• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 27
  • 26
  • 10
  • 7
  • 4
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 163
  • 50
  • 43
  • 34
  • 22
  • 21
  • 18
  • 17
  • 17
  • 17
  • 15
  • 13
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Étude de la dynamique de spin du trou dans les boîtes quantiques d'InAs/GaAs : pompage optique, relaxation, effets nucléaires

Fras, François 02 December 2011 (has links) (PDF)
Le spin d'un porteur dans une boîte quantique semiconductrice constitue une observable bien protégée des mécanismes de relaxation fonctionnant dans les matériaux massif, et constitue ainsi un candidat prometteur pour devenir un nouveau support de l'information, dans des dispositifs pour l'électronique de spin et le calcul quantique. Dans cette thèse, plusieurs aspects de la dynamique de spin du trou dans les BQs d'InAs sont abordés. La première partie est consacrée à la description microscopique de l'expérience pompe-sonde résolue en polarisation ainsi qu'à l'exposé des mécanismes de polarisation de spin du trou sous excitation résonnante et non résonnante. Dans un second temps, la question des mécanismes qui induisent la relaxation complète du spin du trou est adressée. La polarisation de spin du trou relaxe partiellement par interaction hyperfine dans un temps caractéristique d'environ 10 ns. Pour étudier des dynamiques plus longues, nous avons mis au point une technique de détection originale permettant de sonder des dynamiques millisecondes. Afin de confirmer la nature exacte des processus mis en jeux, les dépendances du temps de relaxation de spin du trou en fonction du champ magnétique et de la température ont été étudiées. Nous avons également mené une étude sur la possibilité de polariser les spin nucléaires de la boîte quantique. La polarisation dynamique des noyaux a déjà été observée dans les boites quantiques. Néanmoins cette polarisation a toujours été associée à l'électron. Nous avons obtenu une signature de la polarisation nucléaire qui pourrait être induite par le spin du trou. Cette polarisation nucléaire se manifeste par un champ magnétique effectif sur le trou de l'ordre du milliTesla. La polarisation nucléaire dotée d'un temps de vie de spin très long (ms) peut, à son tour devenir, un support robuste de l'information de spin. Le dernier traite de la cohérence du Qbit formé par le spin du trou. Pour obtenir des informations sur ce point, nous avons réaliser des expériences en champ magnétique transverse où l'on mesure la projection du spin suivant une direction orthogonale à la base des états stationnaires de l'énergie. A travers la synchronisation des modes de précession des différentes boîtes quantiques, nous avons déterminé le temps de cohérence intrinsèque du spin du trou aux alentours d'une microseconde. Une valeur de cette ordre démontre, d'une part, l'intérêt du spin du trou en tant que brique élémentaire pour coder l'information quantique, et d'autre part, ouvre la porte à des manipulations fines comme le contrôle de la phase du Qbit par effet Stark optique.
152

Ultraschnelle Ladungsträger- und Spindynamik in II-VI und III-V Halbleitern mit weiter Bandlücke

Raskin, Maxim 11 October 2013 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von verdünnten magnetischen II-VI und III-V Halbleiter-Dünnschichten. Diese Systeme bieten vereinfachte optische kohärente Kontrolle von Spin-basierten Prozessen und eignen sich hervorragend für den Einsatz in zukünftigen opto-magnetischen Anwendungen. ZnO-, ZnXO-, GaN- und GaXN-Proben (X = Mangan, Cobalt) sind mit Hilfe der naßchemischen Sol-Gel Synthese hergestellt worden. Sie werden mit Hilfe der Photolumineszenzspektroskopie untersucht. Die spektrale Position der elektronischen Niveaus in der Nähe der Bandkante dieser Materialien wird bestimmt, um in weiteren Experimenten die freien und gebundenen Exzitonen einzeln abzufragen. Mit der Methode der zeitaufgelösten differentiellen Transmissionsspektroskopie (TRDT) werden die Lebensdauern dieser Ladungsträger bestimmt und mit ultraschnellen Prozessen der optischen Anregung und Relaxation in Verbindung gebracht. Die Methode der zeitaufgelösten Faraday-Rotation-Spektroskopie (TRFR) wird angewandt, um die kohärente Spindynamik des optisch angeregten Teilchenensembles zu beschreiben. Die Kohärenz unterliegt den Störeinflüssen verschiedener Streumechanismen, die in der vorliegenden Arbeit identifiziert und quantitativ beschrieben werden. Bei einigen untersuchten Materialsystemen (ZnCoO, ZnMnO und GaMnN) wird die jeweilige spezifische Elektron-Ion Austauschenergie N0α bestimmt, welche die Kopplungsstärke der elektronischen Spins zu denen der Dotierionen beschreibt.
153

Experiments on the 852 nm D2 Line of 133Cs with a Diode Laser System and their use in Measurement of the Permanent Electric Dipole Moment of the Electron

Ravi, Harish January 2016 (has links) (PDF)
We give a brief introduction to atomic physics and the motivation behind our experiments in the first chapter. The electron’s electric dipole moment is an interesting quantity which is yet to be measured. In the 3rd Chapter, we use the technique of chopped non-linear magneto-optic rotation (NMOR) in a room temperature Cs vapor cell to measure the permanent electric dipole moment (EDM) in the atom. The cell has paraffin coating on the walls to increase the relaxation time. The signature of the EDM is a shift in the Larmor precession frequency correlated with the application of an E field. We analyze errors in the technique, and show that the main source of systematic error is the appearance of a longitudinal magnetic field when an electric field is applied. This error can be eliminated by doing measurements on the two ground hyperfine levels. Using an E field of 2.6 kV/cm, we place an upper limit on the electron EDM of 2.9 × 10−22 e-cm with 95% confidence. This limit can be increased by 7 orders-of-magnitude—and brought below the current best experimental value. We give future directions for how this may be achieved. In chapter 4, we examine the Hanle effect for linear and circularly polarized light for different ground states and we find opposite behavior in the transmission signal. In one case, it shifts from enhanced transmission to enhanced absorption and vice-versa in the other case. In Chapter 5, we study the transmission spectrum at different temperatures and device a way to find the number density. We then verify the Clausius-Clapeyron equation and also find the latent heat of vaporization of Cs. Finally, we wrap up with conclusions and future directions.
154

Relativistic theory of laser-induced magnetization dynamics

Mondal, Ritwik January 2017 (has links)
Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization. Employing the ab initio relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only asymmetric for ferromagnets.
155

Ultraschnelle Ladungsträger- und Spindynamik in II-VI und III-V Halbleitern mit weiter Bandlücke

Raskin, Maxim 10 October 2013 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von verdünnten magnetischen II-VI und III-V Halbleiter-Dünnschichten. Diese Systeme bieten vereinfachte optische kohärente Kontrolle von Spin-basierten Prozessen und eignen sich hervorragend für den Einsatz in zukünftigen opto-magnetischen Anwendungen. ZnO-, ZnXO-, GaN- und GaXN-Proben (X = Mangan, Cobalt) sind mit Hilfe der naßchemischen Sol-Gel Synthese hergestellt worden. Sie werden mit Hilfe der Photolumineszenzspektroskopie untersucht. Die spektrale Position der elektronischen Niveaus in der Nähe der Bandkante dieser Materialien wird bestimmt, um in weiteren Experimenten die freien und gebundenen Exzitonen einzeln abzufragen. Mit der Methode der zeitaufgelösten differentiellen Transmissionsspektroskopie (TRDT) werden die Lebensdauern dieser Ladungsträger bestimmt und mit ultraschnellen Prozessen der optischen Anregung und Relaxation in Verbindung gebracht. Die Methode der zeitaufgelösten Faraday-Rotation-Spektroskopie (TRFR) wird angewandt, um die kohärente Spindynamik des optisch angeregten Teilchenensembles zu beschreiben. Die Kohärenz unterliegt den Störeinflüssen verschiedener Streumechanismen, die in der vorliegenden Arbeit identifiziert und quantitativ beschrieben werden. Bei einigen untersuchten Materialsystemen (ZnCoO, ZnMnO und GaMnN) wird die jeweilige spezifische Elektron-Ion Austauschenergie N0α bestimmt, welche die Kopplungsstärke der elektronischen Spins zu denen der Dotierionen beschreibt.
156

Development and Optimization of an Integrated Faraday Modulator and Compensator Design for Continuous Polarimetric Glucose Monitoring

Clarke, Brandon William 22 August 2013 (has links)
No description available.
157

Experiments with Coherently-Coupled Bose-Einstein condensates: from magnetism to cosmology

Cominotti, Riccardo 16 November 2023 (has links)
The physics of ultracold atomic gases has been the subject of a long standing theoretical and experimental research over the last half century. The development of evaporative cooling techniques and the realization of the first Bose-Einstein Condensate (BEC) in 1995 gave a great advantage to the field. A great experimental knowledge of the fundamental properties of BECs, such as long-range coherence, superfluidity and topological excitations, has now been acquired. On top of these advances, current research on ultracold atoms is also focusing on quantum simulations, which aim at building analogue models of otherwise difficult to compute physical systems in the lab. In this context, BECs, with their enhanced coherence, many-body dynamics and superfluid character offer a powerful platform for advances in the field. Shortly after the first realization of a BEC, research started also investigating the physics of quantum mixtures of a BECs, either composed of different atomic species or isotopes, or of atoms occupying different hyperfine states. The latter are known as spin mixtures, or spinor condensates. The presence of multiple components interacting through mutual contact interactions enriches the physics of the condensate, introducing ground states with magnetic ordering as well as spin dynamics, which can be order of magnitudes less energetic than the density one. On top of this, hyperfine states can be coherently coupled with an external resonant radiation. Interesting physics arises when the strength of the coupling is comparable with the energy of spin excitations, an example of which is given by the emergence of the internal Josephson effect. This regime has been the subject of intense theoretical studies in the past twenty years, however its experimental realization on ultracold atomic platforms have been proven to be challenging, with experiments strongly limited by coherence times of few tens of milliseconds. In fact, the small energy scale of spin excitations reflects in a high sensitivity coupling to environmental magnetic noise, which affects the resonant condition. The experimental apparatus on which I worked during my Ph.D. solve this problem employing a magnetic shield that surrounds the science chamber, attenuating external magnetic fields by 6 orders of magnitudes. During my Ph.D., I investigated the properties of a coherently coupled mixture of BEC of Sodium 23, performing different experiments in two atomic configurations. The first configuration consist of a mixture of hyperfine states, namely the |F=1, mF = -1> and |F=1, mF = +1>, coupled by a two-photon transition, which is characterized by miscibility in the ground state. Another configuration was instead realized working with a strongly immiscible mixture of |F=1, mF=-1> and |F=2, mF = -2>, realized through with a one photon transition. My first experiment was devoted to the characterization of different methods of manipulation of the coupled miscible mixture in an elongated quasi-1D geometry. In Local Density Approximation (LDA), The dynamics of the system, depends on the atom number difference, the relative phase, and coupling to mean field energy ratio, can be fully described as an internal Josephson junction. We characterized this dynamics on a sample an inhomogeneous spatial profile, developing three different protocols for state manipulations. In a second experiment, I developed a protocol to generate Faraday waves in an unpolarized miscible mixture. Faraday waves are classical non-linear waves characterized by a regular pattern, that originate in classical and quantum fluids via a parametric excitation in the fluid. Interestingly enough, this process resembles the phase of reheating of the early universe, where the oscillation of the inflaton field is thought to have excited particles out of the vacuum. In analogy with this phenomenon, the oscillation of the inflaton field can be simulated with the periodic modulation of the trapping potential. On top of this, in a spin mixture, the parametric modulation can excite either in-phase (density) modes or out-of-phase (spin) modes, as two possible elementary excitations are present in the system. By extracting the spatial periodicity of the generated pattern at different modulation frequencies, I was then able to measure the dispersion relations for both density and spin modes of the system. In the presence of the coherent coupling, when spin excitations becomes gapped, we further demonstrate the scaling of the gap with the strength of the coupling radiation. The third experiment I realized concerned the characterization of the magnetic ground state of a spatially extended immiscible mixture in the presence of the coherent coupling. The Hamiltonian of such a system is formally equivalent to a continuous version of the transverse field Ising model, which describes magnetic materials at zero temperature. In this mapping, a nonlinear interaction term arises from the ratio between the self-interaction energy and the strength of the coupling, which acts as the transverse field. As the ratio between the two quantities is varied above and below one, the ground state of the system spontaneously changes from a paramagnetic phase to an ordered ferromagnetic phase, featuring two equivalent and opposite magnetizations, a signature of the occurrence of a second order quantum phase transition (QPT). Furthermore, in the magnetic model, the degeneracy between the two ferromagnetic ground states can be broken by introducing an additional longitudinal field. In the atomic case, the role of this additional field is taken by the detuning between the coupling radiation and the resonant transition frequency of non-interacting atoms. I characterized the QPT developing protocols to manipulate the spin mixture in its spatially extended ground state, varying the longitudinal field. Leveraging on the inhomogeneity of a BEC trapped in the harmonic potential, a smooth variation of the spin self-interaction energy occurs spontaneously in space, introducing different magnetic regimes at fixed coupling strength. These protocols gave access to a characterization of static properties typical of magnetic materials, such as the presence of an hysteresis cycle. The occurrence of the phase transition was instead validated by a measurement of the magnetic susceptibility and corresponding fluctuations, which both show a divergence when crossing the QPT critical point. At last, I developed a protocol to smoothly manipulate the position of magnetic domain walls, the least energetic excitations in a ferromagnet. While the previous study focused on static properties, the last experimental investigation presented in this thesis was devoted to the study of the dynamics of the metastable ferromagnetic region of the BEC. As a result of the presence of an hysteresis cycle, it is possible to engineer states of the ferromagnetic energy landscape that are homogeneously prepared either in the global minimum, with trivial dynamics, or in the metastable, higher energy, local minima. In the latter case, a classical system should eventually decay towards the global minimum, driven by temperature fluctuations which overtop the energy barrier separating the two minima. For a quantum system described by a field theory, such as a ferromagnetic BEC, the decay towards the global minimum occurs by tunneling through the barrier, triggered by quantum fluctuations. The event of tunneling is known as False Vacuum Decay (FVD), and is of outstanding relevance also for high energy physics and cosmology, were the first theoretical models were developed. In the FVD model, the decay towards the global minimum, the true vacuum, is a stochastic process that occurs only if a resonant bubble of true vacuum is formed. Once formed, the bubble will eventually expand throughout the whole system, as the true vacuum is energetically favorable. The probability for such a bubble to form can be approximately calculated analytically in 1D, and should depend exponentially on the height of the barrier the field has to tunnel through. Due to the exponentially long time scale of the process, experimental observations of FVD were still lacking. Thanks to the enhanced coherence time of the superfluid ferromagnetic mixture, and to the precise control of the barrier height through the detuning from atomic resonance, we were able to observe the event of bubble nucleation in a ferromagnetic BEC. To corroborate the observation, I measured the characteristic timescale of the decay for different values of the control parameters. Results were successfully compared first with numerical simulation, and then validated by instanton theory.
158

Electrochemical and Photocatalytic Oxidation of Hydrocarbons

Rismanchian, Azadeh January 2014 (has links)
No description available.
159

Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature.

Karri, Avinash 12 1900 (has links)
Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are look up at the database value to give the actual output. Controlled environment is maintained to record the values in the database that maps the current and temperature magnitude values at the DSP lock in amplifier, to the actual temperature and current. By this method we can achieve better compensation to the temperature changes, with a large dynamic range and better sensitivity and accuracy.
160

Mise en évidence de nouveaux types de vagues de très grandes amplitudes

Leroux, Alphonse 08 November 2013 (has links) (PDF)
Au moyen d'une expérience d'excitation paramétrique d'onde de surface, nous mettons en évidence l'existence de nouveaux types d'ondes solitaires et stationnaires à la surface de l'eau. Ces ondes de grande amplitude sont très non-linéaires et l'étude théorique réalisée ne permet pas de rendre compte de la forme des vagues mais permet de comprendre l'origine du phénomène d'hystérésis observé qui est nécessaire à la compréhension des phénomènes observés. En effet, l'existence de ces ondes (dans notre configuration expérimentale) est conditionnée par la présence d'un domaine de bistabilité dans le plan amplitude d'excitation - amplitude des vagues au coeur duquel nous avons montré qu'il était possible d'avoir coexistence de deux solutions, une d'amplitude nulle et une d'amplitude non nulle. Ces expériences en géométrie Hele-Shaw ont aussi permis de mettre en évidence des ondes enveloppes qui ne sont encore décrit par aucun modèle existant. Il s'agit à notre connaissance de la première onde enveloppe stationnaire observé à la surface de l'eau. Nous mettons aussi en évidence des ondes de gravité de très grande amplitude, qui sont formées alternativement d'étoiles et de polygones. Nous montrons que la symétrie du motif (nombre de branche de l'étoile) est indépendante de la taille et de la forme du récipient vibré. Nous montrons qu'un mécanisme de couplage non-linéaire résonant à trois ondes peut expliquer cette géométrie, bien que cette possibilité fut rejetée pour des ondes purement gravitaire.

Page generated in 0.0686 seconds