Spelling suggestions: "subject:"variedades diferenciální"" "subject:"variedades diferenciá""
1 |
A teoria dos pontos proximos sobre variedades diferenciaveis segundo Andre WeilMartins, Antonio Carlos Gilli, 1952- 17 July 2018 (has links)
Orientador : Eduardo Sebastiani Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-17T02:34:28Z (GMT). No. of bitstreams: 1
Martins_AntonioCarlosGilli_M.pdf: 882064 bytes, checksum: ae4a10b76f81c3c4ec81afa2dc6e0c77 (MD5)
Previous issue date: 1977 / Resumo: Não informado / Abstract: Not informed / Mestrado / Mestre em Matemática
|
2 |
Imersões isométricas em produtos de duas formas espaciaisSantos, Bruno Mendonça Rey dos 27 April 2012 (has links)
Made available in DSpace on 2016-06-02T20:27:39Z (GMT). No. of bitstreams: 1
4348.pdf: 1314915 bytes, checksum: ab7ad440edc40ea6e65b1d6a4952dd4a (MD5)
Previous issue date: 2012-04-27 / Financiadora de Estudos e Projetos / In this thesis we study isometric immersions into products of two space forms using the approach introduced by Lira et al in [18]. Parallel isometric immersions into products of two space forms with nonzero sectional curvatures are classified, and the classification of umbilical isometric immersions f : Mm Ñ On1 k1 _ On2 k2 , with m ¥ 3 and k1 􀀀 k2 _ 0, is reduced to that of umbilical isometric immersions of codimension two into On k _ R, k 0, where On k denotes the space form with dimension n and sectional curvature k. To accomplish this, we prove some results of independent interest on reduction of codimension of isometric immersions into products of two space forms. / Nesta tese são estudadas as imersões isométricas em produtos de duas formas espaciais utilizando a abordagem introduzida por Lira et al em [18]. As imersões isométricas paralelas em produtos de duas formas espaciais com curvaturas seccionais não nulas são classificadas, e a classificação das imersões isométricas umbílicas f : Mm Ñ On1 k1 x On2 k2 , com m ¥ 3 e k2+k2 _ 0, é reduzida àquela das imersões isométricas umbílicas de codimensão dois em On k x R, k 0, em que On k denota a forma espacial de curvatura seccional k e dimensão n. Para isso, são provados alguns teoremas de redução de codimensão com interesse próprio para imersões isométricas em produtos de duas formas espaciais.
|
3 |
Fibrados, classes de Stiefel-Whitney e resultados de não imersãoInforzato, Caio Carlevaro 24 September 2012 (has links)
Made available in DSpace on 2016-06-02T20:28:27Z (GMT). No. of bitstreams: 1
4588.pdf: 701327 bytes, checksum: 07aaf91b8be59a3db7c6c5cf38e55c59 (MD5)
Previous issue date: 2012-09-24 / Financiadora de Estudos e Projetos / We present an introductory study of smooth manifolds, bundles and Stiefel- Whitney classes (of real vector bundles). We explained that, given a certain smooth m-dimensional manifold, the Stiefel- Whitney classes of its tangent bundle can be used to ensure that such a manifold does not immerse (smoothly) in certain Euclidean spaces Rj . In this sense, we consider the Grassmann manifold G2;n of the 2-subspaces of Rn+2, and we carry out a detailed study of the following non-immersion theorem, proved by V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Let n > 1 be a natural number and consider s = 2r such that s _ 2n < 2s. If n = s - 1, then G2;n does not immerse in R2s-3; if n = s - 1, then G2;n does not immerse in R3s-3." / Apresentamos um estudo introdutório de Variedades Suaves, Fibrados e Classes de Stiefel-Whitney (de _brados vetorias reais). Explicamos que, dada uma certa variedade suave m-dimensional, as classes de Stiefel-Whitney do seu _brado tangente podem ser usadas para garantir que tal variedade não imerge (suavemente) em certos espaços Euclidianos Rj . Nesse sentido, consideramos a variedade Grassmanniana G2;n, variedade dos 2-subespaços de Rn+2, e realizamos um estudo detalhado do seguinte teorema de não imersão, provado por V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Seja n > 1 um natural e considere s = 2r tal que s _ 2n < 2s. Se n 6= s 􀀀 1, então G2;n não imerge em R2s-3; se n = s - 1, então G2;n não imerge em R3s-3."
|
4 |
Fibrados, classes de Stiefel-Whitney e resultados de não imersão / Fibrados, classes de Stiefel-Whitney e resultados de não imersãoInforzato, Caio Carlevaro 24 September 2012 (has links)
Made available in DSpace on 2016-06-02T20:28:27Z (GMT). No. of bitstreams: 1
4588.pdf: 701327 bytes, checksum: 07aaf91b8be59a3db7c6c5cf38e55c59 (MD5)
Previous issue date: 2012-09-24 / Financiadora de Estudos e Projetos / We present an introductory study of smooth manifolds, bundles and Stiefel- Whitney classes (of real vector bundles). We explained that, given a certain smooth m-dimensional manifold, the Stiefel- Whitney classes of its tangent bundle can be used to ensure that such a manifold does not immerse (smoothly) in certain Euclidean spaces Rj . In this sense, we consider the Grassmann manifold G2;n of the 2-subspaces of Rn+2, and we carry out a detailed study of the following non-immersion theorem, proved by V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Let n > 1 be a natural number and consider s = 2r such that s < ou = 2n < 2s. If n different s - 1, then G2;n does not immerse in R2s-3; if n = s - 1, then G2;n does not immerse in R3s-3." / Apresentamos um estudo introdutório de Variedades Suaves, Fibrados e Classes de Stiefel-Whitney (de fibrados vetorias reais). Explicamos que, dada uma certa variedade suave m-dimensional, as classes de Stiefel-Whitney do seu fibrado tangente podem ser usadas para garantir que tal variedade não imerge (suavemente) em certos espaços Euclidianos Rj . Nesse sentido, consideramos a variedade Grassmanniana G2;n, variedade dos 2-subespaços de Rn+2, e realizamos um estudo detalhado do seguinte teorema de não imersão, provado por V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Seja n > 1 um natural e considere s = 2r tal que s < ou = 2n < 2s. Se n for diferente de s - 1, então G2;n não imerge em R2s-3; se n = s - 1, então G2;n não imerge em R3s-3."
|
5 |
A fórmula de aproximação de Baouendi -TrevesLiboni Filho, Paulo Antonio 06 March 2009 (has links)
Made available in DSpace on 2016-06-02T20:28:23Z (GMT). No. of bitstreams: 1
2296.pdf: 862125 bytes, checksum: acddeef1ad5ef9619a315b60abcd7c81 (MD5)
Previous issue date: 2009-03-06 / Universidade Federal de Minas Gerais / Let be a N-dimensional smooth manifold. Consider a locally integrable structure L of CT with fiber dimension 1 ≤ n < N and set m = N − n. We say that L is locally integrable if, for every p ∈ , there is a neiborhood Up and m smooth functions
Zj : U −→ C, 1 ≤ j ≤ m such that 1. Zj is anihilated by every local section of L; 2. dZ1(p) ∧ . . . ∧ dZm(p) 6= 0. The main result in this text is the Baouendi-Treves Approximation Theorem, that states that every distribution solution u of the sections of L is locally the limit of a sequence of smooth solutions of the form Pk ◦ Z, where Z = (Z1, . . . ,Zm) and Pk is a m-variable polynomial. / Seja uma variedade diferenciável de dimensão N. Consideremos uma estrutura localmente integrável L de CT com fibra de dimensão 1 ≤ n < N e escrevamos m = N − n. Dizemos que L é localmente integr´avel se, para todo ponto p ∈ , existe uma vizinhança Up no qual estão definidas m funções suaves Zj : U −→ C, 1 ≤ j ≤ m que satisfazem 1. Zj é anulado por toda seção suave de L; 2. dZ1(p) ∧ . . . ∧ dZm(p) 6= 0. O principal resultado deste texto é o Teorema de Aproximação de Baouendi-Treves, que estabelece que qualquer distribuição u que seja solução das seções de L pode expressar-se localmente como limite de uma sequência de soluções suaves da forma Pk ◦ Z, onde Z = (Z1, . . . ,Zm) e Pk é um polinômio em m-variáveis.
|
6 |
Imersões isométricas de formas espaciais em Sn x R e Hn x RCanevari, Samuel da Cruz 08 June 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-10-05T11:50:42Z
No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-05T18:25:42Z (GMT) No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-05T18:25:51Z (GMT) No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5) / Made available in DSpace on 2016-10-05T18:37:11Z (GMT). No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5)
Previous issue date: 2015-06-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this thesis we classify the isometric immersions f : Mm ^ Sm+p x R with m > 3 P < m — ^d c < 1, where Mm denotes a Riemannian manifold with constant sectional curvature equal to c. We obtain partial results on the classification of isometric immersions f : Mm ^ Hm+p x R with m > 3 P < m — ^d c < 0, We also characterize the hvpersurfaces f : M3 ^ Q4(c) for which there exists another isometric immersion f : M3 ^ L4, where Q4(c^d L4 denote a 4-dimensional space form of constant sectional curvature c and the 4-dimensional Lorentz space, respectively. / Nesta tese classificamos as imersões isométrieas
f : Mm ^ gm+p x r com m > 3 P < m — 3 e c < 1, em que Mm denota uma variedade Riemanniana com curvatura seccional constante igual a c. Obtemos resultados parciais sobre a classificação das imersões isométrieas f : Mm ^ Hm+P x R com m > 3 P < m — 3 e c< 0, Caracterizamos ainda as hipersuperfíeies f : M3 ^ Q4(c) para as quais existe outra imersão isométrica f : M3 ^ L4, em que Q4(c) e L4 denotam, respectivamente, uma forma espacial Riemanniana com curvatura constante igual a c e o espaço de Lorentz de dimensão 4.
|
7 |
Resultados do tipo Calabi-Bernstein em −R × Hn. / Calabi-Bernstein type results in -R × Hn.LIMA JÚNIOR, Eraldo Almeida. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T19:25:58Z
No. of bitstreams: 1
ERALDO ALMEIDA LIMA JÚNIOR - DISSERTAÇÃO PPGMAT 2011..pdf: 415901 bytes, checksum: 427abfdae7c5a546735d4a6b14f72bfe (MD5) / Made available in DSpace on 2018-07-25T19:25:58Z (GMT). No. of bitstreams: 1
ERALDO ALMEIDA LIMA JÚNIOR - DISSERTAÇÃO PPGMAT 2011..pdf: 415901 bytes, checksum: 427abfdae7c5a546735d4a6b14f72bfe (MD5)
Previous issue date: 2011-07 / Neste trabalho, apresentamos um estudo das hipersuperfícies tipo-espaço imersas
no ambiente −R × Hn, exibindo condições para que tais hipersuperfícies sejam slices
{t0}×Hn. Para uma melhor compreensão das demonstrações e dos resultados, inserimos
processos de diferenciação, cálculos de gradientes e Laplacianos que, juntamente
com o princípio do máximo de Omori-Yau, foram cruciais no desenvolvimento dos resultados que, em sua maioria são do tipo Bernstein. Também incluímos um resultado
do tipo Calabi. / In this work we present a study of the spacelike hypersurfaces immersed in the
manifold −R × Hn providing sufficient conditions for such hypersurfaces be slices,
{t0}×Hn. For a better understanding of the proofs and results, we have added differentiation processes, gradient computations and Laplacians which jointly with the
Omori-Yau Maximum Principle were crucial in the developing of the results whose are
mostly Bernstein-type. In the elapsing we also included Calabi-type results.
|
Page generated in 0.0856 seconds