• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 1
  • Tagged with
  • 29
  • 29
  • 10
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Complexos elípticos e teoria de Hodge

Antunes, Jonier Amaral January 2012 (has links)
Este trabalho apresenta os conceitos envolvidos na definição de um complexo elíptico sobre uma variedade compacta M e desenvolve a teoria de Hodge neste complexo. O principal resultado em questão é o teorema de Hodge. No caso mais simples, dados dois fibrados vetoriais E → M , F → M e um operador diferencial elíptico L : Γ(E) → Γ(F ), agindo nas seções destes fibrados, o teorema de Hodge garante que a dimensão de seu núcleo N(L) é finita e que podemos decompor Γ(E) = N(L) ⊕ Im(L∗), onde Im(L∗) é a imagem da adjunta de L. Para a demonstração apresentada aqui, são empregadas as propriedades dos espaços de Sobolev Hm(E) das seções de E. Certa ênfase é dada na obtenção de propriedades globais a partir de resultados locais. / This work presents concepts involved in the definition of an elliptic complex on a compact manifold M and develops the Hodge theory over this complex. The main result at hand is the Hodge theorem. In the simplest case, given two vector bundles E → M , F → M and an elliptic differential operator L : Γ(E) → Γ(F ), acting on sections of these bundles, the Hodge theorem ensures that the dimension of its kernel N(L) is finite and that we can decompose Γ(E) = N(L) ⊕ Im(L∗), where Im(L∗) is the range of the adjoint of L. In the proof presented here, we employ properties of the Sobolev spaces Hm(E) of sections of E. We give an emphasis to obtaining global properties from local results.
12

Complexos elípticos e teoria de Hodge

Antunes, Jonier Amaral January 2012 (has links)
Este trabalho apresenta os conceitos envolvidos na definição de um complexo elíptico sobre uma variedade compacta M e desenvolve a teoria de Hodge neste complexo. O principal resultado em questão é o teorema de Hodge. No caso mais simples, dados dois fibrados vetoriais E → M , F → M e um operador diferencial elíptico L : Γ(E) → Γ(F ), agindo nas seções destes fibrados, o teorema de Hodge garante que a dimensão de seu núcleo N(L) é finita e que podemos decompor Γ(E) = N(L) ⊕ Im(L∗), onde Im(L∗) é a imagem da adjunta de L. Para a demonstração apresentada aqui, são empregadas as propriedades dos espaços de Sobolev Hm(E) das seções de E. Certa ênfase é dada na obtenção de propriedades globais a partir de resultados locais. / This work presents concepts involved in the definition of an elliptic complex on a compact manifold M and develops the Hodge theory over this complex. The main result at hand is the Hodge theorem. In the simplest case, given two vector bundles E → M , F → M and an elliptic differential operator L : Γ(E) → Γ(F ), acting on sections of these bundles, the Hodge theorem ensures that the dimension of its kernel N(L) is finite and that we can decompose Γ(E) = N(L) ⊕ Im(L∗), where Im(L∗) is the range of the adjoint of L. In the proof presented here, we employ properties of the Sobolev spaces Hm(E) of sections of E. We give an emphasis to obtaining global properties from local results.
13

Mergulhos livres isométricos de variedades compactas em Rsn+4n+5

Grilo Rosa, Marcos January 2004 (has links)
Made available in DSpace on 2014-06-12T18:32:02Z (GMT). No. of bitstreams: 2 arquivo8534_1.pdf: 546278 bytes, checksum: 393e9760515d3a5f5161ccdd3119192d (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004 / Saber em que condições pode-se imergir ou mergulhar uma variedade em algum espa»co euclideano foi um problema que ficou em aberto por um bom tempo. Em 1936, Whitney provou que qualquer variedade de Hausdorff e com base enumerável n-dimensional C1 V pode ser imersa em R2n e mergulhada em R2n+1. Se V não tem componentes fechadas, este resultado pode ser re¯nado para 2n ¡ 1 no caso das imersões e para 2n no caso dos mergulhos. Em 1954, John Nash provou, em seu artigo intitulado C1 Isometric Imbeddings, que qualquer variedade riemanniana n-dimensional tem uma imersão isométrica C1 em R2n e um mergulho isométrico C1 em R2n+1. Dois anos depois, o mesmo Nash provou, em seu artigo intitulado The Imbedding Problem for Riemannian Manifolds que qualquer variedade compacta riemanniana Ck tem um mergulho isométrico Ck em R3 n(n+1) 2 +4n, para 3 · k · 1. Nesta dissertação apresentaremos uma versão para aplicações livres do Teorema de Nash sobre mergulhos isométricos de variedades compactas C1(Ca) em Rq. Esta versão encontra-se no artigo Embeddings and Dimensions in Riemannian Geometry publicado originalmente em russo por Gromov e Rokhlin. Eles provaram que toda variedade riemanniana compacta C1(Ca) pode ser mergulhada livre e isometricamente em Rn(n+1) 2 +4n+5
14

Conexões e transporte paralelo: uma abordagem computacional

Roberto Ferreira Júnior, Nivan 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T18:33:59Z (GMT). No. of bitstreams: 2 arquivo971_1.pdf: 558824 bytes, checksum: 22662ca8e835c524c3da0b796e348e0a (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação estudamos os conceitos de Conexão, Transporte Paralelo e Grupo de Holonomia. As conexões são definidas de forma algébrica. Um exemplo importante é a conexão de Levi-Civita. Demonstramos que o módulo das seções de um fibrado vetorial, admite uma conexão. A Conexão, determina o Transporte Paralelo ao longo de um caminho c. Se c é um caminho fechado, obtemos o grupo de Holonomia. Neste trabalho, há uma preocupação com os aspectos computacionais, assim, comentários sobre a implementa ção do cálculo dos conceitos apresentados em softwares de computação algébrica estão presentes em todo o texto
15

Teorema de Thom-Pontrjazin

Rodrigues, Claudina Izepe, 1953- 16 July 2018 (has links)
Orientador : Jose Carlos de Souza Kuhl / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-16T05:33:23Z (GMT). No. of bitstreams: 1 Rodrigues_ClaudinaIzepe_M.pdf: 908761 bytes, checksum: 471789f797c1c6de86821114b6142fad (MD5) Previous issue date: 1979 / Resumo: Não informado / Abstract: Not informed / Mestrado / Mestre em Matemática
16

Não-mergulho em fibrados de esferas

Patrocinio, Antonio Carlos do, 1941- 17 July 2018 (has links)
Orientador : Antonio Conde / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-17T21:42:33Z (GMT). No. of bitstreams: 1 Patrocinio_AntonioCarlosdo_D.pdf: 952190 bytes, checksum: b2e11ce5122af8541b74d8aa0dab9f13 (MD5) Previous issue date: 1977 / Resumo: Não informado / Abstract: Not informed / Doutorado / Mestre em Matemática
17

Fibrados, classes de Stiefel-Whitney e resultados de não imersão

Inforzato, Caio Carlevaro 24 September 2012 (has links)
Made available in DSpace on 2016-06-02T20:28:27Z (GMT). No. of bitstreams: 1 4588.pdf: 701327 bytes, checksum: 07aaf91b8be59a3db7c6c5cf38e55c59 (MD5) Previous issue date: 2012-09-24 / Financiadora de Estudos e Projetos / We present an introductory study of smooth manifolds, bundles and Stiefel- Whitney classes (of real vector bundles). We explained that, given a certain smooth m-dimensional manifold, the Stiefel- Whitney classes of its tangent bundle can be used to ensure that such a manifold does not immerse (smoothly) in certain Euclidean spaces Rj . In this sense, we consider the Grassmann manifold G2;n of the 2-subspaces of Rn+2, and we carry out a detailed study of the following non-immersion theorem, proved by V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Let n > 1 be a natural number and consider s = 2r such that s _ 2n < 2s. If n = s - 1, then G2;n does not immerse in R2s-3; if n = s - 1, then G2;n does not immerse in R3s-3." / Apresentamos um estudo introdutório de Variedades Suaves, Fibrados e Classes de Stiefel-Whitney (de _brados vetorias reais). Explicamos que, dada uma certa variedade suave m-dimensional, as classes de Stiefel-Whitney do seu _brado tangente podem ser usadas para garantir que tal variedade não imerge (suavemente) em certos espaços Euclidianos Rj . Nesse sentido, consideramos a variedade Grassmanniana G2;n, variedade dos 2-subespaços de Rn+2, e realizamos um estudo detalhado do seguinte teorema de não imersão, provado por V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Seja n > 1 um natural e considere s = 2r tal que s _ 2n < 2s. Se n 6= s &#1048576; 1, então G2;n não imerge em R2s-3; se n = s - 1, então G2;n não imerge em R3s-3."
18

Fibrados, classes de Stiefel-Whitney e resultados de não imersão / Fibrados, classes de Stiefel-Whitney e resultados de não imersão

Inforzato, Caio Carlevaro 24 September 2012 (has links)
Made available in DSpace on 2016-06-02T20:28:27Z (GMT). No. of bitstreams: 1 4588.pdf: 701327 bytes, checksum: 07aaf91b8be59a3db7c6c5cf38e55c59 (MD5) Previous issue date: 2012-09-24 / Financiadora de Estudos e Projetos / We present an introductory study of smooth manifolds, bundles and Stiefel- Whitney classes (of real vector bundles). We explained that, given a certain smooth m-dimensional manifold, the Stiefel- Whitney classes of its tangent bundle can be used to ensure that such a manifold does not immerse (smoothly) in certain Euclidean spaces Rj . In this sense, we consider the Grassmann manifold G2;n of the 2-subspaces of Rn+2, and we carry out a detailed study of the following non-immersion theorem, proved by V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Let n > 1 be a natural number and consider s = 2r such that s < ou = 2n < 2s. If n different s - 1, then G2;n does not immerse in R2s-3; if n = s - 1, then G2;n does not immerse in R3s-3." / Apresentamos um estudo introdutório de Variedades Suaves, Fibrados e Classes de Stiefel-Whitney (de fibrados vetorias reais). Explicamos que, dada uma certa variedade suave m-dimensional, as classes de Stiefel-Whitney do seu fibrado tangente podem ser usadas para garantir que tal variedade não imerge (suavemente) em certos espaços Euclidianos Rj . Nesse sentido, consideramos a variedade Grassmanniana G2;n, variedade dos 2-subespaços de Rn+2, e realizamos um estudo detalhado do seguinte teorema de não imersão, provado por V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Seja n > 1 um natural e considere s = 2r tal que s < ou = 2n < 2s. Se n for diferente de s - 1, então G2;n não imerge em R2s-3; se n = s - 1, então G2;n não imerge em R3s-3."
19

A correspondência Hitchin-Kobayashi / Hitchin-Kobayashi correspondence

Santos, Rodrigo Pires dos 17 August 2018 (has links)
Orientador: Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T21:21:11Z (GMT). No. of bitstreams: 1 Santos_RodrigoPiresdos_M.pdf: 1008454 bytes, checksum: e5ec1fd87b26efb201ece05c20531374 (MD5) Previous issue date: 2011 / Resumo: Apresentamos uma introdução aos conceitos de geometria complexa necessários à compreensão da correspondência Hitchin-Kobayashi. Enunciamos e provamos que todo fibrado que admite uma conexão de Hermite-Einstein é poliestável. Em seguida, discutimos resultados sobre Q-fibrados e enunciamos uma correspondência Hitchin-Kobayashi para esse caso. Por último, temos um resultado do autor que relaciona a estabilidade de fibrados com a estabilidade de Q-fibrados / Abstract: We present an introduction to the concepts of complex geometry necessary to the comprehension of the Hitchin-Kobayashi correspondence. We state and prove that every holomorphic vector bundle which admits a Hermite-Einstein connexion is polystable. Then, we discuss results regarding quiver bundles and state a Hitchin-Kobayashi correspondence for this case. Finally, we state and prove an author's result which relates the stability of vector bundles with the stability of quiver bundles / Mestrado / Geometria Diferencial / Mestre em Matemática
20

K-teoria, periodicidade de Bott e aplicações

VITORIO, Henrique de Barros Correia January 2006 (has links)
Made available in DSpace on 2014-06-12T18:32:55Z (GMT). No. of bitstreams: 2 arquivo8675_1.pdf: 657729 bytes, checksum: 804c61b142d2c137eb094b7809772630 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esta dissertação tem como principal objetivo apresentar, de maneira auto-sufuciente, a demonstração de M. Atiyah e R. Bott do Teorema de Periodicidade de Bott em K-Teoria. Para isto, somos levados a fazermos uma introdução à teoria de fibrados vetoriais e à K-teoria, discutindo os vários conceitos e resultados necessários. Ao final, como aplicação do que foi desenvolvido, apresentamos a singela demonstração de M. Atiyah do teorema de F. Adam sobre o invariante de Hopf, e como consequência deste resolvemos os problemas clássicos da paralelizabilidade das esferas e das álgebras de divisão

Page generated in 0.0697 seconds