• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 588
  • 64
  • Tagged with
  • 652
  • 652
  • 651
  • 51
  • 49
  • 46
  • 42
  • 41
  • 40
  • 38
  • 36
  • 35
  • 34
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

An Investigation of the Iron-Ore Wheel Damages using Vehicle Dynamics Simulation

Hossein Nia, Saeed January 2014 (has links)
Maintenance cost is one of the important issues in railway heavy haul operations. For the iron-ore company LKAB, these costs are mainly associated with the reprofiling and changing of the wheels of the locomotives and wagons. The main reason for the wheel damages is usually surface initiated rolling contact fatigue (RCF) on the wheels.The present work tries to enhance and improve the knowledge of the vehicle-track interaction of the Swedish iron-ore freight wagons and locomotives used at Malmbanan. The study is divided into two parts. Firstly, it is tried to get into the roots of RCF using the simulation model of the iron ore wagon (Paper A). Secondly, the study is focused on predicting wear and RCF on the locomotive wheels also via a dynamic simulation model (Paper B).In the first paper, some key issues of the dynamic modelling of the wagons with three piece bogies are first discussed and then parameter studies are carried out to find the most important reasons of wheel damages. These parameter studies include track design geometry, track irregularities, wheel-rail friction level, cant deficiency and track stiffness. The results show a significant effect of the friction level on the amount of RCF risk.As the locomotive wheel life is much shorter than that of the wagons, LKAB has decided to change the locomotive wheel profile. Two final wheel profiles are proposed; however, one had to be approved for the field tests. In the second paper, the long term evolution of the two profiles is compared via wear simulation analysis. Also, the RCF evolution on the wheel profiles as a function of running distance is discussed. The process is first carried out for the current locomotive wheel profiles and the results are compared with the measurements. Good agreement is achieved. Finally, one of the proposed profiles is suggested for the field test because of the mild wear and RCF propagation. / <p>QC 20150210</p>
332

Numerical study on multi-pantograph railway operation at high speed

Liu, Zhendong January 2015 (has links)
Multi-pantograph operation allows several short electric multiple unit (EMU) trainsets to be coupled or decoupled to adapt to daily or seasonal passenger-flow variation. Although this is a convenient and efficient way to operate rolling stock and use railway infrastructure, pantographs significantly influence each other and even significantly change the dynamic behaviour of the system compared to single-pantograph operation in the same condition. The multi-pantograph system is more sensitive and vulnerable than the single-pantograph system, especially at high operational speeds or with pantographs spaced at short distances. Heavy oscillation in the system can result in low quality of current collection, electromagnetic interference, severe wear on the contact surfaces or even structural damage. The mechanical interaction between the pantograph and the catenary is one of the key issues which limits the maximum operational speed and decides the maintenance cost.     Many researchers have paid a lot of attention to the single-pantograph operation and have made great progress on system modelling, optimizing, parameter studies and active control. However, how the pantographs in a train configuration affect each other in multi-pantograph operation and which factors limit the number of pantographs is not fully investigated. Nowadays, to avoid risking operational safety, there are strict regulations to limit the maximum operational speed, the maximum number of pantographs in use, and the minimum spacing distance between pantographs. With the trend of high-speed railways, there are huge demands on increasing operational speed and shortening spacing distance between pantographs. Furthermore, it is desirable to explore more practical and budget-saving methods to achieve higher speed on existing lines without significant technical modification.     In addition to a literature survey of the dynamics of pantograph-catenary systems, this thesis carries out a numerical study on multi-pantograph operation based on a three-dimensional pantograph-catenary finite element (FE) model. In this study, the relationship between dynamic performance and other parameters, i.e. the number of pantographs in use, running speed and the position of the pantographs, are investigated. The results show that the spacing distance between pantographs is the most critical factor and the trailing pantograph does not always suffer from deterioration of the dynamic performance. By discussing the two-pantograph operation at short spacing distances, it is found that a properly excited catenary caused by the leading pantograph and the wave interference between pantographs can contribute to an improvement on the trailing pantograph performance. To avoid the additional wear caused by poor dynamic performance on the leading pantograph and achieve further improvement at high speeds, it is suggested to use the leading pantograph as an auxiliary pantograph, which does not conduct any electric current and optimize the uplift force on the leading pantograph. After a brief discussion on some system parameter deviations, it is shown that a 30% of speed increase should be possible to achieve while still sustaining a good dynamic performance without large modifications on the existing catenary system. / <p>QC 20150928</p>
333

Controlling the Roll Responses of PCTC's

Söder, Carl-Johan January 2013 (has links)
Modern Panamax Pure Car and Truck Carriers (PCTC) have become more vulnerable to critical roll responses as built in margins have been traded against increased transport efficiency. The research presented in this licentiate thesis aims at enhancing the predictability and control of these critical roll responses. The thesis presents the development of a new method for assessing the roll damping, which is a crucial parameter for predicting roll motions. The method involves a unique set up of full scale in-service trials and is straightforward, cost efficient and shows a good potential. The thesis also includes a demonstration of a new application for rudder control to be used for mitigation of parametric roll. This is performed by simulating real incidents that have occurred with PCTC’s in service. Simulations with rudder roll control show promising results and reveal that the approach could be very efficient for mitigation of parametric roll. Last but not least an approach for monitoring of roll induced stresses, so-called racking stresses in PCTC’s, is presented. The approach involves measurement of the ship motions and scaling of pre-calculated structural responses from global finite element analysis. Based on full scale motion and stress measurements from a PCTC in-service the approach is evaluated and demonstrated to be an efficient alternative to conventional methods. / <p>QC 20130424</p>
334

Faults and their influence on the dynamic behaviour of electric vehicles

Wanner, Daniel January 2013 (has links)
The increase of electronics in road vehicles comes along with a broad variety of possibilitiesin terms of safety, handling and comfort for the users. A rising complexityof the vehicle subsystems and components accompanies this development and has tobe managed by increased electronic control. More potential elements, such as sensors,actuators or software codes, can cause a failure independently or by mutually influencingeach other. There is a need of a structured approach to sort the faults from avehicle dynamics stability perspective.This thesis tries to solve this issue by suggesting a fault classification method and faulttolerantcontrol strategies. Focus is on typical faults of the electric driveline and thecontrol system, however mechanical and hydraulic faults are also considered. Duringthe work, a broad failure mode and effect analysis has been performed and the faultshave been modeled and grouped based on the effect on the vehicle dynamic behaviour.A method is proposed and evaluated, where faults are categorized into different levelsof controllability, i. e. levels on how easy or difficult it is to control a fault for the driver,but also for a control system.Further, fault-tolerant control strategies are suggested that can handle a fault with acritical controllability level. Two strategies are proposed and evaluated based on thecontrol allocation method and an electric vehicle with typical faults. It is shown thatthe control allocation approaches give less critical trajectory deviation compared to noactive control and a regular Electronic Stability Control algorithm.To conclude, this thesis work contributes with a methodology to analyse and developfault-tolerant solutions for electric vehicles with improved traffic safety. / <p>QC 20131010</p>
335

Mechanical Properties of Resistance Spot Welds in Lightweight Applications

Afshari, Davood January 2013 (has links)
This licentiate thesis is concerned with residual stresses in aluminum alloy 6061-T6 resistance spot welded joint. Several topics related to mechanical strength of welded structures are treated such as; nugget size and microhardness and microstructures of weld zone and their influence on mechanical strength of welded structure, failure load measurement using tensile-shear test, resistance spot welding simulation, residual stress measurement by X-ray diffraction method and analysis effect of welding parameters on the mechanical strength and the residual stresses. To investigate the effect of resistance spot weld parameters on mechanical strength of welded structures, various welding parameters e.g. welding current, welding time and electrode force are selected to produce welded joints with different quality. According to the failure mode, the empirical equation was used to prediction of failure load base on nugget size and hardness of failure line. Microstructure study has been carried out to investigate microstructural changes in the welded joints. Microhardness tests are done to find hardness profiles due to microstructural changes and determine the minimum hardness. In addition, an electro-thermal-structural coupled finite element model and X-ray diffraction residual stress measurement have been utilized to analyze residual stresses distribution in weld zone. The electrical and thermal contact conductance, as mandatory factors are applied in contact area between electrode-workpiece and workpiece-workpiece to resolve the complexity of the finite element model. The physical and mechanical properties of the material are defined as thermal-dependent in order to improve the accuracy of the model. Furthermore, the electrodes are removed after holding cycle using the birth and death elements method. Moreover, the effect of welding parameters on maximum residual stress is investigated and a regression model is proposed to predict maximum tensile residual stresses in terms of welding parameters. The results obtained from the finite element analysis have been used to build up two back-propagation artificial neural network models for the residual stresses and the nugget size prediction. The results revealed that the neural network models created in this study can accurately predict the nugget size and the residual stresses produced in resistance spot weld. Using a combination of these two developed models, the nugget size and the residual stresses can be predicted in terms of spot weld parameters with high speed and accuracy. / <p>QC 20131014</p> / No
336

Study of driver models forside wind disturbances

Qiu, Jie January 2013 (has links)
As the development of highways, it is quite normal for buses running in a speed around 100km/h. When buses are running in a high speed, they may suffer from the influence of side wind disturbances at anytime. Sometimes, it may result in traffic accidents. Therefore, the study of bus stability under side wind disturbances becomes more and more important. Due to restrictions of real tests, computer simulation can be used to study this subject. The bus side wind response character is reflected through the driver’s manoeuvre , so open-loop analysis is hard to give a comprehensive evaluation of the side wind stability of the bus. Therefore, closed-loop analysis is studied in this thesis. An ADAMS bus model and a side wind force model are developed in this thesis, along with two driver models, the PID control model and the preview curvature model. The driver models are built in Simulink and co-simulation between ADAMS/View and Simulink is conducted. The results of co-simulation show that the two driver models can both control the bus from deviating from the desired course under side wind disturbances. The PID control model is simple and shows a very good control effect. The maximum lateral displacement of the bus by PID control model is just 0.0205m under maximum side wind load 1000N and 2500Nm when preview time is 1.2s, while it is 0.0702m by preview curvature model, however, it is difficult to determine the coefficients Kd, Kp, and Ki in the PID controller. The preview curvature model also shows a good control effect in terms of the maximum lateral displacement and yaw angle of the bus. Comparing these two models, the PID control model is more sensitive to deviations, with quicker response and larger steering input. The bus model system is stable under side wind disturbances. Through driver ’s proper steering manoeuvre, the bus is well controlled. The closed-loop analysis is a good method to study the bus stability under side wind disturbances.
337

Conceptual lay-out of small launcher

Ballard, Claire January 2012 (has links)
The objective of this diploma thesis is to perform a conceptual lay-out of a small launcher. Re- quirements have been defined in order to realize this first preliminary study and design of a small launcher. In that frame, a MATLAB code has been written in order to simulate the rocket tra- jectories. An optimization program on launcher staging has been written as well. To validate this code, the VEGA and Ariane 5 launchers have been used. Then from studies on existing launchers, simulations have been performed in order to find an optimum small launcher and later on to design more precisely the small launcher. As a requirement an upper stage has been newly designed for the purpose of the study. At the end, two small launchers have been considered: a three-stage launcher using the Zefiro 23 as a first stage, the Zefiro 9 as a second stage, and an upper stage using a 3kN thrust engine; a two-stage launcher using the Zenit booster engine in the first stage, and an upper stage using a 22kN thrust engine.
338

Design of Multifunctional Body Panels in Automotive Applications : Reducing the Ecological and Economical footprint of the vehicle industry

Cameron, Christopher John January 2009 (has links)
Over the past century, the automobile has become an integral part of modern industrializedsociety. Consumer demands, regulatory legislation, and the corporate need togenerate a profit, have been the most influential factors in driving forward the evolutionof the automobile. As the comfort, safety, and reliability of the automobile haveincreased, so has its complexity, and most definitely its mass.The work within this thesis addresses the twofold problem of economy and ecologywith respect to sustainable development of automobiles. Specifically, the conflictingproblems of reducing weight, and maintaining or improving noise, vibration, andharshness behaviour are addressed. Potential solutions to these problems must also beexecutable at the same, or preferably lower production costs. The hypothesis is that byreplacing acoustic treatments, aesthetic details, and complex systems of structural componentsboth on the interior and exterior of the vehicle with a single multi-functionalbody panel, functionality can be retained at a reduced mass (i.e. reduced consumptionof raw materials) and reduced fiscal cost.A case study is performed focusing on the roof structure of a production vehicle. Fullvehicle and component level acoustic testing is performed to acquire acoustic functionalrequirements. Vibro-mechanical testing at the component level is performedto acquire structural functional requirements complimentary to those in the vehiclesdesign specifications. Finite element modelling and analysis is employed to createa model representative of the as-tested component and evaluate its acoustic and mechanicalbehaviour numerically. Results of numerical simulations are compared withthe measured results for both acoustic and mechanical response in order to verify themodel and firmly establish a set of acoustic and mechanical constraints for future work.A new, multi-layered, multi-functional sandwich panel concept is proposed which replacesthe outer sheet metal, damping treatments, transverse beams, and interior trimof the existing structure. The new panel is weight optimized to a set of structural constraintsand its acoustic properties are evaluated. Results show a significant reductionin mass compared to the existing system with no degradation of the acoustic environment.A discussion of the results is presented, as is a suggestion for future research.
339

EGR-Systems for Diesel Engines

Reifarth, Simon January 2010 (has links)
No description available.
340

Active Lateral Secondary Suspension in a High-Speed Train to Improve Ride Comfort

Orvnäs, Anneli January 2009 (has links)
Active secondary suspension in trains has been studied for a number of years, showing promising improvements in ride comfort. However, due to relatively high implementation and maintenance costs, active technology is not being used in service operation to a large extent. The objective of this study is to develop an active lateral secondary suspension concept that offers good ride comfort improvements and enables centring of the carbody above the bogies when negotiating curves at unbalanced speed. Simultaneously, the active suspension concept should be a cost-effective solution for future series production. The thesis consists of an introductory part and three appended papers. The introductory part describes the concept of active secondary suspension together with different actuator types and control methods. Further, the present simulation model and applied comfort evaluation methods are presented. The introductory part also comprises a summary of the appended papers, an evaluation of track forces and suggestions for further work. Paper A presents the initial development of an active lateral secondary suspension concept based on sky-hook damping in order to improve vehicle dynamic performance, particularly on straight tracks. Furthermore, a Hold-Off-Device (HOD) function has been included in the suspension concept in order to centre the carbody above the bogies in curves and hence avoid bumpstop contact. Preparatory simulations as well as the subsequent on-track tests in the summer of 2007 showed that the active suspension provides improved passenger ride comfort and has significant potential to be a cost-effective solution for future implementation. In Paper B, measurement results from on-track tests performed in 2008 are presented. The active secondary suspension concept was slightly modified compared to the one presented in the first paper. One modification was the implementation of a gyroscope in order to enable detection of transition curves and to switch off the dynamic damping in these sections. Ride comfort in the actively suspended carbody was significantly improved compared to that in the passively suspended car. The satisfactory results led to implementation of the active suspension system in long-term tests in service operation in the beginning of 2009. In Paper C, a quarter-car model in MATLAB has been used to investigate a more advanced control algorithm: H∞ instead of sky-hook. H∞ control provides more flexibility in the design process due to the possibility to control several parameters. In particular, this is done by applying weight functions to selected signals in the system. When comparing the two control strategies through simulations, the results show that H∞ control generates similar carbody accelerations at the same control force as sky-hook; however, the relative displacement displacement is somewhat lower.

Page generated in 0.0313 seconds