• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 23
  • 20
  • 13
  • 10
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 194
  • 52
  • 50
  • 46
  • 33
  • 32
  • 31
  • 29
  • 29
  • 29
  • 29
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Optimalizace a měření transportních experimentů na grafenových polem řízených tranzistorech / Optimalization and measurement of transport experiments on graphene field effect transistors

Urbiš, Jakub January 2019 (has links)
This thesis deals with the automation of transport experiments on graphene using the graphical programming language LabVIEW. Specifically, the experiments with graphene relative humidity sensors are based on: a two-point graphene structure, a two-point structure of SiO$_2$ and a four-point graphene structure in the form of a Hall bar. In all of these experiments, relative humidity, input electrical parameters, SPM measurements, and macroscopic transport properties are measured simultaneously. The program DeviceManager developed in framework of this thesis simplifies the implementation of these experiments.
112

Field-effect transistor based biosensing of glucose using carbon nanotubes and monolayer MoS2

Ullberg, Nathan January 2019 (has links)
As part of the EU SmartVista project to develop a multi-modal wearable sensor for health diagnostics, field-effect transistor (FET) based biosensors were explored, with glucose as the analyte, and carbon nanotubes (CNTs) or monolayer MoS2 as the semiconducting sensing layer.  Numerous arrays of CNT-FETs and MoS2-FETs were fabricated by photolithographic methods and packaged as integrated circuits.  Functionalization of the sensing layer using linkers and enzymes was performed, and the samples were characterized by atomic force microscopy, scanning electron microscopy, optical microscopy, and electrical measurements. ON/OFF ratios of 102 p-type and < 102 n-type were acheived, respectively, and the work helped survey the viability of realizing such sensors in a wearable device. / EU Horizon 2020 - SmartVista (825114)
113

Enhancement of n-channel Organic Field-Effect Transistor Performance through Surface Doping and Modification of the Gate Oxide by Aminosilanes

Shin, Nara 22 August 2019 (has links)
In this these, in order to enhance the n-channel organic field-effect transistor (OFET) performance, amino functionalized self-assembled monolayers (A-SAMs) which consist of amino groups, a well-known n-type dopant candidate, were introduced from the top of OFET surfaces and on the gate oxide surfaces. To obtain better understanding for optimization of OFET performances we attempted to elucidate the mechanism of surface doping and surface modification by A-SAMs. Both the surface doping and surface modification of the gate oxide approaches have individual pros and cons. One needs to take into account the surface energy properties of SAMs and the resulting OSC film structure and pick the most suitable method to introduce the SAM material to the OFET (either doping or oxide modification) in order to obtain optimized device performances. Our study strongly suggests that both surface doping and surface modification of the gate oxide with A-SAMs could enhance other semiconductor-based electronic device performances.:Abstract v Chapter 1. Introduction 1 Chapter 2. Theoretical Background 7 2.1. Organic Semiconductors (OSCs) 8 2.1.1. Semiconducting properties of organic molecules 8 2.1.2. Charge Transport Mechanism in OSCs 10 2.2. Organic Field-Effect Transistors (OFETs) 18 2.2.1. Operation Principle 18 2.2.2. Device Geometry of OFETs 20 2.2.3. Contacts (metal/semiconductor junction) in OFETs 21 2.2.4. Dielectric material for OFETs 23 2.2.5. Current-Voltage Characteristics of OFETs 25 2.3. Dominant contributors to OFET Performance 32 2.3.1. Molecular structure and Orientation of OSCs 32 2.3.2. Dielectric/OSC Interface 33 2.3.3. OSC/Contact Interface (Contact resistance) 35 2.3.4. Shallow and deep traps 36 2.4. Strategies to improve OFET performance 37 2.4.1. Introducing dopants to OFETs 37 2.4.2. Modification of Gate Oxide Layer with SAMs 44 Chapter 3. Experimental 51 3.1. Device Fabrication 52 3.1.1. Device type I - Substrate/ODTMS/PTCDI-C8/Au 53 3.1.2. Device type II - Substrate/ODTCS/N2200 (PNDI2OD-2T)/Au 53 3.1.3. Device type III - Substrate/SAMs/PTCDI-C8/Au 54 3.2. Surface doping process 56 3.2.1. Surface dopant – Aminosilanes (A-SAMs) 56 3.2.2. Surface doping method 56 3.3. Characterization 59 3.3.1. Material characterization 59 3.3.2. Surface-wetting characterization - Contact angle measurement 61 3.3.3. Micro-structure characterization - Atomic Force Microscopy (AFM) 62 3.3.4. Surface potential characterization – Kelvin Probe Force Microscopy (KPFM) 63 3.3.5. Molecular Structure Characterization - Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) 64 3.3.6. Electrical Characterization - Current-voltage (I-V) measurement 66 Chapter 4. Result and Discussion 69 4.1. Optimization of OFETs based on PTCDI-C8 and N2200 70 4.1.1. PTCDI-C8 OFETs 70 4.1.2. N2200 OFETs 72 4.1.3. Device measurement condition 75 4.2. Investigation of Surface doping mechanism of Aminosilanes 77 4.2.1. Surface doping effect depending on the dopant processing method 77 4.2.2. Surface doping effect for different types of organic semiconductors 80 4.2.3. Surface doping effect for different types of surface dopants 89 4.2.4. Surface doping effect for different OSC grain sizes 92 4.2.5. Surface doping effect for different OSC film thicknesses 103 4.2.6. Molecular structure of the doped films identified by GIWAXS 106 4.2.7. Stability of the surface doped OFETs 107 4.2.8. Summary 111 4.3. Modification of the gate oxide with various self-assembled monolayers 112 4.3.1. The surface property of SAM-treated substrates 112 4.3.2. The relation between the OSC morphology and the field-effect mobility 115 4.3.3. The origin of the threshold voltage shift 126 4.3.4. Memristive effects in PTCDI-C8 devices on ODTMS 133 4.3.5. Summary 137 4.4. Comparison of the surface doping and the modification of the gate dielectric 138 4.4.1. The reliability factor of OFETs 138 4.4.2. The threshold voltages and field-effect mobility of OFETs 141 4.4.3. Density of Interfacial trap sites and SAM induced mobile carriers 143 4.4.4. Summary 144 Chapter 5. Conclusion 145 Bibliography 148 List of Figures 158 List of Tables 166 List of Equations 167 Acknowledgment 168 Erklärung zur Eröffnung des Promotionsverfahrens 169
114

Improved Organic Semiconductor Thin-Film Formation through the Addition of Vibrations to the Solution Shearing Method

Rocha, Cecilia Teixeira da 02 September 2020 (has links)
In this thesis, methods for improving charge carrier mobility and deposition conditions for the solution shearing of organic semiconductors for organic field-effect transistors (OFETs) are investigated. Electrical performance for OFETs is currently still limited by the charge carrier mobility, especially when high fabrication speeds are required. In this work, adaptations are made to the solution shearing method to enhance charge carrier mobility values and to increase the deposition speed and film uniformity of semiconductor films. The solution shearing method can be easily adapted to large-scale roll-to-roll fabrication, a low-cost and high throughput fabrication process. In this work, the fabrication of OFETs with both crystalline small-molecule and donor-acceptor polymer semiconductors as the active layer is performed, and significant improvements in charge carrier mobility and film formation are achieved. Specifically, the crystalline small-molecule semiconductor TIPS-pentacene is blended with the inert dielectric polystyrene, and solution shearing parameters are optimized to obtain highly-aligned crystalline films. The thin film with optimized morphology is deposited on a very thin polymer dielectric film, demonstrating the feasibility of high-performance OFETs (effective mobility of ~1.2 cm2 V-1s-1) and an ultra-low operating voltage (~1 V) – at the time a record value. To improve crystal growth, the solution shearing method is modified to add vibrations to the liquid during the coating process. The new coating method, named “piezoshearing”, allows the application of vibrations to the liquid during deposition through the attachment of a piezo actuator to the shearing blade. The piezoshearing is implemented to enhance crystal growth during the solution shearing of crystalline materials, and tests of piezoshearing for the material 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) demonstrate that substrate coverage can be increased due to induced stick-and-slip caused by the piezoshearing. Due to the unfavorable wetting conditions of semiconducting donor-acceptor polymer solutions on the commonly used low surface energy OFET substrates, conventional solution shearing is problematic. With piezoshearing, film deposition can be significantly improved. In particular, through piezoshearing the so-called stick-and-slip instabilities are mitigated, allowing the doubling of the shearing speed, and the deposition of smooth and ultrathin films (~7 nm). In addition to enabling higher coating speeds, piezoshearing also lowers the polymer material consumption by up to ~ 70% in comparison to the conventional solution shearing method. For some materials, piezoshearing is also found to increase the charge carrier mobility in OFET devices by up to two orders of magnitude. The piezoshearing is utilized for viscous polymer solutions, which are challenging to coat, and usually, result in non-uniform films. Three donor-acceptor polymer systems were tested, and morphology changes are observed for all materials when piezoshearing is applied. For one of the polymeric solutions, an increase in crystallinity is achieved, possibly accompanied by a change in the degree of alignment of the polymer chains. For two other polymer solutions with higher molecular weight chains, very smooth films were obtained with the piezoshearing – saving 30% of material. Without the application of vibrations, such materials yield very non-uniform films, with significant thickness variations, which is unsuitable for OFET devices. In summary, this work leads to significant improvements in the solution shearing of organic semiconductor materials by adding vibrations in the kHz range to the deposition process. The effects and benefits of utilizing the piezoshearing are demonstrated, and suggestions for further improvement and studies are made.:Contents 7 1.Introduction 11 Motivation 11 Outline 12 2.Theoretical Principles of Organic Electronic Materials and Devices 13 Organic Electronics 13 Organic Semiconductors 14 Charge Transport Mechanisms in Organic Semiconductors 16 Organic Field-effect Transistors 19 Operation 19 The Metal-Semiconductor Interface 22 The Dielectric 25 Film Morphology and Charge Transport in OFETs 27 Small Molecules 27 Semicrystalline Polymers 29 3.Solution Shearing and Control of Film Morphology 33 The Solution Shearing Method 34 Capillary Flow and the Pinned Contact Line. 36 Marangoni Flow 36 Shear Flow 37 Film Formation in Solution Shearing 38 Small Molecules 38 Polymers 43 Stick-and-slip Instabilities 50 Contact Angle Hysteresis and Stick-and-slip 52 Vibration-assisted Thin-film Solution Fabrication Methods 53 Effects on a Liquid stemming from Vibration 53 Relevant Characteristics 57 Vibrations and Thin-film Formation 58 Combining the Solution Shearing and Vibrations 61 4.Experimental Methods 63 Device Fabrication 63 Substrate Preparation 63 Electrode Evaporation . 65 Piezoshearing Setup 65 Thin-film Characterization 68 Cross-Polarized Optical Microscopy 68 Grazing Incidence Wide-Angle X-ray Scattering 71 Electrical characterization 77 Characterization 77 Mobility estimation and overestimation discussion 77 5.Alignment Improvement from Blending the Small molecule TIPS- pentacene with an inert Polymer 81 Introduction 81 Optimization of film morphology for TIPS-pentacene . 82 Device Fabrication 82 Electrical Characterization .. 83 Film morphology characterization 86 Fabrication of Ultra-low-voltage Operation Devices 96 Figure of Merit of this Study 97 6.Piezoshearing of Crystalline Materials 101 Introduction 101 Piezoshearing of Pristine TIPS-pentacene 102 Film Fabrication 102 Thin-film Characterization 102 TIPS-pentacene blended with PS in Toluene: Better Performing Devices 104 Piezoshearing of C8-BTBT 105 7.Addressing Stick-and-Slip Instabilities in solution-sheared films for Introduction 109 Device Fabrication 110 The Effect of Piezoshearing on Stick-and-Slip Instabilities 111 Increasing Shearing Speed 111 Thin-film Characterization 114 Electrical Characterization 116 Energy Barriers and Overcoming them with Vibration 119 Acceleration Threshold for Mitigating Stick-and-slip 122 8.Piezoshearing of Viscous Polymer Solutions 127 Introduction 127 Device Fabrication 128 DPP4DE-TT and Film Morphology 129 DPP6DO-TT, DPP6DO-T, and Faraday Instabilities 137 Thin-film Characterization 141 Piezoshearing as a Parametric Oscillator System 145 Solid Friction 146 Viscosity 146 Transition Between Regimes 147 9.Conclusion and Outlook 149 Conclusion 149 Outlook 150
115

Exploring the Use of Solution-Shearing for the Fabrication of High-Performance Organic Transistors

Haase, Katherina 26 April 2021 (has links)
Organic field-effect transistors (OFETs) are essential devices for the realization of novel electronic applications based on organic materials. Recent years have brought tremendous improvements regarding the organic semiconductor (OSC) with charge carrier mobilities around 10 cm²/Vs. Yet, several challenges are needed to be addressed in order to enable technologies of the future that are based on high-performance organic transistors. In this work, C8-BTBT, a high-mobility material that has gained increasing interest in the last few years, is used to prepare films with state-of-the art charge-carrier mobility and above. For this purpose, the solution-shearing method—a meniscus-guided technique that is capable to produce highly aligned, crystalline films—is applied. Based on these charge-transport layers with an estimated intrinsic mobility of up to 12 cm²/Vs, several strategies towards their exploitation for high-performance organic transistors are investigated. Among the relevant parameter, channel length, contact resistance and gate dielectric capacitance are the three aspects that are addressed. The solution-shearing method is further applied to the realization of solution-deposited polymer dielectrics. High-capacitance films with maximum values of about 280 nF/cm² are fabricated and used to produce low-voltage OFETs that can operate at -1V. In order to increase the devices’ transconductance, a novel patterning methodology to achieve sub-micrometre channel lengths is investigated. Using this technique, working devices with a channel length of 500 nm are shown. The compatibility of this process with the solution-shearing method for the fabrication of high-performance semiconducting and gate dielectric films is one of its major advantages. One of the limiting device parameters is the contact resistance as is clearly observable by the restricted current scaling that is observed for lower channel length. Hence, the interface of OSC and source/drain contacts is investigated. Even though an ultimate solution for very low contact resistance remains to be developed, important aspects for its further enhancement are deduced in this work. As an important first experimental result, this thesis describes a short-channel device architecture that is compatible with solution-shearing of high-performance films with its full potential yet to be explored in future work. / Organische Feld-Effekt Transistoren (OFETs) sind grundlegende Bestandteile für die Entwicklung neuerartiger Technologien auf der Basis von organischen Halbleitermaterialien. Insbesondere während der letzten Jahre haben diese Materialien einschlägige Verbesserungen erfahren und erreichen heute Ladungsträgermobilitäten um die 10 cm²/Vs. Um dies für die Umsetzung neuartiger Technologien zu nutzen, müssen jedoch noch einige Herausforderungen überwunden werden. Diese Arbeit leistet einen Beitrag in diese Richtung. Unter Anwendung eines der wohl populärsten Halbleitermaterialien der letzen Jahre mit der chemischen Bezeichnung C8-BTBT, wird die Herstellung von hochqualitativen Halbleiterfilmen mittels Flüssigprozessierung gezeigt. Mit der sogenannten „Solution-Shearing“ Methode – eine Abscheidetechnik, die über die Kontrolle eines trocknenden Meniskus hochkristalline und ausgerichtete Schichten erzeugen kann – ist es möglich Dünnschichtbauelemente mit abgeschätzten, intrinsischen Ladungsträgermobilitäten von bis zu 12 cm²/Vs zu erzeugen. Um diese hoch-qualitativen Filme für die Herstellung von leistungsfähigen Transistoren zu nutzen, werden mehrere relevante Parameter betrachtet, darunter die Kanallänge, der Kontaktwiderstand und das Gate-Dielektrikum. Im Speziellen wird die Abscheidung des Dielektrikums mittels der „Solution-Shearing“ Methode untersucht. Es kann gezeigt werden, dass dies für die Herstellung von qualitativ hochwertigen Filmen mit Kapazitäten bis zu 280 nF/cm² genutzt werden kann. Angewendet in OFETs erlauben diese Schichten den Betrieb bei sehr geringen Spannungen von -1V. Um die Transkonduktanz der Transistoren zu erhöhen wird zudem eine mit der „Solution-Shearing“ Methode kompatible Source/Drain-Strukturierungsmethode untersucht. Diese ermöglicht Kanallängen unter einem Mikrometer und konnte hier für die Herstellung von funktionierenden Transistoren mit einer Kanallänge bis zu nur 500 nm angewendet werden. Eine der limitierenden Transistorkenngrößen ist der Kontaktwiderstand, wie durch die abweichende Skalierung des Stromes mit verringerter Kanallänge deutlich wird. Aus diesem Grund wurde auch die Grenzfläche zwischen Halbleiter und Source/Drain-Kontakten näher untersucht. Allerdings verbleibt die Entwicklung einer effektiven Methode zur Reduzierung des Kontaktwiderstandes ein Projekt für zukünftige Untersuchungen, auch wenn die vorliegende Arbeit einige wichtige Anhaltpunkte für mögliche Strategien liefert. Als wichtiges erstes Resultat liefert die vorliegende Arbeit eine Beschreibung zur Herstellung funktionsfähiger Kurzkanal-OFETs mittels „Solution-Shearing“, deren volles Potential aber in der Zukunft weiter untersucht werden muss.
116

Automatic Torque Control for Bicycle Driven Brushless DC (BLDC) Generator

Müller, Luke, Sjöström, Kasper January 2021 (has links)
This work was carried out on behalf of Science Safari. Science Safari wants to create a product that facilitates the understanding of how much physical work is required to create electrical energy. This is done by cranking the pedals of a bicycle. The purpose of this work is to create a control unit that keeps the torque required to crank the pedals close to constant. The torque can be kept constant by creating a variable load for the generator, in this case, a pulse modulated JFET is used. The output of the current sensor and the Hall-effect sensor are used to calculate the required resistance of the JFET to keep constant torque. All this is controlled via a Raspberry Pi 3 Model B (RPi) which also shows real-time values on a display. The functionality of the sensors and JFET has largely been completed, but the assembly of all components is lacking in this work. / Detta arbete är utfört i uppdrag av Science Safari. Science Safari vill skapa en produkt som underlättar förståelsen av hur mycket fysiskt arbete som krävs för att skapa elektrisk energi. Detta genom att användaren vevar på en cykels pedaler för hand. Syftet med detta arbete är att skapa en styrenhet som ungefär håller ett konstantvridmomentet på en cykels pedaler. Vridmomentet kan hållas konstant genom att skapa en variabel last till generatorn, med hjälp av en pulsmodulerad JFET. För att beräkna vilken resistans JFETen ska ha för att hålla konstant vridmoment används en strömsensor och en Hall-effect sensor. Allt detta styrs via en Raspberry Pi 3 ModelB som även visar värden i realtid på en display. Funktionaliteten av sensorerna och JFET har till stor del färdigställts men sammansättning av alla komponenter saknas i detta arbete.
117

Tvorba nanostruktur a nanosoučástek pro oblast nanoelektroniky a spintroniky / Fabrication of Nanostructures and Nanodevices for Nanoelectronics and Spintronics

Lišková, Zuzana January 2015 (has links)
The thesis deals with preparation of graphene nanostructures and their applications in the measurement of transport properties of graphene. The contacts for measurement of resistance are fabricated by electron beam lithography on graphene exfoliated flakes, CVD graphene layers and grains. Graphene is also shaped using the same method. Resistivity of the layer, concentration and mobility of charge carriers are determined by different approaches. Hysteresis appearing in dependence of resistivity on the gate voltage is discussed as well. A significant part of the work is dedicated to monitoring the response of graphene resistance to relative humidity changes and potential use of graphene as a sensor of relative humidity.
118

Organic Field Effect Transistor Semiconductor Blends for Advanced Electronic Devices Including UV Phototransistors and Single Walled Carbon Nanotube Enhanced Devices / OFET Semiconductor Blends for Advanced Electronic Devices

Smithson, Chad 11 1900 (has links)
Two major projects involving the use of solution processed blended semiconductors for organic field effect transistors (OFET) were explored. The first incorporated unsorted single walled carbon nanotubes (SWCNTs) into a diketopyrrolopyrrole-quarterthiophene (DPP-QT) semiconductor to enhance the mobility of the OFET. 2 wt % SWCNT was found to be the optimal blend ratio, nearly doubling the device mobility (0.6 to 0.98 cm^2/V·s). Beyond this ratio, the metallic content of the SWCNT’s dropped the on/off ratio below acceptable levels. When source drain metals who’s work function poorly matched that of the DPP-QT semiconductors highest occupied molecular orbital (HOMO) were used, the SWCNT could dramatically reduce the charge injection ratio with best results achieved for Al, dropping the contact resistance from 10^5 to 45 MΩ. The second project explored the addition of small molecule additives into a UV-sensitive semiconductor 2,7-dipentyl[1]benzothieno[3,2-b][1] benzothiophene (C5-BTBT) mixed with a polymethyl methacrylate (PMMA) polymer binder. We generated a C5-BTBT based phototransistor sensitive to UV-A light. The HOMO and lowest unoccupied molecular orbital (LUMO) of C5-BTBT and the various additives were measured and discovered to play a critical role in how the device operates. We discovered if an additive has a LUMO lower in energy than C5-BTBT, it can act as a charge trap for a photogenerated electron. Electron deficient additives were found to retain a trapped electron for an extended period of time, allowing the device to remain in a high current state for an extended period of time (>1 hour). This provides an opportunity for the device to be used as an optical memory system or photoswitch. The best system could detect UV-A with a Pill > 10^5 and a photoresponsivity of 40 A/W at a Pinc of 0.0427 mW/cm^2. / Thesis / Doctor of Philosophy (PhD) / An emerging field of electronics is the use of organic materials that can be solution processed, to reduce manufacturing costs and make new and interesting products. Here we used unsorted carbon nanotubes blended into the semiconductor layer of a transistor, providing a bridge for the energy mismatch between the electrodes and the semiconductor. This allowed us the freedom to choose different metals to act as our electrodes when making electronic devices. Additionally through the correct choice of semiconductor, we added device functionality, making it responsive to UV-A light. This produced a device that could act as a UV-A sensor, logic switch or memory device. These devices are air stable and solution processable, a necessity if they are to be used in real world applications.
119

Photochemical, Photophysical, and Electronic Properties of Fused Ring Systems with Alternating Benzene and Thiophene Units

Wex, Brigitte 12 October 2005 (has links)
No description available.
120

Coupling Two-Dimensional (2D) Nanoelectromechanical Systems (NEMS) with Electronic and Optical Properties of Atomic Layer Molybdenum Disulfide (MoS2)

Yang, Rui 31 May 2016 (has links)
No description available.

Page generated in 0.0917 seconds