Spelling suggestions: "subject:"falter"" "subject:"faltering""
1 |
Tektonik und Thermochronologie des Yangtze-Vorland-Falten- und Überschiebungsgürtels und sein Bezug zum Qinling-Dabie Orogen, OstchinaGrimmer, Jens Carsten. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Freiberg (Sachsen).
|
2 |
Mesozoic fold structure of the Otago and Alpine Schist Belt and its implications on the tectonic evolution of South Island, New ZealandTünker, Maren Edda. Unknown Date (has links) (PDF)
University, Diss., 2003--Mainz.
|
3 |
Axiomatisieren lernen mit Papierfalten : Entwicklung, Durchführung und Auswertung eines Hochschulkurses für gymnasiale Lehramtsstudierende / Learning how to axiomatise with paperfoldingNedrenco, Dmitri January 2022 (has links) (PDF)
In dieser Arbeit wird mathematisches Papierfalten und speziell 1-fach-Origami im universitären Kontext untersucht. Die Arbeit besteht aus drei Teilen.
Der erste Teil ist im Wesentlichen der Sachanalyse des 1-fach-Origami gewidmet. Im ersten Kapitel gehen wir auf die geschichtliche Einordnung des 1-fach-Origami, betrachten axiomatische Grundlagen und diskutieren, wie das Axiomatisieren von 1-fach-Origami zum Verständnis des Axiomenbegriffs beitragen könnte. Im zweiten Kapitel schildern wir das Design der zugehörigen explorativen Studie, beschreiben unsere Forschungsziele und -fragen. Im dritten Kapitel wird 1-fach-Origami mathematisiert, definiert und eingehend untersucht.
Der zweite Teil beschäftigt sich mit den von uns gestalteten und durchgeführten Kursen »Axiomatisieren lernen mit Papierfalten«. Im vierten Kapitel beschreiben wir die Lehrmethodik und die Gestaltung der Kurse, das fünfte Kapitel enthält ein Exzerpt der Kurse.
Im dritten Teil werden die zugehörigen Tests beschrieben. Im sechsten Kapitel erläutern wir das Design der Tests sowie die Testmethodik. Im siebten Kapitel findet die Auswertung ebendieser Tests statt. / In this manuscript, mathematical paper folding and specifically 1-fold
origami is studied in a university context. The thesis consists of three
parts.
The first part is mainly devoted to the factual analysis of 1-fold
origami. In the first chapter, we elaborate on the historical
development of 1-fold origami, consider axiomatic foundations, and
discuss how axiomatizing 1-fold origami could contribute to the
understanding of the concept of an axiom. In the second chapter, we
describe the design of the related exploratory study, describe our
research objectives and questions. In the third chapter, 1-fold origami
is mathematized, defined, and explored in depth.
The second part focuses on the courses with the title "Learning how to
axiomatize through paperfolding" which we designed and conducted. In the
fourth chapter we describe the teaching methodology and the design of
the courses, and the fifth chapter contains an excerpt of the courses.
In the third part we describe the associated tests. In the sixth chapter
we explain the design of the tests as well as the testing methodology.
In the seventh chapter, the evaluation of these tests is carried out.
|
4 |
Folding the circle in half is a text book of informationHansen-Smith, Bradford 16 April 2012 (has links) (PDF)
This paper addresses folding the circle in half and discussing some of over one hundred different mathematical terms and functions generated in that one fold. The simplicity of process in understanding
fundamentals of mathematics by folding circles and observing what is generated is unknown because we only draw pictures of circles. Examples are given about observing and exploring relationships in the circle that are appropriate for first, second, third grade level and beyond. The traditional educational ‘parts-towhole’ approach can only be fully realized through the comprehensive frame of Whole-to-parts by folding the circle. Wholemovement of the circle is not only direct; it is the only context inclusive to progressively understanding parts within unity of the Whole.
|
5 |
Folding the circle in half is a text book of informationHansen-Smith, Bradford 16 April 2012 (has links)
This paper addresses folding the circle in half and discussing some of over one hundred different mathematical terms and functions generated in that one fold. The simplicity of process in understanding
fundamentals of mathematics by folding circles and observing what is generated is unknown because we only draw pictures of circles. Examples are given about observing and exploring relationships in the circle that are appropriate for first, second, third grade level and beyond. The traditional educational ‘parts-towhole’ approach can only be fully realized through the comprehensive frame of Whole-to-parts by folding the circle. Wholemovement of the circle is not only direct; it is the only context inclusive to progressively understanding parts within unity of the Whole.
|
6 |
Generieren lastgerechter Materialparameter für FEM-gestützte Umformprognosen: am Beispiel von Karton-VerbundmaterialienSchneider, Toma, Harling, Antje, Miletzky, Frank 06 September 2021 (has links)
Zwei wesentliche Vorrausetzungen zum Aufbau mechanischer Verhaltensprognosen auf Basis der finiten-Element-Methode (FEM) sind die Verfügbarkeit von Materialmodellen sowie zugehörige Messverfahren zur Parameterbestimmung. Gegenstand dieser Abhandlung ist die Vorstellung einer neuartigen Messmethodik zur Erhebung des plastischen Biege- und Faltverhaltens von faserbasierten Verbundmaterialien und dessen Anwendung zum vereinfachten Aufbau von numerischen Struktursimulationen. Als besonderes Merkmal sei dabei der Ansatz einer äußeren, integralen Verhaltensbeschreibung der vielfältigen Vorgänge auf der Mikrostrukturebene des Materials genannt. Damit wird es möglich das mechanische Strukturverhalten komplexer Makrostrukturen, wie komplette Verpackungen auf Basis von Karton-Verbundmaterial, zu untersuchen und damit Optimierungen hinsichtlich Versagensverhalten und Materialeffizienz durchzuführen.
|
7 |
Designing Folding Interventions for Positive MomentsSouyave, Jane, Treadaway, Cathy, Fennell, Jac, Walters, Andy 18 December 2019 (has links)
People living in the advanced stages of dementia are often confined to a bed or chair and spend many hours unoccupied. Hand-based activities that are ‘in the moment’ and provide stimulation have the potential to relieve agitation, reduce stress and provide a positive benefit to a person’s wellbeing. This paper is a review of the literature that discusses ways in which folding activities can help facilitate meaningful connections between people living with advanced dementia and their caregivers. It is informed by research in the areas of design and dementia care with a focus on wellbeing, unmet needs, repetitive behaviours, hand movements and activities where folding has engaged people with dementia. Reviewed literature evidences ways in which folding activities provide meaningful activity, comfort and may help reduce anxiety for someone living with the advanced stages of the disease. Findings from this review support further investigation into designing novel, non-pharmacological interventions for dementia care, to support caregivers and individuals who engage in repetitive folding. This paper contends that unique folding activities can be designed to facilitate positive moments during the day for individuals living with advanced dementia and their caregivers. Future work will develop novel folding activities that have the potential to reduce anxiety, relieve boredom and increase connections with others.
|
8 |
Controlled delamination of metal films by hydrogen loading / Kontrollierte Ablösung dünner metallischer Schichten durch WasserstoffbeladungNikitin, Eugen 18 November 2008 (has links)
No description available.
|
9 |
Stretchable Magnetoelectronics / Dehnbare MagnetoelektronikMelzer, Michael 22 December 2015 (has links) (PDF)
In this work, stretchable magnetic sensorics is successfully established by combining metallic thin films revealing a giant magnetoresistance effect with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved by specific morphologic features (e.g. wrinkles), which accommodate the applied tensile deformation while maintaining the electrical and magnetic integrity of the sensor device. The entire development, from the demonstration of the world-wide first elastically stretchable magnetic sensor to the realization of a technology platform for robust, ready-to-use elastic magnetoelectronics with fully strain invariant properties, is described. The prepared soft giant magnetoresistive devices exhibit the same sensing performance as on conventional rigid supports, but can be stretched uniaxially or biaxially reaching strains of up to 270% and endure over 1,000 stretching cycles without fatigue. The comprehensive magnetoelectrical characterization upon tensile deformation is correlated with in-depth structural investigations of the sensor morphology transitions during stretching.
With their unique mechanical properties, the elastic magnetoresistive sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of stretchable magnetoelectronics are proposed and realized throughout this work. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking and touchless control capabilities. A variety of novel technologies, like smart textiles, soft robotics and actuators, active medical implants and soft consumer electronics will benefit from these new magnetic functionalities.
|
10 |
Stretchable MagnetoelectronicsMelzer, Michael 19 November 2015 (has links)
In this work, stretchable magnetic sensorics is successfully established by combining metallic thin films revealing a giant magnetoresistance effect with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved by specific morphologic features (e.g. wrinkles), which accommodate the applied tensile deformation while maintaining the electrical and magnetic integrity of the sensor device. The entire development, from the demonstration of the world-wide first elastically stretchable magnetic sensor to the realization of a technology platform for robust, ready-to-use elastic magnetoelectronics with fully strain invariant properties, is described. The prepared soft giant magnetoresistive devices exhibit the same sensing performance as on conventional rigid supports, but can be stretched uniaxially or biaxially reaching strains of up to 270% and endure over 1,000 stretching cycles without fatigue. The comprehensive magnetoelectrical characterization upon tensile deformation is correlated with in-depth structural investigations of the sensor morphology transitions during stretching.
With their unique mechanical properties, the elastic magnetoresistive sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of stretchable magnetoelectronics are proposed and realized throughout this work. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking and touchless control capabilities. A variety of novel technologies, like smart textiles, soft robotics and actuators, active medical implants and soft consumer electronics will benefit from these new magnetic functionalities.:Outline
List of abbreviations 7
1. INTRODUCTION
1.1 Motivation and scope of this work 8
1.1.1 A brief review on stretchable electronics 8
1.1.2 Stretchable magnetic sensorics 10
1.2 Technological approach 11
1.3 State-of-the-art 12
2. THEORETICAL BACKGROUND
2.1 Magnetic coupling phenomena in layered structures 14
2.1.1 Magnetic interlayer exchange coupling 14
2.1.2 Exchange bias 15
2.1.3 Orange peel coupling 16
2.2 Giant magnetoresistance 17
2.2.1 Electronic transport through ferromagnets 17
2.2.2 The GMR effect 19
2.2.3 GMR multilayers 20
2.2.4 Spin valves 21
2.3 Theory of elasticity 22
2.3.1 Elastomeric materials 22
2.3.2 Stress and strain 23
2.3.3 Rubber elasticity 25
2.3.4 The Poisson effect 26
2.3.5 Viscoelasticity 27
2.3.6 Bending strain in a stiff film on a flexible support 27
2.4 Approaches to stretchable electronic systems 28
2.4.1 Microcrack formation 28
2.4.2 Meanders and compliant patterns 29
2.4.3 Surface wrinkling 30
2.4.4 Rigid islands 32
3. METHODS & MATERIALS
3.1 Sample fabrication 34
3.1.1 Polydimethylsiloxane (PDMS) 34
3.1.2 PDMS film preparation 35
3.1.3 Lithographic structuring on the PDMS surface. 36
3.1.4 Magnetic thin film deposition 38
3.1.5 GMR layer stacks 40
3.1.6 Mechanically induced pre-strain 43
3.1.7 Methods and materials for the direct transfer of GMR sensors 45
3.1.8 Materials used for imperceptible GMR sensors 47
3.2 Characterization 48
3.2.1 GMR characterization setup with in situ stretching capability 48
3.2.2 Sample mounting 50
3.2.3 Electrical contacting of stretchable sensor devices 51
3.2.4 Customized demonstrator electronics 52
3.2.5 Microscopic investigation techniques 53
4. RESULTS & DISCUSSION
4.1 GMR multilayer structures on PDMS 54
4.1.1 Pre-characterization 54
4.1.2 Thermally induced wrinkling 55
4.1.3 Self-healing effect 57
4.1.4 Demonstrator: Magnetic detection on a curved surface 60
4.1.5 Sensitivity enhancement 61
4.1.6 GMR sensors in circumferential geometry 64
4.1.7 Stretchability test 67
4.2 Stretchable spin valves 69
4.2.1 Random wrinkles and periodic fracture 70
4.2.2 GMR characterization 73
4.2.3 Stretching of spin valves 74
4.2.4 Microcrack formation mechanism 76
4.3 Direct transfer printing of GMR sensorics 81
4.3.1 The direct transfer printing process 82
4.3.2 Direct transfer of GMR microsensor arrays 84
4.3.3 Direct transfer of compliant meander shaped GMR sensors 86
4.4 Imperceptible magnetoelectronics 89
4.4.1 GMR multilayers on ultra-thin PET membranes 89
4.4.2 Imperceptible GMR sensor skin 92
4.4.3 Demonstrator: Fingertip magnetic proximity sensor 93
4.4.4 Ultra-stretchable GMR sensors 94
4.4.5 Biaxial stretchability 99
4.4.6 Demonstrator: Dynamic detection of diaphragm inflation 101
5. CONCLUSIONS & OUTLOOK
5.1 Achievements 102
5.2 Outlook 104
5.2.1 Further development steps 104
5.2.2 Prospective applications. 105
5.3 Technological impact: flexible Bi Hall sensorics 106
5.3.1 Application potential 106
5.3.2 Thin and flexible Hall probes 107
5.3.3 Continuative works and improvements 108
5.4 Activities on technology transfer and public relations 108
Appendix
References 110
Selbständigkeitserklärung 119
Acknowledgements 120
Curriculum Vitae 121
Scientific publications, contributions, patents, grants & prizes 122
|
Page generated in 0.0338 seconds