• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 20
  • 16
  • 10
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 108
  • 57
  • 23
  • 17
  • 16
  • 16
  • 15
  • 15
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Étude structurale de deux complexes macromoléculaires biologiques : FANCD2/FANCI et la Phosphorylase Kinase par cryo microscopie électronique / Structural studies of two biological macromolecular complexes : FANCD2/FANCI and Phosphorylase Kinase by cryo electron microscopy

Li, Zhuolun 26 January 2016 (has links)
Au cours de mon travail de thèse, j’ai étudié la structure des deux complexes de protéines, le complexe FANCD2/FANCI et la Phosphorylase kinase (PhK). Les deux complexes ont été étudiés en utilisant la cryo-microscopie électronique combinée à l’analyse d'image. La voie anémie de Fanconi (FA) a été reconnue comme jouant un rôle important dans la réparation de liaisons inter-brin de l'ADN. Dans cette voie, les protéines FANCD2 et FANCI sont des acteurs clés. Dans mon travail de thèse, j’ai calculé la structurale du complexe FANCD2/FANCI humaine. La structure montre une cavité intérieure, assez grande pour accueillir une hélice d'ADN double brin. Nous avons aussi mis en évidence un domaine en forme de tour. Notre collaborateur (M. Cohn, Oxford) a montré que celui-ci est essentiel pour le recrutement du complexe sur l'ADN. La PhK est l'une des kinases les plus complexes. Elle est composée de quatre sous-unités (αβγδ)4. PhK régule le métabolisme du glycogène, intègre divers signaux pour catalyser la conversion du glycogène phosphorylase b (GP) vers la GP a (actif), et la dégradation ultérieure de glycogène. En utilisant un microscope performant et une caméra de détection d'électrons directe puis après plusieurs étapes de traitement d’image, de correction de mouvement de films induits par les faisceaux d'électrons, j’ai obtenu une structure du complexe en 7Å (FSC gold standard). / During my thesis work, I have investigated the structure of two protein complexes, the FANCD2/FANCI complex and the Phosphorylase Kinase complex (PhK). Both complexes were studied using cryo electron microscopy combined with image analysis. The Fanconi Anemia (FA) pathway has been implied to play a significant role in DNA interstrand crosslink repair and may be the coordinator between different DNA damage repair pathways. Within the FA pathway, the FANCD2 and FANCI proteins are key players. In my thesis work, I have calculated the structure of the human FANCD2/FANCI complex. It possesses an inner cavity, large enough to accommodate a double stranded DNA helix. We also discovered a protruding tower domain, which our collaborator (M. Cohn, Oxford) has shown to be critical for the recruitment of the complex to DNA. PhK is one of the most complex kinases. It is composed of four subunits (αβγδ)4. PhK regulates glycogenolysis, it integrates various signals to catalyze the conversion of glycogen phosphorylase (GP) b to GP a (active), and the subsequent breakdown of glycogen. PhK is a potential target for glycemic control in diseases such as diabetes. Using state of the art electron microscope with a direct electron detection camera, after multiple image processing steps and correction of beams induced motion of films, I obtained a structure of the complexe at 7Å (FSC gold standard).
102

Využití metod celoexomového sekvenování pro studium vzácných dědičně podmíněných chorob / Application of whole-exome sequencing methods for the study of rare inherited diseases

Piherová, Lenka January 2021 (has links)
Rare diseases (RD) are a heterogeneous group of diseases that affect about 5% of the world population. RDs represent more than 7.000 different phenotypes and many of them are genetically determined. RDs provide unique biological models for understanding the basic principles of molecular and cellular organization and function of human tissues and organs. Results of studies focused at pathogenesis of RDs are often used to diagnose and treat the affected patients. Significant progress in molecular genetic techniques, specifically the use of the next generation sequencing (NGS) in clinical practice, substantially facilitated and improved efficiency of RD laboratory diagnostics. Moreover, these novel testing algorithms identified the previously unknown molecular causes of many RDs. This thesis demonstrates the utility of NGS techniques and bioinformatics processing of obtained data in studies aimed at understanding molecular basis of selected RDs. These methods led to identification and characterization of causative pathogenic variants in the NDUFAF6 and PLD1 genes among patients affected by the Acadian variant of Fanconi disease and patients with a rare congenital heart defect, respectively. This approach was further used to analyze exomes of a large cohort of patients with different types of...
103

Characterization of the BACH1 Helicase in the DNA Damage Response Pathway: a Dissertation

Litman, Rachel 15 February 2007 (has links)
DNA damage response pathways are a complicated network of proteins that function to remove and/or reverse DNA damage. Following genetic insult, a signal cascade is generated, which alerts the cell to the presence of damaged DNA. Once recognized, the damage is either removed or the damaged region is excised, and the original genetic sequence is restored. However, when these pathways are defective the cell is unable to effectively mediate the DNA damage response and the damage persists unrepaired. Thus, the proteins that maintain the DNA damage response pathway are critical in preserving genomic stability. One essential DNA repair protein is the Breast Cancer Associated gene, BRCA1. BRCA1 is essential for mediating the DNA damage response, facilitating DNA damage repair, and activating key cell cycle checkpoints. Moreover, mutations in BRCA1 lead to a higher incidence of breast and ovarian cancer, highlighting the importance of BRCA1 as a tumor suppressor. In an effort to better understand how BRCA1 carried out these functions, researchers sought to identify additional BRCA1 interacting proteins. This led to the identification of several proteins including the BRCA1 Associated C-terminal Helicase, BACH1. Due to the direct interaction of BACH1 with a region of BRCA1 essential for DNA repair and tumor suppression, it was speculated that BACH1 may help support these BRCA1 function(s). In fact, initial genetic screenings confirmed that mutations in BACH1 correlated not only with hereditary breast cancer, but also with defects in DNA damage repair processes. The initial correlation between BACH1 and cancer predisposition was further confirmed when mutations in BACH1 were identified in the cancer syndrome Fanconi anemia (FA) (complementation group FA-J), thus giving BACH1 its new name FANCJ. These findings supported a previously established link between the FA and BRCA pathways and between FA and DNA repair. In particular, we demonstrated that similar to other FA/BRCA proteins, suppression of FANCJ lead to a substantial decrease in homologous recombination and enhanced both the cellular sensitivity to DNA interstrand cross-linking agents and chromosomal instability. What remained unknown was specifically how FANCJ functioned and whether these functions were dependent on its interaction with BRCA1 or other associated partners. In fact, we identified that FANCJ interacted directly with the MMR protein MLH1. Moreover, we found that the FANCJ/BRCA1 interaction was not required to correct the cellular defects in FA-J cells, but rather that the FANCJ/MLH1 interaction was required. Although both the FA/BRCA and MMR pathways undoubtedly mediate the DNA damage response, there was no evidence to suggest that these pathways were linked, until recently. Our findings not only indicate a physical link between these pathways by protein-protein interaction, but also demonstrated a functional link.
104

Role of Mammalian RAD51 Paralogs in Genome Maintenance and Tumor Suppression

Somyajit, Kumar January 2014 (has links) (PDF)
My research was focused on understanding the importance of mammalian RAD51 paralogs in genome maintenance and suppression of tumorigenesis. The investigation carried out during this study has been addressed toward gaining more insights into the involvement of RAD51 paralogs in DNA damage signalling, repair of various types of lesions including double stranded breaks (DSBs), daughter strand gaps (DSGs), interstrand crosslinks (ICLs), and in the protection of stalled replication forks. My study highlights the molecular functions of RAD51 paralogs in Fanconi anemia (FA) pathway of ICL repair, in the ATM and ATR mediated DNA damage responses, in homologous recombination (HR), and in the recovery from replication associated lesions. My research also focused on the development of a novel photoinducible ICL agent for targeted cancer therapy. The thesis has been divided into following sections as follows: Chapter I: General introduction that describes about DNA damage responses and the known functions of RAD51 paralogs across species in DNA repair and checkpoint The genome of every living organism is susceptible to various types of DNA damage and mammalian cells are evolved with various DNA damage surveillance mechanisms in response to DNA damages. In response to DNA damage, activated checkpoints arrest the cell cycle progression transiently and allow the repair of damaged DNA. Upon completion of DNA repair, checkpoints are deactivated to resume the normal cell cycle progression. Defective DNA damage responses may lead to chromosome instability and tumorigenesis. Indeed, genome instability is associated with several genetic disorders, premature ageing and various types of cancer in humans. The major cause of chromosome instability is the formation of DSBs and DSGs. Both DSBs and DSGs are the most dangerous type of DNA lesions that arise endogenously as well as through exogenous sources such as radiations and chemicals. Spontaneous DNA damage is due to generation of reactive oxygen species (ROS) through normal cellular metabolism. Replication across ROS induced modified bases and single strand breaks (SSBs) leads to DSGs and DSBs, respectively. Such DNA lesions need to be accurately repaired to maintain the integrity of the genome. To understand the various cellular responses that are triggered after different types of DNA damage and the possible roles of RAD51 paralogs in these processes, chapter I of the thesis has been distributed in to multiple sections as follows: Briefly, the initial portion of the chapter provides a glimpse of various types of DNA damage responses and repair pathways to deal with the lesions arising from both endogenous as well as exogenous sources. Owing to the vast range of cellular responses and pathways, the following section provides the detailed description and mechanisms of various pathways involved in taking care of wide range of DNA lesions from SSBs to DSBs. Subsequent section of chapter I provides a comprehensive description of maintenance of genome stability at the replication fork and telomeres. Germline mutations in the genes that regulate genome integrity cause various genetic disorders and cancer. Mutations in ATM, ATR, MRE11, NBS1, BLM and FANC (1-16), BRCA1 and BRCA2 that are known to regulate DNA damage signaling, DNA repair and genome integrity lead to chromosome instability disorders such as ataxia-telangiectasia, ATR-Seckel syndrome, AT-like disorder, Nijmegen breakage syndrome, Bloom syndrome, FA, and breast and ovarian cancers respectively. Interestingly, RAD51 paralog mutations are reported in patients with FA-like disorder and various types of cancers including breast and ovarian cancers. Mono-allelic germline mutations in all RAD51 paralogs are reported to cause cancer in addition to the reported cases of FA-like disorder with bi-allelic germline mutations in RAD51C and XRCC2. In accordance, the last section of the chapter has been dedicated to describe the genetics of breast and ovarian cancers and the known functions of tumor suppressors such as BRCA1, BRCA2 and RAD51 paralogs in the protection of genome. Despite the identification of five RAD51 paralogs nearly two decades ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remain obscure. To gain insights into the molecular mechanisms of RAD51 paralogs in DNA damage responses and their link with genetic diseases and cancer, the following objectives were laid for my PhD thesis: 1) To understand the functional role of RAD51 paralog RAD51C in FA pathway of ICL repair and DNA damage signalling. 2) To dissect the ATM/ATR mediated targeting of RAD51 paralog XRCC3 in the repair of DSBs and intra S-phase checkpoint. 3) To uncover the replication restart pathway after transient replication pause and the involvement of distinct complexes of RAD51 paralogs in the protection of replication forks. 4) To design photoinducible ICL agent that can be activated by visible light for targeted cancer therapy. Chapter II: Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: Implications for Fanconi anemia and breast cancer susceptibility RAD51C, a RAD51 paralog has been implicated in HR. However, the underlying mechanism by which RAD51C regulates HR mediated DNA repair is elusive. In 2010, a study identified biallelic mutation in RAD51C leading to FA-like disorder, whereas a second study reported monoallelic mutations in RAD51C associated with increased risk of breast and ovarian cancers. However, the role of RAD51C in the FA pathway of DNA cross-link repair and as a tumor suppressor remained obscure. To understand the role of RAD51C in FA pathway of ICL repair and DNA damage response, we employed genetic, biochemical and cell biological approaches to dissect out the functions of RAD51C in genome maintenance. In our study, we observed that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G2/M accumulation, which are hallmarks of the FA phenotype. We found that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrated that RAD51C plays a vital role in the HR-mediated repair of DSBs associated with replication. Finally, we showed that RAD51C participates in ICL and DSB induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C displayed that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor. Chapter III: ATM-and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair The RAD51 paralogs XRCC3 and RAD51C have been implicated in HR and DNA damage responses, but the molecular mechanism of their participation in these pathways remained obscured. In our study, we showed that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We found that RAD51C in CX3 complex but not in BCDX2 complex is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G2 phases. XRCC3 phosphorylation was found to be required for chromatin loading and stabilization of RAD51 and HR-mediated repair of DSBs. Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G2/M checkpoint independently of its phosphorylation. Strikingly, we found that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation was required for the HR-mediated recovery of collapsed replication forks but is dispensable for the recovery of stalled replication forks. Together, our findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair. Chapter IV: RAD51 paralogs protect stalled forks and mediate replication restart in an FA-BRCA independent manner Mammalian RAD51 paralogs RAD51 B, C, D, XRCC2 and XRCC3 are critical for genome maintenance. To understand the crucial roles of RAD51 paralogs during spontaneously arising DNA damage, we have studied the RAD51 paralogs assembly during replication and examined the replication fork stability and its restart. We found that RAD51 paralogs are enriched onto the S-phase chromatin spontaneously. Interestingly, the number of 53BP1 nuclear bodies in G1-phase and micro-nucleation which serve as markers for under replicated lesions increases after genetic ablation of RAD51C, XRCC2 and XRCC3. Furthermore, we showed that RAD51 paralogs are specifically enriched at two major fragile sites FRA3B and FRA16D after replication fork stalling. We found that all five RAD51 paralogs bind to nascent DNA strands after replication fork stalling and protect the fork. Nascent replication tracts created before fork stalling with hydroxyurea degrade in the absence of RAD51 paralogs but remain stable in wild-type cells. This function was dependent on ATP binding at the walker A motif of RAD51 paralogs. Our results also suggested that RAD51 paralogs assemble into BCDX2 complex to prevent generation of DSBs at stalled replication forks, thereby safeguarding the pre-assembled replisome from the action of nucleases. Strikingly, we showed that RAD51C and XRCC3 in complex with FANCM promote the restart of stalled replication forks in an ATP hydrolysis dependent manner. Moreover, RAD51C R258H mutation that was identified in FA-like disorder abrogates the interaction of RAD51C with FANCM and XRCC3, and prevents fork restart. Thus, assembly of RAD51 paralogs in different complexes prevents nucleolytic degradation of stalled replication forks and promotes restart to maintain genomic integrity. Chapter V: Trans-dichlorooxovandium(IV) complex as a potent photoinducible DNA interstrand crosslinker for targeted cancer therapy Although DNA ICL agents such as MMC, cisplatin and psoralen are known to serve as anticancer drugs, these agents affect normal cells as well. Moreover, tumor resistance to these agents has been reported. We have designed and synthesized a novel photoinducible DNA crosslinking agent (ICL-2) which is a derivative of oxovanadiumterpyridine complex with two chlorides in trans position. We found that ICL-2 can be activated by UV-A and visible light to enable DNA ICLs. ICL-2 efficiently activated FA pathway of ICL repair. Strikingly, photoinduction of ICL-2 induces prolonged activation of cell cycle checkpoint and high degree of cell death in FA pathway defective cells. Moreover, we showed that ICL-2 specifically targets cells that express pathological RAD51C mutants. Our findings suggest that ICL-2 can be potentially used for targeted cancer therapy in patients with gene mutations in FA and HR pathway.
105

Hereditary predisposition to breast cancer – with a focus on <em>AATF</em>, <em>MRG15</em>, <em>PALB2</em>, and three Fanconi anaemia genes

Haanpää, M. (Maria) 27 May 2014 (has links)
Abstract Around 5−10% of all breast cancer cases are estimated to result from a strong hereditary predisposition to the disease. However, mutations in the currently known breast cancer susceptibility genes account for only 20−30% of all familial cases. Additional factors contributing to the pathogenesis of breast cancer, therefore, await discovery. Aims of this study were to evaluate variations of the AATF and MRG15 genes as novel potential candidates for breast cancer susceptibility, to further examine the prevalence of the cancer-related PALB2 c.1592delT mutation among BRCA-negative high-risk breast cancer families counselled at the Department of Clinical Genetics, Oulu University Hospital, to identify Finnish Fanconi anaemia patients complementation groups as well as causative mutations, and to evaluate the potential role of these mutations in breast cancer susceptibility. The analysis of 121 familial breast cancer cases revealed altogether seven different sequence changes in the AATF gene. However, none of them were considered pathogenic, suggesting that germline mutations in AATF are rare or absent in breast cancer patients. Investigation of the MRG15 gene among familial breast cancer cases revealed seven previously unreported variants, but in silico analyses revealed that none of these variants appeared to modify the function of MRG15. The results suggest that MRG15 alterations are unlikely to be significant breast cancer susceptibility alleles. A previously identified pathogenic PALB2 mutation, c.1592delT, was identified in three patients from a cohort of 62 high-risk BRCA1/2-negative breast cancer patients from the Department of Clinical Genetics. PALB2 c.1592delT mutation testing should thus be a routine part of the genetic counselling protocol, particularly for BRCA1/2-negative high-risk breast cancer patients. Investigation of the complementation groups of Finnish Fanconi anaemia patients revealed a total of six different causative mutations. These mutations were examined further by analysing their prevalence in large cohorts of breast (n=1840) and prostate (n=565) cancers. However, no significant association emerged between cancer predisposition and these FA mutations. / Tiivistelmä Arviolta 5−10 prosenttia kaikista rintasyöpätapauksista aiheutuu merkittävästä perinnöllisestä alttiudesta sairauteen. Tällä hetkellä tiedossa olevien rintasyövälle altistavien geenivirheiden ajatellaan kuitenkin selittävän vain noin 20−30 prosenttia kaikista perinnöllisistä tapauksista. On todennäköistä, että uusia tekijöitä, jotka osallistuvat rintasyövän patomekanismiin, on vielä löytymättä. Tämän tutkimuksen tarkoituksena oli arvioida AATF- ja MRG15-geeneissä esiintyvien muutosten mahdollista vaikutusta rintasyöpäalttiuteen, tutkia tarkemmin PALB2 c.1592delT -mutaation esiintymistä BRCA-mutaationegatiivisten korkean rintasyöpäriskin potilaiden joukossa (perinnöllisyyspoliklinikka, Oulun yliopistollinen sairaala) ja määrittää suomalaisten Fanconi-anemiapotilaiden komplementaatioryhmät, sairauden taustalla olevat mutaatiot sekä tutkia näihin mutaatioihin mahdollisesti liittyvää rintasyöpäriskiä. 121 familiaalisen rintasyöpätapauksen analyysissä löytyi yhteensä seitsemän erilaista sekvenssimuutosta AATF-geenissä. Näistä yksikään ei kuitenkaan ollut selvästi patogeeninen. Tuloksen perusteella perinnölliset rintasyövälle altistavat muutokset AATF-geenissä ovat joko erittäin harvinaisia tai niitä ei esiinny lainkaan. MRG15-geenin mutaatioanalyysissä havaittiin seitsemän aikaisemmin raportoimatonta muutosta, mutta in silico -analyysien perusteella millään muutoksista ei ole vaikutusta MRG15-proteiinin toimintaan. Tulosten perusteella on epätodennäköistä, että MRG15-geenin muutokset olisivat merkittäviä rintasyövälle altistavia muutoksia. Jo aiemmin patogeeniseksi todettu PALB2 c.1592delT -mutaatio löydettiin kolmelta niistä perinnöllisyyspoliklinikan korkean syöpäriskin 62 potilaasta, jotka olivat BRCA1/2-geenitestauksessa saaneet normaalin tuloksen. Tulostemme perusteella PALB2 c.1592delT -mutaatiotestaus tulisi Suomessa ottaa osaksi perinnöllisyyspoliklinikoiden tarjomaa tutkimusprotokollaa. Suomalaisten Fanconi-anemiapotilaiden komplementaatioryhmiä selvittävässä tutkimuksessa identifioitiin yhteensä kuusi erilaista tautia aiheuttavaa mutaatiota. Näiden muutosten esiintymistä tutkittiin myös laajoissa rinta- (n=1840) ja eturauhassyöpäaineistoissa (n=565). Tilastollisesti merkittävää assosiaatiota ei kuitenkaan todettu suomalaisten FA-mutaatioiden ja syöpäalttiuden välillä.
106

A Study of Single-stranded DNA Gaps in the Response to Replication Stress and Synthetic Lethality

Cong, Ke 03 January 2022 (has links)
Mutations in the hereditary breast/ovarian cancer genes BRCA1/2 were shown to be synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). This toxicity is assumed to derive from PARPi-induced DNA double strand breaks (DSBs) that necessitate BRCA function in homologous recombination (HR) and/or fork protection (FP). However, PARPi accelerates replication forks. While high-speed replication could cause DSBs, the finding that PARPi leads to single-stranded DNA (ssDNA) gaps/nicks suggests replication gaps could also or alone be the cause of synthetic lethality. Here, we demonstrate that PARPi toxicity derives from replication gaps. Isogenic cells deficient in BRCA1 or the BRCA1-associated FANCJ, with common DNA repair defects in HR and FP, exhibit opposite responses to PARPi. Deficiency in FANCJ, a helicase also mutated in hereditary breast/ovarian cancer and Fanconi anemia, causes aberrant accumulation of fork remodeling factor HLTF and limits unrestrained DNA synthesis with ssDNA gaps. Thus, we predict replication gaps as a distinguishing factor and further uncouple HR, FP and fork speed from PARPi response. BRCA-deficient cells display excessive gaps that are diminished upon resistance, restored upon re-sensitization and when targeted augment synthetic lethality with PARPi. Furthermore, we define the source of gaps to defects in Okazaki fragment processing (OFP). Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1 but aberrantly low XRCC1 indicating a defective backup OFP pathway. Remarkably, 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. Collectively, our study highlights unprotected lagging strand gaps as a determinant of synthetic lethality, providing a new paradigm and biomarker for PARPi toxicity.
107

Role of the <em>RNF8</em>, <em>UBC13</em>, <em>MMS2</em> and <em>RAD51C</em> DNA damage response genes and rare copy number variants in hereditary predisposition to breast cancer

Vuorela, M. (Mikko) 03 December 2013 (has links)
Abstract Mutations in the currently known breast cancer susceptibility genes account for only 25–30% of all familial cases. Novel susceptibility genes can be identified by several methods, including candidate gene re-sequencing and genome-wide microarrays. We have applied microarrays for the detection of a new genomic variation class, copy number variants (CNVs), which potentially could disrupt genes in multiple pathways related to breast cancer susceptibility. The aim of the current study was to evaluate the role of the RNF8, UBC13, MMS2 and RAD51C DNA damage response genes in breast cancer susceptibility as well as to study if rare CNVs are associated with the predisposition to this disease. The analysis of 123 familial breast cancer cases revealed altogether nine different changes in the RNF8 and UBC13 candidate genes. However, none of the observed alterations were considered pathogenic. No alterations were observed in MMS2. The obtained results suggest that breast cancer predisposing alterations in RNF8, UBC13 and MMS2 are rare, or even absent. The RAD51C mutation screening of 147 familial breast cancer cases and 232 unselected ovarian cancer cases revealed two deleterious mutations: c.-13_14del27 was observed in a breast cancer case with familial history of ovarian cancer and c.774delT in an ovarian cancer case. Both mutations were absent in the control cohort. The results of the study support the hypothesis that rare variants of RAD51C predispose predominantly to ovarian cancer. A genome-wide scan of CNVs was performed for 103 familial breast cancer cases and 128 controls. The biological networks of the genes disrupted by CNVs were different between the two groups. In familial breast cancer cases, the observed mutations disrupted genes, which were significantly overrepresented in cellular functions related to maintenance of genomic integrity (P=0.0211). Biological network analysis showed that the disrupted genes were closely related to estrogen signaling and TP53-centered tumor suppressor network, and this result was confirmed by the analysis of an independent young breast cancer cohort of 75 cases. These results suggest that rare CNVs represent an alternative source of genetic variation contributing to hereditary risk for breast cancer. / Tiivistelmä Tunnetut rintasyöpäalttiusgeenien mutaatiot selittävät vain 25–30 prosenttia kaikista perinnöllisistä rintasyöpätapauksista. Uusia alttiusgeenejä voidaan tunnistaa useilla eri menetelmillä, kuten kandidaattigeenien mutaatiokartoituksella ja genomin-laajuisilla mikrosirutekniikoilla. Tässä tutkimuksessa sovelsimme mikrosirutekniikkaa uuden geneettisen variaatioluokan, kopiolukuvariaation (CNV), tutkimiseen. CNV:t voivat vaurioittaa lukuisia rintasyöpäalttiuteen liittyviä biokemiallisia reittejä. Tämän tutkimuksen tarkoitus oli arvioida RNF8-, UBC13-, MMS2- ja RAD51C -DNA- vauriovastegeenien sekä harvinaisten CNV:iden yhteyttä rintasyöpä-alttiuteen. 123 familiaalisen rintasyöpätapauksen analyysissä löytyi yhteensä yhdeksän muutosta RNF8- ja UBC13-geeneistä, joista yksikään ei osoittautunut patogeeniseksi. MMS2-geenissä ei havaittu muutoksia. Tulosten perusteella rintasyövälle altistavat muutokset RNF8-, UBC13- ja MMS2- geeneissä ovat joko erittäin harvinaisia tai niitä ei esiinny lainkaan. RAD51C-geenin mutaatiokartoitus 147 familiaalisesta rintasyöpätapauksesta sekä 232 valikoimattomasta munasarjasyöpätapauksesta paljasti kaksi haitallista mutaatiota. c.-13_14del27 havaittiin rintasyöpäpotilaalla, jonka suvussa esiintyi munasarjasyöpää, ja c.774delT todettiin munasarjasyöpäpotilaalta. Kumpaakaan mutaatiota ei havaittu verrokkiaineistossa. Tulokset vahvistavat hypoteesia RAD51C-geenin harvinaisten varianttien yhteydestä pääasiassa munasarjasyöpäriskiin. CNV:iden genomin-laajuinen skannaaminen suoritettiin 103 familiaaliselle rintasyöpätapaukselle ja 128 verrokille. CNV:iden häiritsemien geenien muodostamat biologiset verkostot olivat erilaiset näiden kahden ryhmän välillä. Familiaalisilla rintasyöpätapauksilla havaitut CNV:t vaikuttivat geeneihin, jotka olivat voimakkaasti korostuneita genomin eheyttä ylläpitävissä tehtävissä (P=0.0211). Biologisten verkostojen analyysi paljasti, että CNV:iden vahingoittamat geenit liittyivät läheisesti estrogeenisignalointiin sekä TP53-tuumorisupressoriverkostoon, ja tämä tulos vahvistettiin analysoimalla riippumatonta nuorista rintasyöpäpotilaista koostuvaa kohorttia (N=75). Tutkimuksen tulosten mukaan harvinaiset CNV:t ovat vaihtoehtoinen geneettisen variaation lähde perinnölliseen rintasyöpäalttiuteen.
108

The Fanconi anemia signaling network regulates the mitotic spindle assembly checkpoint

Enzor, Rikki S. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fanconi anemia (FA) is a heterogenous genetic syndrome characterized by progressive bone marrow failure, aneuploidy, and cancer predisposition. It is incompletely understood why FA-deficient cells develop gross aneuploidy leading to cancer. Since the mitotic spindle assembly checkpoint (SAC) prevents aneuploidy by ensuring proper chromosome segregation during mitosis, we hypothesized that the FA signaling network regulates the mitotic SAC. A genome-wide RNAi screen and studies in primary cells were performed to systematically evaluate SAC activity in FA-deficient cells. In these experiments, taxol was used to activate the mitotic SAC. Following taxol challenge, negative control siRNA-transfected cells appropriately arrested at the SAC. However, knockdown of fourteen FA gene products resulted in a weakened SAC, evidenced by increased formation of multinucleated, aneuploid cells. The screen was independently validated utilizing primary fibroblasts from patients with characterized mutations in twelve different FA genes. When treated with taxol, fibroblasts from healthy controls arrested at the mitotic SAC, while all FA patient fibroblasts tested exhibited weakened SAC activity, evidenced by increased multinucleated cells. Rescue of the SAC was achieved in FANCA patient fibroblasts by genetic correction. Importantly, SAC activity of FANCA was confirmed in primary CD34+ hematopoietic cells. Furthermore, analysis of untreated primary fibroblasts from FA patients revealed micronuclei and multinuclei, reflecting abnormal chromosome segregation. Next, microscopy-based studies revealed that many FA proteins localize to the mitotic spindle and centrosomes, and that disruption of the FA pathway results in supernumerary centrosomes, establishing a role for the FA signaling network in centrosome maintenance. A mass spectrometry-based screen quantifying the proteome and phospho-proteome was performed to identify candidates which may functionally interact with FANCA in the regulation of mitosis. Finally, video microscopy-based experiments were performed to further characterize the mitotic defects in FANCA-deficient cells, confirming weakened SAC activity in FANCA-deficient cells and revealing accelerated mitosis and abnormal spindle orientation in the absence of FANCA. These findings conclusively demonstrate that the FA signaling network regulates the mitotic SAC, providing a mechanistic explanation for the development of aneuploidy and cancer in FA patients. Thus, our study establishes a novel role for the FA signaling network as a guardian of genomic integrity.

Page generated in 0.0346 seconds