• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 461
  • 94
  • 34
  • 21
  • 17
  • 13
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 763
  • 763
  • 520
  • 309
  • 293
  • 277
  • 207
  • 160
  • 144
  • 107
  • 102
  • 84
  • 80
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Characterization of Dopant Diffusion in Bulk and lower dimensional Silicon Structures

Ndoye, Coumba 20 January 2011 (has links)
The semiconductor industry scaling has mainly been driven by Moore's law, which states that the number of transistors on a single chip should double every year and a half to two years. Beyond 2011, when the channel length of the Metal Oxide Field effect transistor (MOSFET) approaches 16 nm, the scaling of the planar MOSFET is predicted to reach its limit. Consequently, a departure from the current planar MOSFET on bulk silicon substrate is required to push the scaling limit further while maintaining electrostatic control of the gate over the channel. Alternative device structures that allow better control of the gate over the channel such as reducing short channel effects, and minimizing second order effects are currently being investigated. Such novel device architectures such as Fully-Depleted (FD) planar Silicon On Insulator (SOI) MOSFETS, Triple gate SOI MOSFET and Gate-All-Around Nanowire (NW) MOSFET utilize Silicon on Insulator (SOI) substrates to benefit from the bulk isolation and reduce second order effects due to parasitic effects from the bulk. The doping of the source and drain regions and the redistribution of the dopants in the channel greatly impact the electrical characteristics of the fabricated device. Thus, in nano-scale and reduced dimension transistors, a tight control of doping levels and formation of pn junctions is required. Therefore, deeper understanding of the lateral component of the diffusion mechanisms and interface effects in these lower dimensional structures compared to the bulk is necessary. This work focuses on studying the dopant diffusion mechanisms in Silicon nanomembranes (2D), nanoribbons (â 1.Xâ D), and nanowires (1D). This study also attempts to benchmark the 1D and 2D diffusion against the well-known bulk (3D) diffusion mechanisms. / Master of Science
442

[pt] EFEITO DAS NÃO-LINEARIDADES DE TRANSISTORES DE EFEITO DE CAMPO EM AMPLIFICADORES DE MICROONDAS / [en] EFFECTS OF NON-LINEARITIES OF FIELD-EFFECT TRANSISTORS IN MICROWAVE AMPLIFIERS

JOAO TAVARES PINHO 05 January 2007 (has links)
[pt] Este trabalho trata dos efeitos das não-linearidades de transistores de efeito de campo utilizados em amplificadores de microondas. Para tanto, o transistor é modelado por um circuito não- linear equivalente, cujos elementos são determinados através da medição dos parâmetros espalhamento do mesmo, na faixa de 3 GHz a 9 GHz, e com o auxílio de um programa de otimização de circuitos e outro de ajuste de curvas. O método de análise utilizado é o da expansão em série de Volterra, para o qual foi desenvolvido um programa computacional que permite a determinação dos ganhos de transdução e das potências de saída na freqüência fundamental e no terceiro produto de intermodulação, bem como do ponto de 1dB de compressão de ganho, da taxa de distorção de intermodulação de terceira ordem. Esse programa permite, ainda, a verificação da influência das impedâncias de fechamento fora da faixa, nas características de distorção de intermodulação. Através dessa análise pôde-se verificar que as terminações fora da faixa exercem pouca ou nenhuma influência nas características de distorção de intermodulação, com exceção das terminações na freqüência diferença, (freqüência de diferença = freqüência 2 - freqüência 1), onde pôde-se constatar uma redução de até 8dB no nível do terceiro produto de intermodulação, para uma escolha apropriada das impedâncias de fechamento nessa freqüência. Esses resultados, contudo, não podem ser considerados definitivos, uma vez que o modelo adotado não levou em consideração o fato do FET utilizado ser pré-adaptado. Também, devido ao transistor ter-se danificado durante as medições de intermodulação, tais resultados não puderam ser comprovados experimentalmente. / [en] This work deals with the effects of non-linear ities of field-effect transistors used in microwave amplifiers. To do so, the transistor is modeled by a non-linear equivalent circuit, with its components determined through the measurement of its scattering parameters, in the range of 3 GHz to 9GHz, and with the aid of a circuit optimization program and another for curve fitting. The method of analysis used is the Volterra series expansion, for which a computer program was developed, permitting the determination of the transducer gains and output powers in the fundamental frequency, and in the third-order intermodulation product, as well as the 1 dB compression point, the third-order intermodulation distortion ratio, and the third-order intercept point. This program also allows for the verification of the influence of out-of-band terminating impedances on the intermodulation distortion characteristics. Through this analysis it was possible to verify that the out-of-band terminations have little or no influence on the intermodulation distortion characteristics, with the exception of the terminations in the difference frequency, (difference frequency = frequency 2 - frequency 1), for which it was found a decrease of up to 8 dB in the third- order intermodulation product level, for the appropriate choice of these impedances. These results, however, cannot be said to represent the real behavior of the FET since the model used did not account for the internal matching of the device. Also, due to the fact that the transistor was damaged during the intermodulation measurements, such results could not be verified experimentally.
443

Study on Electron Trapping and Transport in SiC MOSFETs / SiC MOSFETにおける電子捕獲および輸送に関する研究

Ito, Koji 23 March 2023 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第24623号 / 工博第5129号 / 新制||工||1980(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 川上 養一, 准教授 浅野 卓 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
444

Molecular Designs for Organic Semiconductors: Design, Synthesis and Charge Transport Properties

Kale, Tejaswini Sharad 13 May 2011 (has links)
Understanding structure-property relationship of molecules is imperative for designing efficient materials for organic semiconductors. Organic semiconductors are based on π-conjugated molecules, either small molecules or macromolecules such as dendrimers or polymers. Charge transport through organic materials is one of the most important processes that drive organic electronic devices. We have investigated the charge transport properties in various molecular designs based on dendrons, dendron-rod-coil molecular triads, and conjugated oligomers. The charge transport properties were studied using bottom contact field effect transistors, in which the material was deposited by spin coating. In case of dendrons, their generation and density of charge transporting functionalities were found to play a significant role in influencing the charge transport properties. In case of macromolecules such as dendron-rod-coil molecules, the solid state morphology plays a significant role in influencing the charge transport properties. While these molecules exhibit only electron transporting behavior in field-effect transistor measurements, ambipolar charge transport is observed in the diode configuration. Short conjugated oligomers, based on donor-acceptor-donor design, provide model systems for conjugated polymers. Effect of varying the donor functionality on optoelectronic and charge transport properties was studied in short donor-acceptor-donor molecules. While donor-acceptor-donor molecules are well known in the literature, the effect of molecular composition on the charge transport properties is not well understood. We designed molecules with 2,1,3-benzothiadiazole as the acceptor and thiophene based donor functionalities. These molecules exhibit a reduced bandgap, good solution processability and charge mobility making them interesting systems for application in organic photovoltaics. Cyclopentadithiophene (CPD) based materials have been widely utilized as organic semiconductors due to their planar nature which favors intermolecular charge transport. While most CPD based materials are hole transporting, incorporation of electron withdrawing fluorinated substituents imparts n-type behavior to these molecules. This change in charge transport properties has often been attributed to the lowering of the LUMO energy level due to the increased electron affinity in the molecule. We designed CPD based semiconductors in which the bridgehead position was functionalized with electron withdrawing ketone or dicyanomethylene group and the -positions were substituted with phenyl or pentafluorophenyl groups. Both the phenyl substituted molecules are p-type materials, even though the dicyanomethylene group lowers the LUMO by 500 meV as compared to the carbonyl compound. The pentafluorophenyl substituted molecules are n-type materials even as their LUMO energy levels are about 300 meV higher than the corresponding phenyl substituted molecules. This indicates that charge transport behavior is not an exclusive function of the frontier orbital energy levels.
445

Tensile-Strained Ge/III-V Heterostructures for Low-Power Nanoelectronic Devices

Clavel, Michael Brian 12 February 2024 (has links)
The aggressive reduction of feature size in silicon (Si)-based complimentary metal-oxide-semiconductor (CMOS) technology has resulted in an exponential increase in computing power. Stemming from increases in device density and substantial progress in materials science and transistor design, the integrated circuit has seen continual performance improvements and simultaneous reductions in operating power (VDD). Nevertheless, existing Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs) are rapidly approaching the physical limits of their scaling potential. New material innovations, such as binary group IV or ternary III-V compound semiconductors, and novel device architectures, such as the tunnel field-effect transistor (TFET), are projected to continue transistor miniaturization beyond the Si CMOS era. Unlike conventional MOSFET technology, TFETs operate on the band-to-band tunneling injection of carriers from source to channel, thereby resulting in steep switching characteristics. Furthermore, narrow bandgap semiconductors, such as germanium (Ge) and InxGa1-xAs, enhance the ON-state current and improve the switching behavior of TFET devices, thus making these materials attractive candidates for further study. Moreover, epitaxial growth of Ge on InxGa1-xAs results in tensile stress (ε) within the Ge thin-film, thereby giving device engineers the ability to tune its material properties (e.g., mobility, bandgap) via strain engineering and in so doing enhance device performance. For these reasons, this research systematically investigates the material, optical, electronic transport, and heterointerfacial properties of ε-Ge/InxGa1-xAs heterostructures grown on GaAs and Si substrates. Additionally, the influence of strain on MOS interfaces with Ge is examined, with specific application toward low-defect density ε-Ge MOS device design. Finally, vertical ε-Ge/InxGa1-xAs tunneling junctions are fabricated and characterized for the first time, demonstrating their viability for the continued development of next-generation low-power nanoelectronic devices utilizing the Ge/InxGa1-xAs material system. / Doctor of Philosophy / The aggressive scaling of transistor size in silicon-based complimentary metal-oxide-semiconductor technology has resulted in an exponential increase in integrated circuit (IC) computing power. Simultaneously, advances in materials science, transistor design, IC architecture, and microelectronics fabrication technologies have resulted in reduced IC operating power requirements. As a consequence, state-of-the-art microelectronic devices have computational capabilities exceeding those of the earliest super computers at a fraction of the demand in energy. Moreover, the low-cost, high-volume manufacturing of these microelectronic devices has resulted in their nigh-ubiquitous proliferation throughout all aspects of modern life. From social engagement to supply chain logistics, a vast web of interconnected microelectronic devices (i.e., the "Internet of Things") forms the information technology bedrock upon which 21st century society has been built. Hence, as progress in microelectronics and related fields continues to evolve, so too does their impact on an increasingly dependent world. Moore's Law, or the doubling of IC transistor density every two years, is the colloquialism used to describe the rapid advancement of the microelectronics industry over the past five decades. As mentioned earlier, parallel improvements in semiconductor technologies have spearheaded great technological change. Nevertheless, Moore's Law is rapidly approaching the physical limits of transistor scaling. Consequently, in order to continue improving IC (and therefore microelectronic device) performance, new innovations in materials and fabrication science, and transistor and IC designs are required. To that end, this research systematically investigates the material, optical, and electrical properties of novel semiconductor material systems combining elemental (e.g., Germanium) and compound (e.g., Gallium Arsenide) semiconductors. Additionally, alternative transistor design concepts are explored that leverage the unique properties of the aforementioned materials, with specific application to low-power microelectronics. Therefore, through a holistic approach towards semiconductor materials, devices, and circuit co-design, this work demonstrates, for the first time, novel transistor architectures suitable for the continued development of next-generation low-power, high-performance microelectronic devices.
446

Fabrication and transport studies of n-type OFETS using aligned array carbon nanotubes electrodes

Jimenez, Edwards 01 May 2012 (has links)
We present fabrication of n-type organic field effect transistors (OFETs) using densely aligned array carbon nanotube (CNT) electrodes. The CNTs were aligned with a high linear density via dielectrophoresis (DEP) from an aqueous solution. In order to fabricate the CNT electrodes, aligned CNTs were cut by using electron beam lithography (EBL) and precise oxygen plasma etching. The n-type OFETs were fabricated in a bottom-contact configuration by depositing a thin film of C60 molecules between the CNT source and drain electrodes, and compared against a controlled C60 OFET with gold electrodes. The electron transport measurements of the OFETs using CNT electrodes show better transistor characteristics compared to OFETs using gold electrodes due to improved charge injection from densely aligned and open-ended nanotube tips.
447

Design, Synthesis, and Properties of New Derivatives of Pentacene and New Blue Emitters

Jiang, Jinyue 21 April 2006 (has links)
No description available.
448

Ultra-Sensitive AlGaN/GaN HFET Biosensors: Performance Enhancement, Clinical and Food Safety Applications

Wang, Yuji January 2014 (has links)
No description available.
449

A Simulation Study of Zinc Oxide Nanowire Field-Effect Transistors (ZnO NWFETs)

D'Souza, Noel Michael January 2008 (has links)
No description available.
450

Synthesis of Novel Hydrogen-Bonding Unit for Organic Field-Effect Transistors

Jin, Jiyang 10 June 2016 (has links)
No description available.

Page generated in 0.0428 seconds