Spelling suggestions: "subject:"fibrillation""
31 |
Sobre a fibra especial e o teorema de Risler-Teissier para filtrações / On fiber cone and Risler-Teissier theorem to fibrationPedro Henrique Apoliano Albuquerque Lima 26 February 2013 (has links)
Seja (R;m) um anel Noetheriano local e R \'CONTÉM\' \'iota IND. 1\' \'CONTÉM\' \'iota IND. 2\' \'CONTÉM ... uma filtração de ideais de R. Podemos então construir a álgebra graduada F(\'\\Im) := \'SOMA DIRETA IND. n > OU = 0 POT. \'iota IND. n / \'m \'iota IND. n\', chamada de fibra especial. Esta tese objetiva a pesquisa deste anel. Investigamos sobre a sua propriedade de ser Gorenstein e a sua regularidade de Castelnuovo-Mumford. Outro objetivo, é generalizarmos o teorema de Risler-Teissier (sobre multiplicidades mistas) para o caso de filtrações de Hilbert / Let (R;m) be a Noetherian local ring and R \'CONTAINS\' \'iota IND. 1\' \'CONTAINS\' \'iota IND. 2\' \'CONTAINS\' ... a filtration of ideals in R. We may then construct the graded algebra F(\\Im) := \'DIRECT SUM\' IND. n > OR = \'0 POT. \'iota\' IND. n / \'m \'iota IND. n\' , which is called fiber cone. This thesis has the goal to research about this graded ring. We investigate its Gorenstein property and its Castelnuovo-Mumford regularity. Another aim is to generalize the Risler-Teissiers theorem (about mixed multiplicities) for the case of Hilbert filtration
|
32 |
Teoremas de (H,G)-coincidências para variedades e classificação global de singularidades isoladas em dimensões (6,3) / (H,G)-coincidence theorems for manifolds and global classification of isolated singularities in dimensions (6,3)Taciana Oliveira Souza 28 March 2013 (has links)
Este trabalho é constituido por duas partes. Na primeira parte, obtivemos algumas generalizações do clássico Teorema de Borsuk-Ulam em termos de (H,G)-coincidências. Na segunda parte, estendemos a caracterização dos germes de aplicações triviais, em codimensão 3, pelas fibrações de Milnor iniciada por Church e Lamotke em [11]. Usamos essa caracterização na classificação global de singularidades isoladas em dimensões (6, 3) / This work consists of two parts. In the first part, we obtain some generalizations of the classical Borsuk-Ulam Theorem in terms of (H,G)-coincidences. In the second part, we extend the characterization of trivial map germs, in codimension 3, by the Milnor fibrations started by Church and Lamotke in [11]. We use this characterization in the global classification of isolated singularities in dimensions (6, 3)
|
33 |
Espaços de configurações / Configuration spacesCesar Augusto Ipanaque Zapata 13 March 2017 (has links)
O objetivo principal deste trabalho será apresentar um estudo detalhado dos espaços de configurações. Dissertaremos sobre: espaços de configurações clássicos, invariância do bordo, espaço de configurações para superfícies, fibração de Fadell e Neuwirth e espaços de configurações do espaço Euclideano, da esfera e do espaço projetivo complexo. / The main objective of this work will be to present a detailed study of the configuration spaces. We will study: classical configuration spaces, invariance of the boundary, configuration spaces of surfaces, Fadell and Neuwirth fibration and configuration spaces of the Euclidean space and spheres.
|
34 |
Principe local-global pour les zéro-cycles / Local-global principle for zero-cyclesLiang, Yongqi 04 October 2011 (has links)
Dans cette thèse, nous nous intéressons à l’étude de l’arithmétique (le principe de Hasse, l’approximation faible, et l’obstruction de Brauer-Manin) des zéro-cycles sur les variétés algébriques définies sur des corps de nombres. Nous introduisons la notion de sous-ensemble hilbertien généralisé. En utilisant la méthode de fibration, nous démontrons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1; et établissons l’exactitude d’une suite de type global-local concernant les groupes de Chow des zéro-cycles, pour certaines variétés qui admettent une structure de fibration au-dessus d’une courbe lisse ou au-dessus de l’espace projectif, où les hypothèses arithmétiques sont posées seulement sur les fibres au-dessus d’un sous-ensemble hilbertien généralisé.De plus, nous relions l’arithmétique des points rationnels et l’arithmétique des zérocycles de degré 1 sur les variétés géométriquement rationnellement connexes. Comme application, nous trouvons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1 sur- les espaces homogènes d’un groupe algébrique linéaire à stabilisateur connexe,- certains fibrés en surfaces de Châtelet au-dessus d’une courbe lisse ou au-dessus de l’espace projectif (en particulier, les solides de Poonen). / This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, and the Brauer-Manin obstruction) for zero-cycles on algebraic varieties defined over number fields. We introduce the notion of generalized Hilbertian subset. By using the fibration method, we prove that the Brauer-Manin obstruction is the only obstruction tothe Hasse principle and to the weak approximation for zero-cycles of degree 1; and establish the exactness of a sequence of global-local type concerning Chow groups of zero-cycles, for certain varieties which admit a fibration structure overa smooth curve or over the projective space, where the arithmetic hypotheses are only posed on the fibers over a generalized Hilbertian subset. Moreover, we relate the arithmetic of rational points and that of zero-cycles of degree 1 on geometrically rationally connected varieties. As an application, we find that the Brauer-Manin obstruction is the only obstruction to the Hasse principle and to the weak approximation for zero-cycles of degree 1 on- homogeneous spaces of a linear algebraic group with connected stabilizer,- certain varieties fibered into Chatelet surfaces over a smooth curve or over the projective space (in particular, Poonen's threefolds).
|
35 |
Conectividade de variedades semi-algébricas / Connectivity of semialgebraic setsMaldonado, Juan Carlos Nuñez 07 April 2017 (has links)
Neste projeto apresentamos os teoremas de estrutura, decomposição celular, e o teorema da existência da triangulação para conjuntos semi-algébricos compactos. Como aplicações destes teoremas mostramos o lema de seleção da curva local e global. Além disso, apresentamos uma breve descrição da topologia da fibra de Milnor local e global, bem como alguns resultados sobre o grau de conexidade da fibra genérica global de uma função polinomial complexa, que mostram a íntima relação entre o grau de conexidade com a dimensão do conjunto singular. / In this project we present some structure theorems, cell decomposition, and the theorem on the existence of triangulation for compact semi-algebraic sets. As applications we prove the curve selection lemma in the local and global cases. Moreover, we present a brief description about the topology of local and global Milnor´s fibers, as well as, some results about the connectivity degree of the generic fibers of a complex polynomial function, that show the close relation between the connectivity degree and the dimension of the singular locus.
|
36 |
Conectividade de variedades semi-algébricas / Connectivity of semialgebraic setsJuan Carlos Nuñez Maldonado 07 April 2017 (has links)
Neste projeto apresentamos os teoremas de estrutura, decomposição celular, e o teorema da existência da triangulação para conjuntos semi-algébricos compactos. Como aplicações destes teoremas mostramos o lema de seleção da curva local e global. Além disso, apresentamos uma breve descrição da topologia da fibra de Milnor local e global, bem como alguns resultados sobre o grau de conexidade da fibra genérica global de uma função polinomial complexa, que mostram a íntima relação entre o grau de conexidade com a dimensão do conjunto singular. / In this project we present some structure theorems, cell decomposition, and the theorem on the existence of triangulation for compact semi-algebraic sets. As applications we prove the curve selection lemma in the local and global cases. Moreover, we present a brief description about the topology of local and global Milnor´s fibers, as well as, some results about the connectivity degree of the generic fibers of a complex polynomial function, that show the close relation between the connectivity degree and the dimension of the singular locus.
|
37 |
Ομογενείς μετρικές Einstein σε γενικευμένες πολλαπλότητες σημαιώνΧρυσικός, Ιωάννης 16 June 2011 (has links)
Μια πολλαπλότητα Riemann (M, g) ονομάζεται Einstein αν έχει σταθερή καμπυλότητα Ricci.
Είναι γνωστό ότι αν (M=G/K, g) είναι μια συμπαγής ομογενής πολλαπλότητα Riemann,
τότε οι G-αναλλοίωτες μετρικές Einstein μοναδιαίου όγκου,
είναι τα κρίσιμα σημεία του συναρτησοειδούς ολικής βαθμωτής καμπυλότητας
περιορισμένο στο χώρο των G-αναλλοίωτων μετρικών με όγκο 1.
Για μια G-αναλλοίωτη μετρική Riemann η εξίσωση Einstein
ανάγεται σε ένα σύστημα αλγεβρικών εξισώσεων.
Οι θετικές πραγματικές λύσεις του συστήματος αυτού είναι
ακριβώς οι G-αναλλοίωτες μετρικές Einstein που δέχεται η
πολλαπλότητα Μ.
Μια σημαντική οικογένεια συμπαγών ομογενών χώρων αποτελείται
από τις γενικευμένες πολλαπλότητες σημαιών. Κάθε τέτοιος χώρος
είναι μια τροχιά της συζυγούς αναπαράστασης μιας συμπαγούς, συνεκτικής,
ημι-απλής ομάδας Lie G. Πρόκειται για ομογενείς πολλαπλότητες της
μορφής G/C(S), όπου C(S) είναι ο κεντροποιητής ενός δακτυλίου S στην G.
Κάθε τέτοιος χώρος δέχεται ένα πεπερασμένο πλήθος από
G-αναλλοίωτες μετρικές Kahler-EInstein.
Στην παρούσα διατριβή ταξινομούμε όλες τις πολλαπλότητες σημαιών
G/K που αντιστοιχούν σε μια απλή ομάδα Lie G,
των οποίων η ισοτροπική αναπαράσταση διασπάται σε 2 ή 4
μη αναγώγιμους και μη ισοδύναμους Ad(K)-αναλλοίωτους προσθετέους.
Για κάθε τέτοιο χώρο λύνουμε την αναλλοίωτη εξίσωση Εinstein,
και παρουσιάζουμε την αναλυτική μορφή νέων G-αναλλοίωτων μετρικών
Einstein. Στις περισσότερες περιπτώσεις παρουσιάζουμε την πλήρη ταξινόμηση των αναλλοίωτων μετρικών Einstein. Επίσης εξετάζουμε το ισομετρικό πρόβλημα.
Για την κατασκευή της εξίσωσης Einstein σε κάποιες
πολλαπλότητες σημαιών με 4 ισοτροπικούς προσθετέους
χρησιμοποιούμε την νηματοποίηση συστροφής που δέχεται
κάθε πολλαπλότητα σημαιών επί ενός ισοτροπικά
μη αναγώγιμου συμμετρικού χώρου συμπαγούς τύπου.
Αυτή η μέθοδος είναι καινούργια και μπορεί να εφαρμοστεί και σε άλλες πολλαπλότητες σημαιών. / A Riemannian manifold (M, g) is called Einstein, if it has constant Ricci curvature. It is well known that if (M=G/K, g) is a compact homogeneous Riemannian manifold, then the G-invariant \tl{Einstein} metrics of unit volume, are the critical points of the scalar curvature function restricted to the space of all G-invariant metrics with volume 1. For a G-invariant Riemannian metric the Einstein equation reduces to a system of algebraic equations. The positive real solutions of this system are the $G$-invariant Einstein metrics on M.
An important family of compact homogeneous spaces consists of the generalized flag manifolds. These are adjoint orbits of a compact semisimple Lie group. Flag manifolds of a compact connected semisimple Lie group exhaust all compact and simply connected homogeneous Kahler manifolds and are of the form G/C(S), where C(S) is the centralizer (in G) of a torus S in G. Such homogeneous spaces admit a finite number of G-invariant complex structures, and for any such complex structure there is a unique compatible G-invariant Kahler-Einstein metric.
In this thesis we classify all flag manifolds M=G/K of a compact simple Lie group G, whose isotropy representation decomposes into 2 or 4, isotropy summands. For these spaces we solve the (homogeneous) Einstein equation, and we obtain the explicit form of new G-invariant Einstein metrics. For most cases we give the classification of homogeneous Einstein metrics. We also examine the isometric problem. For the construction of the Einstein equation on certain flag manifolds with four isotropy summands, we apply for first time the twistor fibration of a flag manifold over an isotropy irreducible symmetric space of compact type. This method is new and it can be used also for other flag manifolds.
For flag manifolds with two isotropy summands, we use the restricted Hessian and we characterize the new Einstein metrics as local minimum points of the scalar curvature function restricted to the space of G-invariant Riemannian metrics of volume 1. We mention that the classification of flag manifolds with two isotropy summands gives us new examples of homogeneous spaces, for which the motion of a charged particle under the electromagnetic field, and the geodesics curves, are completely determined.
|
38 |
[en] ADAPTATIVE OPTICAL COMMUNICATION BASED ON POLARIZATION MODULATION: ANALYSIS OF DIGITAL COHERENT SYSTEMS / [pt] COMUNICAÇÃO ÓPTICA ADAPTATIVA BASEADA EM MODULAÇÃO DE POLARIZAÇÃO: ANÁLISE DE SISTEMAS DIGITAIS COERENTESFERNANDO ALVES RODRIGUES 21 December 2020 (has links)
[pt] A comunicação por fibras ópticas utiliza diversos modelos herdados dos sistemas de telecomunicações tradicionais. Recentemente, a necessidade de maior controle sobre o fluxo de dados tem atraído muita atenção para as vantagens da comunicação óptica adaptativa. Num sistema de comunicação
adaptativo, o fluxo de dados pode ser alterado em função de variações na qualidade do canal ou simplesmente pela necessidade de racionalizar a utilização dos recursos disponíveis. A interoperação entre redes pressiona pela necessidade de uma rede elástica e a expectativa é que este tipo de rede
permita o controle sobre vários níveis da estrutura de comunicação. Nesta tese, a análise deste tema se concentra na camada física da rede óptica, em que a elasticidade pode ser obtida através de diferentes técnicas de modulação e multiplexação. A camada física de uma rede óptica adaptativa deve responder a variações e restrições do meio de transmissão. O consumo de energia, por exemplo, é um requisito cada vez mais presente nos projetos das redes de comunicação e a relevância deste requisito tende a aumentar
na medida em que as redes ópticas aumentam sua capilaridade. O principal objetivo desta tese é analisar uma solução de comunicação óptica adaptativa que atenda aos requisitos básicos de uma rede elástica. O sistema de comunicação em análise é baseado em modulações realizadas no espaço de sinais de quatro dimensões, também conhecidas como modulações 4D. A perspectiva adotada privilegia a polarização da portadora óptica. A vantagem em adotar esta perspectiva, reside no fato de que ela permite
a construção de modulações multidimensionais utilizando os fibrados de Hopf. Conforme será observado, o uso dos fibrados de Hopf em conjunto com o conceito matemático denominado vértice embutido de politopos, potencializa as soluções de engenharia para o problema da comunicação óptica adaptativa. / [en] Fiber-optic communications use several models inherited from traditional telecommunications systems. Recently, the need to improve the control over the data flow has attracted attention to the advantages of
adaptive optical communication. In adaptive systems, the data flow can be altered due to changes in the channel quality or simply to rationalize the use of available resources. Interoperation between networks further presses on the need for an elastic network and the expectation is that this type of network will allow control over various levels of the communication structure. In this thesis, the analysis of this theme focuses on the physical layer of the optical network, where elasticity can be obtained through
different modulation and multiplexing techniques. The physical layer of an adaptive optical network must respond to variations and restrictions of the transmission medium. Energy consumption, for example, is a requirement that is increasingly present in communication network projects and the relevance of this requirement tends to increase as optical networks expands in capillarity. The main objective of this thesis is to analyze an adaptive optical communication solution that meets the basic requirements of an
elastic network. The communication system under analysis is based on the four-dimensional signal space modulations, also known as 4D modulations. The perspective adopted favors the polarization of the optical carrier. The advantage in adopting this perspective resides in the fact that it allows the construction of multidimensional modulations using Hopf bundles. As will be observed, the use of Hopf bundles in conjunction with the mathematical concept called embedded vertex polytopes, improves the engineering
solutions to the problem of adaptive optical communication.
|
Page generated in 0.0763 seconds