikhem. De primära målen är att utvärdera effektiviteten hos olika AI/ML-modeller för att förutsäga fel på hushållsapparater och att förbättra transparensen och tillförlitligheten i dessa förutsägelser genom förklarbar AI (XAI) teknik. Studien jämför olika grundläggande och djupa inlärningsmodeller och avslöjar att medan djupa modeller kräver mer beräkningsresurser och kan ta 98% mer tid att träna jämfört med grundläggande modeller, presterar de ungefär 1, 4% sämre i F-1 poäng. F-1-poäng är ett mått som kombinerar precision (andelen av sanna positiva bland förväntade positiva) och recall/återkallelse (andelen av sanna positiva bland faktiska positiva). Dessutom betonar studien vikten av XAI för att göra AI-drivna underhållsbeslut mer transparenta och pålitliga, vilket därmed adresserar den "svarta lådan" naturen hos traditionella AI-modeller. Resultaten tyder på att integrationen av AI och XAI i PdM kan förbättra underhållsarbetsflöden och minska driftkostnaderna, med rekommendationer för branschpartners att utforska AI/ML-lösningar som balanserar resurseffektivitet och prestanda. Studien diskuterar också de etiska och samhälleliga konsekvenserna av AI-antagande och prediktivt underhåll, med betoning av ansvarsfull implementering. Vidare beskriver potentialen för AI att automatisera rutinunderhållsuppgifter, vilket frigör mänskliga resurser för mer komplexa frågor och förbättrar den övergripande drifteffektiviteten. Genom en omfattande analys, ger det här arbetet ett ramverk för framtida forskning och praktiska tillämpningar inom AI-drivet prediktivt underhåll. / This thesis investigates the integration of artificial intelligence (AI) and machine learning (ML) technologies into predictive maintenance (PdM) operations at Glada Hudikhem. The primary objectives are to evaluate the effectiveness of different AI/ML models for predicting household appliance failures and to enhance the transparency and reliability of these predictions through explainable AI (XAI) techniques. The study compares various shallow and deep learning models, revealing that while deep models require more computational resources and can take 98% more time to train compared to shallow models, they score about 1.4% worse in F-1 scores. F-1 scores are a metric that combines precision (the fraction of true positives among predicted positives) and recall (the fraction of true positives among actual positives). Additionally, the research highlights the importance of XAI in making AI-driven maintenance decisions more transparent and trustworthy, thus addressing the "black box" nature of traditional AI models. The findings suggest that integrating AI and XAI into PdM can improve maintenance workflows and reduce operational costs, with recommendations for industry partners to explore AI/ML solutions that balance resource efficiency and performance. The study also discusses the ethical and societal implications of AI adoption in predictive maintenance, emphasizing the need for responsible implementation. Furthermore, it outlines the potential for AI to automate routine maintenance tasks, thereby freeing up human resources for more complex issues and enhancing overall operational efficiency. Through a rigorous discussion and in-depth analysis, this thesis offers a robust framework for future research and practical applications in the field of AI-driven predictive maintenance.
116

Effektivisering av Tillverkningsprocesser med Artificiell Intelligens : Minskad Materialförbrukning och Förbättrad Kvalitetskontroll

Al-Saaid, Kasim, Holm, Daniel January 2024 (has links)
This report explores the implementation of AI techniques in the manufacturing process at Ovako, focusing on process optimization, individual traceability, and quality control. By integrating advanced AI models and techniques at various levels within the production process, Ovako can improve efficiency, reduce material consumption, and prevent production stops. For example, predictive maintenance can be applied to anticipate and prevent machine problems, while image recognition algorithms and optical character recognition enable individual traceability of each rod throughout the process. Furthermore, AI-based quality control can detect defects and deviations with high precision and speed, leading to reduced risk of faulty products and increased product quality. By carefully considering the role of the workforce, safety and ethical issues, and the benefits and challenges of AI implementation, Ovako can maximize the benefits of these techniques and enhance its competitiveness in the market. / Denna rapport utforskar implementeringen av AI-tekniker i tillverkningsprocessen hos Ovako, med fokus på processoptimering, individuell spårbarhet och kvalitetskontroll. Genom att integrera avancerade AI-modeller och tekniker på olika nivåer inom produktionsprocessen kan Ovako förbättra effektiviteten, minska materialförbrukningen och förhindra produktionsstopp. Exempelvis kan prediktivt underhåll tillämpas för att förutse och förebygga maskinproblem, medan bildigenkänningsalgoritmer och optisk teckenigenkänning möjliggör individuell spårbarhet av varje stång genom processen. Dessutom kan AI-baserad kvalitetskontroll detektera defekter och avvikelser med hög precision och hastighet, vilket leder till minskad risk för felaktiga produkter och ökad produktkvalitet. Genom att noggrant överväga arbetskraftens roll, säkerhets- och etikfrågor samt fördelarna och utmaningarna med AI-implementeringen kan Ovako maximera nyttan av dessa tekniker och förbättra sin konkurrenskraft på marknaden.
117

Explainable Artificial Intelligence for Radio Resource Management Systems : A diverse feature importance approach / Förklarande Artificiell Intelligens inom System för Hantering av Radioresurser : Metoder för klassifisering av betydande predikatorer

Marcu, Alexandru-Daniel January 2022 (has links)
The field of wireless communications is arguably one of the most rapidly developing technological fields. Therefore, with each new advancement in this field, the complexity of wireless systems can grow significantly. This phenomenon is most visible in mobile communications, where the current 5G and 6G radio access networks (RANs) have reached unprecedented complexity levels to satisfy diverse increasing demands. In such increasingly complex environments, managing resources is becoming more and more challenging. Thus, experts employed performant artificial intelligence (AI) techniques to aid radio resource management (RRM) decisions. However, these AI techniques are often difficult to understand by humans, and may receive unimportant inputs which unnecessarily increase their complexity. In this work, we propose an explainability pipeline meant to be used for increasing humans’ understanding of AI models for RRM, as well as for reducing the complexity of these models, without loss of performance. To achieve this, the pipeline generates diverse feature importance explanations of the models with the help of three explainable artificial intelligence (XAI) methods: Kernel SHAP, CERTIFAI, and Anchors, and performs an importance-based feature selection using one of three different strategies. In the case of Anchors, we formulate and utilize a new way of computing feature importance scores, since no current publication in the XAI literature suggests a way to do this. Finally, we applied the proposed pipeline to a reinforcement learning (RL)- based RRM system. Our results show that we could reduce the complexity of the RL model between ∼ 27.5% and ∼ 62.5% according to different metrics, without loss of performance. Moreover, we showed that the explanations produced by our pipeline can be used to answer some of the most common XAI questions about our RL model, thus increasing its understandability. Lastly, we achieved an unprecedented result showing that our RL agent could be completely replaced with Anchors rules when taking RRM decisions, without a significant loss of performance, but with a considerable gain in understandability. / Området trådlös kommunikation är ett av de snabbast utvecklande tekniska områdena, och varje framsteg riskerar att medföra en signifikant ökning av komplexiteten för trådlösa nätverk. Det här fenomenet är som tydligast i mobil kommunikaiton, framför allt inom 5G och 6G radioaccessnätvärk (RANs) som har nåt nivåer av komplexitet som saknar motstycke. Detta för att uppfylla de ökande kraven som ställs på systemet. I dessa komplexa system blir resurshantering ett ökande problem, därför används nu artificiell intelligens (AI) allt mer för att ta beslut om hantering av radioresurser (RRM). Dessa AI tekniker är dock ofta svåra att förstå för människor, och kan således ges oviktig input vilket leder till att öka AI modellernas komplexitet. I detta arbete föreslås en förklarande pipeline vars mål är att användas för att öka människors förståelse av AI modeller för RRM. Målet är även att minska modellernas komplexitet, utan att förlora prestanda. För att åstadkomma detta genererar pipelinen förklaringar av betydande predikatorer för modellen med hjälp av tre metoder för förklarande artificiell intelligens (XAI). Dessa tre metoder är, Kernel SHAP, CERTIFAI och Anchors. Sedan görs ett predikatorurval baserat på predikatorbetydelse med en av dessa tre metoder. För metoden Anchors formuleras ett nytt sätt att beräkna betydelsen hos predikatorer, eftersom tidigare forskning inte föreslår någon metod för detta. Slutligen appliceras den föreslagna pipelinen på en förstärkt inlärnings- (RL) baserat RRM system. Resultaten visar att komplexiteten av RL modellen kunde reduceras med mellan ∼ 27, 5% och ∼ 62, 5% baserat på olika nyckeltal:er, utan att förlora någon prestanda. Utöver detta visades även att förklaringarna som producerats kan användas för att svara på de vanligaste XAI frågoran om RL modellen, och på det viset har även förståelsen för modellen ökat. Sistnämnt uppnåddes enastående resultat som visade att RL modellen helt kunde ersättas med regler producerade av Anchor-metoden för beslut inom RRM, utan någon störra förlust av prestanda, men med an stor vinst i förståelse.
118

Explainable Reinforcement Learning for Gameplay

Costa Sánchez, Àlex January 2022 (has links)
State-of-the-art Machine Learning (ML) algorithms show impressive results for a myriad of applications. However, they operate as a sort of a black box: the decisions taken are not human-understandable. There is a need for transparency and interpretability of ML predictions to be wider accepted in society, especially in specific fields such as medicine or finance. Most of the efforts so far have focused on explaining supervised learning. This project aims to use some of these successful explainability algorithms and apply them to Reinforcement Learning (RL). To do so, we explain the actions of a RL agent playing Atari’s Breakout game, using two different explainability algorithms: Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). We successfully implement both algorithms, which yield credible and insightful explanations of the mechanics of the agent. However, we think the final presentation of the results is sub-optimal for the final user, as it is not intuitive at first sight. / De senaste algoritmerna för maskininlärning (ML) visar imponerande resultat för en mängd olika tillämpningar. De fungerar dock som ett slags ”svart låda”: de beslut som fattas är inte begripliga för människor. Det finns ett behov av öppenhet och tolkningsbarhet för ML-prognoser för att de ska bli mer accepterade i samhället, särskilt inom specifika områden som medicin och ekonomi. De flesta insatser hittills har fokuserat på att förklara övervakad inlärning. Syftet med detta projekt är att använda några av dessa framgångsrika algoritmer för att förklara och tillämpa dem på förstärkning lärande (Reinforcement Learning, RL). För att göra detta förklarar vi handlingarna hos en RL-agent som spelar Ataris Breakout-spel med hjälp av två olika förklaringsalgoritmer: Shapley Additive Explanations (SHAP) och Local Interpretable Model-agnostic Explanations (LIME). Vi genomför framgångsrikt båda algoritmerna, som ger trovärdiga och insiktsfulla förklaringar av agentens mekanik. Vi anser dock att den slutliga presentationen av resultaten inte är optimal för slutanvändaren, eftersom den inte är intuitiv vid första anblicken. / Els algoritmes d’aprenentatge automàtic (Machine Learning, ML) d’última generació mostren resultats impressionants per a moltes aplicacions. Tot i això, funcionen com una mena de caixa negra: les decisions preses no són comprensibles per a l’ésser humà. Per tal que les prediccion preses mitjançant ML siguin més acceptades a la societat, especialment en camps específics com la medicina o les finances, cal transparència i interpretabilitat. La majoria dels esforços que s’han fet fins ara s’han centrat a explicar l’aprenentatge supervisat (supervised learning). Aquest projecte pretén utilitzar alguns d’aquests existosos algoritmes d’explicabilitat i aplicar-los a l’aprenentatge per reforç (Reinforcement Learning, RL). Per fer-ho, expliquem les accions d’un agent de RL que juga al joc Breakout d’Atari utilitzant dos algoritmes diferents: explicacions additives de Shapley (SHAP) i explicacions model-agnòstiques localment interpretables (LIME). Hem implementat amb èxit tots dos algoritmes, que produeixen explicacions creïbles i interessants de la mecànica de l’agent. Tanmateix, creiem que la presentació final dels resultats no és òptima per a l’usuari final, ja que no és intuïtiva a primera vista.
119

Explaining Neural Networks used for PIM Cancellation / Förklarandet av Neurala Nätverk menade för PIM-elimination

Diffner, Fredrik January 2022 (has links)
Passive Intermodulation is a type of distortion affecting the sensitive receiving signals in a cellular network, which is a growing problem in the telecommunication field. One way to mitigate this problem is through Passive Intermodulation Cancellation, where the predicted noise in a signal is modeled with polynomials. Recent experiments using neural networks instead of polynomials to model this noise have shown promising results. However, one drawback with neural networks is their lack of explainability. In this work, we identify a suitable method that provides explanations for this use case. We apply this technique to explain the neural networks used for Passive Intermodulation Cancellation and discuss the result with domain expertise. We show that the input space as well as the architecture could be altered, and propose an alternative architecture for the neural network used for Passive Intermodulation Cancellation. This alternative architecture leads to a significant reduction in trainable parameters, a finding which is valuable in a cellular network where resources are heavily constrained. When performing an explainability analysis of the alternative model, the explanations are also more in line with domain expertise. / Passiv Intermodulation är en typ av störning som påverkar de känsliga mottagarsignalerna i ett mobilnät. Detta är ett växande problem inom telekommunikation. Ett tillvägagångssätt för att motverka detta problem är genom passiv intermodulations-annullering, där störningarna modelleras med hjälp av polynomiska funktioner. Nyligen har experiment där neurala nätverk används istället för polynomiska funktioner för att modellera dessa störningar påvisat intressanta resultat. Användandet av neurala nätverk är dock förenat med vissa nackdelar, varav en är svårigheten att tyda och tolka utfall av neurala nätverk. I detta projekt identifieras en passande metod för att erbjuda förklaringar av neurala nätverk tränade för passiv intermodulations-annullering. Vi applicerar denna metod på nämnda neurala nätverk och utvärderar resultatet tillsammans med domänexpertis. Vi visar att formatet på indatan till neurala nätverket kan manipuleras, samt föreslår en alternativ arkitektur för neurala nätverk tränade för passiv intermodulations-annullering. Denna alternativa arkitektur innebär en avsevärd reduktion av antalet träningsbara parametrar, vilket är ett värdefullt resultat i samband med mobilnät där det finns kraftiga begränsningar på hårdvaruresurser. När vi applicerar metoder för att förklara utfall av denna alternativa arkitektur finner vi även att förklaringarna bättre motsvarar förväntningarna från domänexpertis.
120

Computationally Efficient Explainable AI: Bayesian Optimization for Computing Multiple Counterfactual Explanantions / Beräkningsmässigt Effektiv Förklarbar AI: Bayesiansk Optimering för Beräkning av Flera Motfaktiska Förklaringar

Sacchi, Giorgio January 2023 (has links)
In recent years, advanced machine learning (ML) models have revolutionized industries ranging from the healthcare sector to retail and E-commerce. However, these models have become increasingly complex, making it difficult for even domain experts to understand and retrace the model's decision-making process. To address this challenge, several frameworks for explainable AI have been proposed and developed. This thesis focuses on counterfactual explanations (CFEs), which provide actionable insights by informing users how to modify inputs to achieve desired outputs. However, computing CFEs for a general black-box ML model is computationally expensive since it hinges on solving a challenging optimization problem. To efficiently solve this optimization problem, we propose using Bayesian optimization (BO), and introduce the novel algorithm Separated Bayesian Optimization (SBO). SBO exploits the formulation of the counterfactual function as a composite function. Additionally, we propose warm-starting SBO, which addresses the computational challenges associated with computing multiple CFEs. By decoupling the generation of a surrogate model for the black-box model and the computation of specific CFEs, warm-starting SBO allows us to reuse previous data and computations, resulting in computational discounts and improved efficiency for large-scale applications. Through numerical experiments, we demonstrate that BO is a viable optimization scheme for computing CFEs for black-box ML models. BO achieves computational efficiency while maintaining good accuracy. SBO improves upon this by requiring fewer evaluations while achieving accuracies comparable to the best conventional optimizer tested. Both BO and SBO exhibit improved capabilities in handling various classes of ML decision models compared to the tested baseline optimizers. Finally, Warm-starting SBO significantly enhances the performance of SBO, reducing function evaluations and errors when computing multiple sequential CFEs. The results indicate a strong potential for large-scale industry applications. / Avancerade maskininlärningsmodeller (ML-modeller) har på senaste åren haft stora framgångar inom flera delar av näringslivet, med allt ifrån hälso- och sjukvårdssektorn till detaljhandel och e-handel. I jämn takt med denna utveckling har det dock även kommit en ökad komplexitet av dessa ML-modeller vilket nu lett till att även domänexperter har svårigheter med att förstå och tolka modellernas beslutsprocesser. För att bemöta detta problem har flertalet förklarbar AI ramverk utvecklats. Denna avhandling fokuserar på kontrafaktuella förklaringar (CFEs). Detta är en förklaringstyp som anger för användaren hur denne bör modifiera sin indata för att uppnå ett visst modellbeslut. För en generell svarta-låda ML-modell är dock beräkningsmässigt kostsamt att beräkna CFEs då det krävs att man löser ett utmanande optimeringsproblem. För att lösa optimeringsproblemet föreslår vi användningen av Bayesiansk Optimering (BO), samt presenterar den nya algoritmen Separated Bayesian Optimization (SBO). SBO utnyttjar kompositionsformuleringen av den kontrafaktuella funktionen. Vidare, utforskar vi beräkningen av flera sekventiella CFEs för vilket vi presenterar varm-startad SBO. Varm-startad SBO lyckas återanvända data samt beräkningar från tidigare CFEs tack vare en separation av surrogat-modellen för svarta-låda ML-modellen och beräkningen av enskilda CFEs. Denna egenskap leder till en minskad beräkningskostnad samt ökad effektivitet för storskaliga tillämpningar.  I de genomförda experimenten visar vi att BO är en lämplig optimeringsmetod för att beräkna CFEs för svarta-låda ML-modeller tack vare en god beräknings effektivitet kombinerat med hög noggrannhet. SBO presterade ännu bättre med i snitt färre funktionsutvärderingar och med fel nivåer jämförbara med den bästa testade konventionella optimeringsmetoden. Både BO och SBO visade på bättre kapacitet att hantera olika klasser av ML-modeller än de andra testade metoderna. Slutligen observerade vi att varm-startad SBO gav ytterligare prestandaökningar med både minskade funktionsutvärderingar och fel när flera CFEs beräknades. Dessa resultat pekar på stor potential för storskaliga tillämpningar inom näringslivet.

Page generated in 0.0352 seconds