151 |
Thienoacene dimers based on the thieno[3,2-b] thiophene moiety: synthesis, characterization and electronic propertiesNiebel, Claude, Kim, Yeongin, Ruzié, Christian, Karpinska, Jolanta, Chattopadhyay, Basab, Schweicher, Guillaume, Richard, Audrey, Lemaur, Vincent, Olivier, Yoann, Cornil, Jérôme, Kennedy, Alan R., Diao, Ying, Lee, Wen-Ya, Mannsfeld, Stefan, Bao, Zhenan, Geerts, Yves H. 09 January 2020 (has links)
Two thienoacene dimers based on the thieno[3,2-b]thiophene moiety were efficiently synthesized, characterized and evaluated as active hole-transporting layers in organic thin-film field-effect transistors. Both compounds behaved as active p-channel organic semi-conductors showing averaged hole mobility of up to 1.33 cm² V⁻¹ s⁻¹.
|
152 |
Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-SystemenTruman Sutanto, Pagra 14 December 2007 (has links)
In dieser Arbeit wird eine neue Methode und ein neuartiges FET -Sensorelement zum Nachweis von Flüssigkeitsbewegungen vorgestellt, das zudem bei Bedarf auch als Chemo- oder Biosensor fungieren kann. Das Einsatzspektrum von FET-basierten Sensoren in Lab on a Chip-Systemen wird dadurch entscheidend erweitert. Bei dem entwickelten FET-Sensor Bauelement handelt es sich um einen normally-on n-leitenden Dünnschichtfeldeffekttransistor mit Ti-Au-Kontakten, basierend auf Silicon-on-Insulator- Substraten, wobei das natürliche Oxid des Siliziumfilms als Schnittstelle zum Elektrolyten bzw. zur Flüssigkeit verwendet wird. Der mit 10exp16 Bor Atomen pro cm³ p-dotierte Siliziumdünnfilm hat eine Dicke von nur 55 nm und ist durch eine 95 nm dicke Siliziumdioxidschicht vom darunterliegenden Siliziumsubstrat von 600 µm Dicke elektrisch isoliert. Aufgrund der geringen Schichtdicke durchdringt die feldempfindliche Raumladungs- bzw. Verarmungszone die gesamte Dünnschicht, so dass durch Anlegen einer Backgatespannung am Substrat der spezifische Widerstand und die Empfindlichkeit des Bauelements eingestellt werden können. Grundlegende ISFET-Funktionalitäten wie die Empfindlichkeit auf Änderungen der Ionenstärke und des pH-Wertes werden nachgewiesen und ein ENFET-Glukosesensor realisiert. Zudem wird im Hinblick auf die Separation von Emulsionen der Nachweis erbracht, dass die Benetzung mit Hexan und Toluol eine Änderung der spezifischen Leitfähigkeit bewirkt, und die Empfindlichkeit des Bauelements nach Beschichtung mit einem hydrophoben Methacrylatcopolymerfilm erhalten bleibt. Hinsichtlich der Verwendung des FET-Sensor Bauelements zum Nachweis von Flüssigkeitsbewegungen wird zunächst ein theoretisches Modell entwickelt, dessen Kernaussage ist, dass sich in einem rechteckigen Kanal der relative Bedeckungsgrad mit Flüssigkeit direkt proportional zum Drainstrom des FET-Sensors verhält. Basierend auf diesem theoretischen Modell, welches experimentell belegt wird, können mittels eines einzelnen FET-Sensors Füllstand und Füllgeschwindigkeit bzw. bei bekannter Füllgeschwindigkeit Kapillarvolumen und Kapillargeometrie bestimmt werden. Abweichungen von der direkten Proportionalität erlauben zudem, Rückschlüsse auf die Benetzungseigenschaften der Kapillaren und die Dynamik an der Halbleitergrenzfläche zu ziehen. Ist ein Sensorelement vollständig mit Flüssigkeit bedeckt, wird mittels Lösungsmitteltropfen als Markerobjekten die Strömungsgeschwindigkeit bestimmt. Ändert sich die Ionenkonzentration im Elektrolyten als Funktion der Strömungsgeschwindigkeit, so kann die Strömungsgeschwindigkeit durch Messung der Ionenkonzentration mittels FET-Sensor ebenfalls ermittelt werden. Als wichtigster Demonstrator für die Verwendung des FET-Sensors wird ein komplexes Lab on a Chip-System zur Separation von Emulsionen auf chemisch strukturierten Oberflächen entwickelt, bei dem der Separationsvorgang mittels FET-Sensorarray verfolgt werden kann. Zur einfachen Herstellung chemisch modifizierter Oberflächen für die Separationsexperimente werden die Abscheidung von nanoskaligen hydrophoben Methacrylatcopolymerfilmen und die selektive Fluorsilanisierung von Oberflächen sowie deren Lösungsmittelbeständigkeit in Wasser, Toluol und Aceton untersucht. Dabei zeigt sich, dass die Hydrophobie nach Lösungsmittelbehandlung weitestgehend erhalten bleibt, Wasserrückstände im Methacrylatfilm aber zu einer reversiblen Schichtdegradation führen können. Als Modellsystem werden Hexan-Wasser- bzw. Toluol-Wasser-Emulsionen verwendet, die auf Oberflächen getrennt werden, deren eine Seite hydrophil, und deren andere Seite hydrophob ist (Stufengradient). Der Separationsprozess beruht auf der großen Affinität des Wassers hin zu polaren Oberflächen, wobei das wenig selektive Lösungsmittel zur unpolaren Seite gedrängt wird. Zur Erlangung eines tieferen Verständnisses des Prozesses werden die Tropfenkoaleszenz und der Einfluss geometrischer Beschränkungen untersucht. Die Versuche werden sowohl auf offenen Oberflächen als auch im Spalt, unter Verwendung von hydrophilen und hydrophoben Oberflächen, durchgeführt. Es zeigt sich, dass sich die Dynamik der Tropfenkoaleszenz im Spalt umgekehrt zur Dynamik auf offenen Oberflächen verhält. Dies wird mittels eines hierzu entwickelten theoretischen Modells erklärt, welches die Minimierung der Oberflächenenergie und Hystereseeffekte einbezieht. Das Lab on a Chip-System schließlich besteht aus einem mit Siliziumnitrid beschichteten FET-Sensorchip, auf den eine Separationszelle aufgeklebt ist. Neben dem Einlass für die Emulsion ist ein weiterer Einlass vorhanden, durch den Salzsäure für eine pH-Reaktion zugegeben werden kann. Der gesamte Separationsprozess sowie die anschließende pH-Reaktion, lassen sich bequem am PC anhand der Änderung der Stromstärke der einzelnen Sensoren verfolgen und analysieren. Wichtige Ergebnisse hier sind: 1) Mittels eines quasi 1-dimensionalen Sensorarrays kann der Verlauf einer Flüssigkeitsfront in einem 2-dimensionalen Areal überwacht bzw. dargestellt werden. 2) Anhand der Signatur des Signalverlaufs bei pH-Änderung und Flüssigkeitsbewegung, können beide Prozesse unterschieden werden. Der Sensor kann also zum Nachweis von Flüssigkeitsbewegungen und zugleich als Chemosensor eingesetzt werden. Es wurde also nicht nur ein neuartiges, äußerst robustes, chemikalienbeständiges und biokompatibles Multifunktionssensorelement mit Abmessungen im Mikrometer- bis Millimeterbereich entwickelt, sondern auch eine neue Methode entwickelt, mit der es möglich ist, sowohl (bio-)chemische Reaktionen als auch die Bewegung von Flüssigkeiten in Lab on a Chip-Systemen nachzuweisen.
|
153 |
Nanostrukturierte Fullerenschichten für organische BauelementeDeutsch, Denny 19 March 2008 (has links)
Die vorliegende Arbeit behandelt die Herstellung geordneter C60-Schichten, ihre elektrochemische Nanostrukturierung in wässrigen Lösungen und ionischen Flüssigkeiten und den Einsatz geordneter und nanostrukturierter Fullerenschichten in organischen Dünnschichttransistoren.
Geordnete C60-Schichten wurden durch thermische Verdampfung im Hochvakuum hergestellt. Als Substratmaterial wurden HOPG (Graphit), Glimmer und einkristallines Silizium verwendet. Die größten einkristallinen Bereiche werden auf HOPG-Substraten erhalten. Die laterale Ausdehnung der C60-Kristallite parallel zu den Graphitstufen kann bis zu 50 µm erreichen, orthogonal zu den Stufen ist das Wachstum durch die Graphitstufen begrenzt.
Die elektrochemische Reduktion von C60 -Schichten in wässriger Lösung ist elektrochemisch irreversibel. Die geflossene Ladung beträgt ein Vielfaches der theoretisch möglichen Menge. Durch die Reduktion tritt eine Nanostrukturierung der Schichtoberfläche ein, die Größe der gebildeten Cluster beträgt 20 nm bis 50 nm. Fullerenpolymere und hydriertes C60 sind die chemischen Hauptprodukte der elektrochemischen Nanostrukturierung in wässriger Lösung.
Die Reduktion von Fullerenschichten in ionischen Flüssigkeiten ist aufgrund der geschlossenen Schichtoberfläche und des starken Potentialabfalls in der Fullerenschicht zunächst kinetisch gehemmt und setzt erst bei negativeren Potentialen im Bereich der Reduktion zum C60-Dianion ein. Die Reduktion der Fullerenschichten ist elektrochemisch irreversibel, zum Teil aber chemisch reversibel.
Es konnte erstmals der Einsatz nanostrukturierter C60 -Schichten als aktives Halbleitermaterial in Feldeffekt-Transistoren gezeigt werden. Für die Verwendung nanostrukturierter Fullerenschichten in Feldeffekt-Transistoren wurde 11-(3-Thienyl-)undecyl-trichlorosilan als Haftvermittler eingesetzt.
Die gezeigten Ergebnisse von C60 -Transistoren mit hoher Ladungsträgerbeweglichkeit und der erfolgreichen Verwendung nanostrukturierter Fullerenschichten in Transistorstrukturen zeigen die Möglichkeiten des C60 als aktives Halbleitermaterial auf.
|
154 |
Selbstorganisation von Kohlenstoffnanoröhren zu FeldeffekttransistorenTaeger, Sebastian 16 January 2008 (has links)
Kohlenstoffnanoröhren (engl. carbon nanotubes, CNT) verfügen über eine Vielzahl von herausragenden und möglicherweise nutzbringenden Eigenschaften. Die kontrollierte Integration von CNT in technische Systeme stellt noch immer eine große Herausforderung dar. Im Rahmen der vorliegenden Arbeit wurden neue Methoden für den Aufbau von Strukturen und Bauelementen aus CNT entwickelt, die auf Selbstorganisation bzw. bottom-up assembly basieren. Dabei kamen sowohl biochemische als auch physikalische Verfahren zum Einsatz. Einzelsträngige DNA wurde verwendet um CNT in wässrigen Medien zu suspendieren und zu vereinzeln. Beides sind wichtige Voraussetzungen, um die günstigen elektronischen Eigenschaften der CNT zugänglich zu machen. DNA-CNT-Suspensionen wurden sowohl spektroskopisch in ihrer Gesamtheit als auch kraftmikroskopisch auf molekularer Ebene untersucht. So konnten wesentliche Parameter des Herstellungsprozesses optimiert werden, um Suspensionen mit einem hohen Gehalt an langen, sauberen, vereinzelten CNT zu erhalten. Durch die Verwendung von funktionalisierten DNA-Molekülen ist es gelungen, Halbleiterquantenpunkte und Goldkolloide an CNT anzubinden. Im Fall der Quantenpunkte gelang dies mit Hilfe der Biotin-Streptavidin Bindung unter Anwendung des Prinzips der molekularen Erkennung. Die Anbindung dieser Nanopartikel kann als Prototyp für den DNA-vermittelten Strukturaufbau aus CNT angesehen werden. Zur Deposition von CNT in Elektrodenstrukturen wurde ein auf Dielektrophorese beruhendes Verfahren eingesetzt. Dabei ist es gelungen, die wesentlichen Parameter zu identifizieren, die für die Morphologie der abgeschiedenen CNT entscheidend sind. So konnte die Dichte der CNT-Verbindungen zwischen Elektroden von einzelnen Verbindungen über wenige bis hin zu sehr vielen parallel assemblierten CNT eingestellt werden. Durch ein sich selbst steuerndes Hintereinanderlagern von CNT war es möglich auch Elektroden zu verbinden, deren Abstand größer war als die Länge der verwendeten CNT. Durch gezieltes Eliminieren metallischer CNT-Strompfade nach der Deposition ist es gelungen, CNT-Feldeffekttransistoren (CNT-FETs) mit Schaltverhältnissen von bis zu sieben Dekaden herzustellen. Auch dieses Verfahren ist skalierbar und unkompliziert, da es sich selbst steuert. Es ist skalierbar und deshalb auch für technische Anwendungen geeignet. An Hand des Beispiels der Detektion von Ethanoldampf konnte gezeigt werden, dass die über Dielektrophorese aufgebauten CNT-FETs auch als Sensoren eingesetzt werden können. Durch eine Kombination der dielektrophoretischen Deposition von CNT und dem dielektrophoretisch gesteuerten Wachstum metallischer Nanodrähte konnte eine neuartige Hybridstruktur aus CNT und Palladium-Nanodrähten erzeugt werden. Ein solches Verfahren ist eine Voraussetzung für den Aufbau integrierter nanoskaliger Schaltkreise. Die vorliegenden Ergebnisse zeigen zahlreiche Möglichkeiten auf, verschiedenartige nanoskopische Objekte miteinander integrieren, um neue Anwendungen zu ermöglichen.
|
155 |
Neue Methoden und Konzepte für hochintegrierte Gas- und DrucksensorenKomenko, Vladislav 20 January 2022 (has links)
Im Rahmen der vorliegenden Arbeit wurden die technologischen Ansätze zur Erzeugung von Mikro-Kavitäten als Grundlage zur Entwicklung und Erprobung neuer Konzepte der MEMS-basierten Aktoren und Sensoren erfolgreich eingesetzt.
Im Verlauf der Integration eines IR-Emitters wurde der SON-Prozess weiterentwickelt, um eine hohe und homogene Verteilung der Dotierstoffe innerhalb der SON-Membran zu erreichen. Dabei wurde ein technologischer Ablauf entwickelt, welcher die genannten Randbedingungen erfüllt und darüber hinaus eine optimierte Herstellung anbietet, indem die zeitaufwändige Formierung der Kavität in einem Batch- anstatt eines RTP-Ofens erfolgt.
Die Opferschichttechnik wurde bei der Integration von beiden vorgestellten Bauelementen eingesetzt und mit Rücksicht auf die einzelnen Randbedingungen angepasst. So konnte z. B. eine Kavität mit einer Höhe von 700 nm zur Abdeckung von IR-Emitter hergestellt werden, wodurch die thermische Isolation verbessert wurde. Im Konzept des druckempfindlichen Feldeffekttransistors wurde eine Opferschicht mit einer Dicke von 70 nm verwendet, um die Größe der Gate-Kapazität so anzupassen, dass der hergestellte Transistor steuerbar und druckempfindlich ist. Somit konnten die Flexibilität und das Potenzial der beiden Prozessknotenpunkte verdeutlicht werden.:Symbolverzeichnis
Abkürzungsverzeichnis
1 Einleitung
1.1 Einführung zum Thema
1.2 Technologien zur Herstellung von Mikro-Kavitäten für MEMS
1.2.1 Silicon-On-Nothing Technologie
1.2.2 Opferschichttechnik
2 Das neue Konzept einer breitbandigen Infrarotquelle
2.1 Grundlegende Ideen der Infrarot-Sensorik
2.1.1 Wechselwirkung von Infrarotstrahlung mit CO2-Gas
2.1.2 Prinzipielle Funktionsweise eines IR-Emitters
2.1.3 CMOS-kompatible Materialien und Integrationsmöglichkeiten eines IR-Emitters
2.1.4 Das neue Konzept eines Infrarot-Emitter-Systems basierend auf monokristallinem Silizium
2.2 Finite-Elemente-Methode-Simulation des IR-Emitter-Systems
2.2.1 Geometrievarianten
2.2.2 Temperaturabhängige elektrische Eigenschaften des Bauelements
2.2.3 Betrachtung der thermischen Verluste
2.2.4 Simulation der Wärmeentwicklung
3 Herstellung und Charakterisierung eines IR-Emitters
3.1 Module der CMOS-basierten 3D-Integration
3.1.1 FEOL - Front End of Line
3.1.2 BEOL - Back End of Line
3.2 Elektrische Charakterisierung des IR-Emitters
3.2.1 I(V)-Spektren
3.2.2 Optische Eigenschaften
3.2.3 Zeitabhängiges Verhalten
4 Das neue Konzept eines druckempfindlichen Feldeffekttransistors
4.1 Einleitung zum Konzept des Bauelements
4.1.1 Konzepte zur Herstellung von MOSFET - basierten Sensoren
4.1.2 Prinzipieller Aufbau und Funktionsweise des neuen Konzepts
4.1.3 Geometrievarianten
5 Herstellung und Charakterisierung eines druckempfindlichen Feldeffekttransistors
5.1 CMOS-basierte 3D-Integration
5.1.1 Herstellung des MEMS-Elements: FEOL - Module
5.1.2 Herstellung des MEMS-Elements: BEOL - Module
5.2 Elektrische Charakterisierung des Feldeffekttransistors
5.2.1 Ausgangskennlinienfeld unter Normaldruck
5.2.2 Eingangskennlinien und deren Besonderheiten unter Normaldruck
5.3 Verhalten des Transistors bei veränderbarem Gasdruck
5.3.1 Designvariante I
5.3.2 Designvariante II
5.3.3 Designvariante III
5.3.4 Druckmessung mit Konstantstromquelle
5.4 Optimierung der Transistoreigenschaften
5.4.1 Anpassung des Gate-Dielektrikums und der Dotierung des Kanals
5.4.2 Ausgangskennlinien unter Normaldruck nach der Optimierung
5.4.3 Eingangskennlinien unter Normaldruck nach der Optimierung
5.4.4 Druckmessung nach der Optimierung
5.4.5 Bewertung der Prozessoptimierung anhand der Referenz-Strukturen
6 Zusammenfassung und Ausblick
6.1 Zusammenfassung zum IR-Emitter
6.2 Zusammenfassung zum Drucksensor
Literatur
Abbildungsverzeichnis
Tabellenverzeichnis
|
156 |
Materials and Device Engineering for High Performance β-Ga2O3-based ElectronicsXia, Zhanbo 01 October 2020 (has links)
No description available.
|
157 |
Raman-Spektroskopie an epitaktischem Graphen auf Siliziumkarbid (0001)Fromm, Felix Jonathan 17 April 2015 (has links)
Die vorliegende Arbeit behandelt die Charakterisierung von epitaktischem Graphen auf Siliziumkarbid (0001) mittels Raman-Spektroskopie. Nach der Einführung theoretischer sowie experimenteller Grundlagen werden das Wachstum von Graphen auf Siliziumkarbid (SiC) behandelt und die untersuchten Materialsysteme vorgestellt.
Es wird gezeigt, dass das Raman-Spektrum von epitaktischem Graphen auf SiC (0001) neben den Phononenmoden des Graphens und des Substrats weitere Signale beinhaltet, welche der intrinsischen Grenzflächenschicht, dem Buffer-Layer, zwischen Graphen und SiC zugeordnet werden können. Das Raman-Spektrum dieser Grenzflächenschicht kann als Abbild der phononischen Zustandsdichte interpretiert werden. Fortführend werden verspannungsinduzierte Änderungen der Phononenenergien der G- und 2D-Linie im Raman-Spektrum von Graphen untersucht. Dabei werden starke Variationen des Verspannungszustands beobachtet, welche mit der Topographie der SiC-Oberfläche korreliert werden können und erlauben, Rückschlüsse auf Wachstumsmechanismen zu ziehen. Die Entwicklung einer neuen Messmethode, bei der das Raman-Spektrum von Graphen durch das SiC-Substrat aufgenommen wird, ermöglicht die detektierte Raman-Intensität um über eine Größenordnung zu erhöhen. Damit wird die Raman-spektroskopische Charakterisierung eines Graphen-Feldeffekttransistors mit top gate ermöglicht und ein umfassendes Bild des Einflusses der Ladungsträgerkonzentration und der Verspannung auf die Positionen der G- und 2D-Raman-Linien von quasifreistehendem Graphen auf SiC erarbeitet.
|
158 |
Simulation of integrate-and-fire neuron circuits using HfO₂-based ferroelectric field effect transistorsSuresh, Bharathwaj, Bertele, Martin, Breyer, Evelyn T., Klein, Philipp, Mulaosmanovic, Halid, Mikolajick, Thomas, Slesazeck, Stefan, Chicca, Elisabetta 03 January 2022 (has links)
Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches. The realization of CMOS circuits replicating neuronal features, namely the integration of action potentials and firing according to the all-or-nothing law, imposes various challenges like large area and power consumption. The non-volatile storage of polarization states and accumulative switching behavior of nanoscale HfO₂ - based Ferroelectric Field-Effect Transistors (FeFETs), promise to circumvent these issues. In this paper, we propose two FeFET-based neuronal circuits emulating the Integrate-and-Fire (I&F) behavior of biological neurons on the basis of SPICE simulations. Additionally, modulating the depolarization of the FeFETs enables the replication of a biology-based concept known as membrane leakage. The presented capacitor-free implementation is crucial for the development of neuromorphic systems that allow more complex features at a given area and power constraint.
|
159 |
Accumulative Polarization Reversal in Nanoscale Ferroelectric TransistorsMulaosmanovic, Halid, Mikolajick, Thomas, Slesazeck, Stefan 05 September 2022 (has links)
The electric-field-driven and reversible polarization switching in ferroelectric materials provides a promising approach for nonvolatile information storage. With the advent of ferroelectricity in hafnium oxide, it has become possible to fabricate ultrathin ferroelectric films suitable for nanoscale electronic devices. Among them, ferroelectric field-effect transistors (FeFETs) emerge as attractive memory elements. While the binary switching between the two logic states, accomplished through a single voltage pulse, is mainly being investigated in FeFETs, additional and unusual switching mechanisms remain largely unexplored. In this work, we report the natural property of ferroelectric hafnium oxide, embedded within a nanoscale FeFET, to accumulate electrical excitation, followed by a sudden and complete switching. The accumulation is attributed to the progressive polarization reversal through localized ferroelectric nucleation. The electrical experiments reveal a strong field and time dependence of the phenomenon. These results not only offer novel insights that could prove critical for memory applications but also might inspire to exploit FeFETs for unconventional computing.
|
160 |
Development of Carbon Nanotube-based Field-Effect Transistors for Analog High-Frequency ApplicationsHartmann, Martin 04 January 2023 (has links)
The carbon nanotube-based field effect transistor (CNTFET) possesses the potential to overcome limitations of state-of-the-art technologies such as silicon-based complementary metal-oxide-semiconductors. However, the carbon nanotube (CNT) technology is still at its infancy and technology development is still necessary to exploit the CNT properties such as high charge carrier mobility, high current carrying capability, one-dimensional charge transport and their versatile integrability.
Within this work significant progress has been achieved scientifically and technologically in the advance of high frequency (HF) CNTFETs for analog applications. According to simulations by others, a technology flow has been developed based on electron beam lithography for bottom gated HF CNTFETs which outperform state-of the art top gate architectures with respect to their parasitic capacitances.
Moreover, the impact of electrostatic doping on the CNTFETs has been investigated. In particular, the dynamics of water desorption from the CNTFETs and the related reduction of p-type doping was investigated and the different impact of the n-type dopant polyethylenimine onto the channel region and contact region could be separated for the first time. Furthermore, the impact of doped CNT bundles on the device performance has been studied. It could be shown in detail for the first time, that high off-state source-drain leakage currents can be due to bundled semiconducting CNTs and does not necessarily imply the presence of metallic CNTs. The within the framework of this thesis designed and realized HF CNTFETs are operating in the GHz range with cut-off frequencies up to 14 GHz and maximum frequencies of oscillation up to 6 GHz at a channel length of 280 nm. Moreover, the impact of the spacer between the source-/ drain- to the gate electrode on the HF properties of the CNTFETs has been investigated experimentally for the first time. Simulations by others have successfully confirmed that a symmetrical reduction of the source to gate electrode spacer results in an increased device speed. By asymmetrically reducing the source to gate electrode spacer and in parallel increasing the drain-to-gate electrode spacer the device speed can be further enhanced. Moreover, within this work it has been experimentally indicated for the first time that the device properties of HF CNTFETs can be tuned by different device geometries towards either highest linearity or speed.
|
Page generated in 0.1074 seconds