31 |
Identificação de parâmetros em problemas de advecção-difusão combinando a técnica do operador adjunto e métodos de volumes finitos de alta ordem / Identification of parameters in advection-diffusion problems of combining the adjoint operator\'s and methods of finite volume of high orderSantana, Alessandro Alves 01 November 2007 (has links)
O objetivo desse trabalho consiste no estudo de métodos de identificação de parâmetros em problemas envolvendo a equação de advecção-difusão 2D. Essa equação é resolvida utilizando o método dos volumes finitos, sendo empregada métodos de reconstrução de alta ordem em malhas não-estruturadas de triângulos para calcular os fluxos nas faces dos volumes de controle. Como ferramenta de busca dos parâmetros é empregada a técnica baseadas em gradientes, sendo os mesmos calculados utilizando processos baseados em métodos adjuntos. / The aim of this work concern to study parameter identification methods on problems involving the advection-diffusion equation in two dimensions. This equation is solved employing the finite volume methods, and high-order reconstruction methods, on triangle unstructured meshes to solve the fluxes across the faces of control volumes. As parameter searching tool is employed technicals based on gradients. The gradients are solved using processes based on adjoint methods.
|
32 |
Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de thermique anisotrope et des équations de Navier-Strokes compressibles / Finite Volume methods on unstructured grids for solving anisotropic heat transfer and compressible Navier-Stokes equationsJacq, Pascal 09 July 2014 (has links)
Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques différents. Tout d'abord, l'écoulement autour du véhicule entrant dans l'atmosphère est hypersonique,il est caractérisé par la présence d'un choc fort et provoque un fort échauffement du véhicule. Nous modélisons l'écoulement par les équations de Navier-Stokes compressibles et l'échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé par un bouclier thermique siège de réactions chimiques que l'on nomme communément ablation.Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment. / When studying the problem of atmospheric reentry we need to model three different physical phenomenons. First, the ow around the atmospheric reentry vehicle is hypersonic, it is characterized by the presence of a strong shock which leads to a rapid heating of the vehicle. We model the ow using the compressible Navier-Stokes equations and the heating of the vehicle is modeled with the anisotropic heat transfer equation. Furthermore the vehicle is protected by an heat shield, where thermochemical reactions, commonly named ablation, occurs.In the first chapter of this thesis we introduce the numerical diffusion scheme CCLAD (Cell-Centered LAgrangian Diffusion) that we use to solve the anisotropic heat diffusion. We develop its non trivial extension to three-dimensional geometries and present its parallelization. We continue this thesis by the presentation of the extension of this scheme to tensorial diffusion. This equation is obtained by suppressing the convective terms of the momentum equation of the Navier-Stokes equations. We show that we need to introduce a penalization term in order to be able to invert the constitutive law. The invertibility of the constitutive law allows us to apply the CCLAD methodology to this equation straightforwardly. We present the numerical properties of this scheme and show numerical validations.In the last chapter, we present a Finite Volume scheme on unstructured grids that solves the compressible Navier-Stokes equations. This numerical scheme is mainly obtained by gathering the contributions of the two diffusion schemes we developed in the previous chapters.
|
33 |
A DSEL in C++ for lowest-order methods for diffusive problem on general meshes / Programmation générative appliquée au prototypage d'Applications performantes sur des architectures massivement parallèles pour l'approximation volumes finis de systèmes physiques complexesGratien, Jean-Marc 27 May 2013 (has links)
Les simulateurs industriels deviennent de plus en plus complexes car ils doivent intégrer de façon performante des modèles physiques complets et des méthodes de discrétisation évoluées. Leur mise au point nécessite de gérer de manière efficace la complexité des modèles physiques sous-jacents, la complexité des méthodes numériques utilisées, la complexité des services numériques de bas niveau nécessaires pour tirer parti des architectures matérielle modernes et la complexité liée aux langages informatiques. Une réponse partielle au problème est aujourd'hui fournie par des plate-formes qui proposent des outils avancés pour gérer de façon transparente la complexité liée au parallélisme. Cependant elles ne gèrent que la complexité du matériel et les services numériques de bas niveau comme l'algèbre linéaire. Dans le contexte des méthodes Éléments Finis (EF), l'existence d'un cadre mathématique unifié a permis d'envisager des outils qui permettent d'aborder aussi la complexité issue des méthodes numériques et celle liée aux problèmes physiques, citons, par exemple, les projets Freefem++, Getdp, Getfem++, Sundance, Feel++ et Fenics. Le travail de thèse a consisté à étendre cette approche aux méthodes d'ordre bas pour des systèmes d'EDPs, méthodes qui souffraient jusqu'à maintenant d'une absence d'un cadre suffisamment général permettant son extension à des problèmes différents. Des travaux récents ont résolue cette difficulté, par l'introduction d'une nouvelle classe de méthodes d'ordre bas inspirée par les éléments finis non conformes. Cette formulation permet d'exprimer dans un cadre unifié les schémas VF multi-points et les méthodes DFM/VFMH. Ce nouveau cadre a permis la mise au point d'un langage spécifique DSEL en C++ qui permet de développer des applications avec un haut niveau d'abstraction, cachant la complexité des méthodes numériques et des services bas niveau garanties de haute performances. La syntaxe et les techniques utilisées sont inspirée par celles de Feel++. Le DSEL a été développé à partir de la plate-forme Arcane, et embarqué dans le C++. Les techniques de DSEL permettent de représenter un problème et sa méthode de résolution avec une expression, parsée à la compilation pour générer un programme, et évaluée à l'exécution pour construire un système linéaire que l'on peut résoudre pour trouver la solution du problème. Nous avons mis au point notre DSEL à l'aide d'outils standard issus de la bibliothèque Boost puis l'avons validé sur divers problèmes académiques non triviaux tels que des problèmes de diffusion hétérogène et le problème de Stokes. Dans un deuxième temps, dans le cadre du projet ANR HAMM (Hybrid Architecture and Multiscale Methods), nous avons validé notre approche en complexifiant le type de méthodes abordées et le type d'architecture matérielle cible pour nos programmes. Nous avons étendu le formalisme mathématique sur lequel nous nous basons pour pouvoir écrire des méthodes multi-échelle puis nous avons enrichi notre DSEL pour pouvoir implémenter de telles méthodes. Afin de pouvoir tirer partie de façon transparente des performances de ressources issues d'architectures hybrides proposant des cartes graphiques de type GPGPU, nous avons mis au point une couche abstraite proposant un modèle de programmation unifié qui permet d'accéder à différents niveaux de parallélisme plus ou moins fin en fonction des spécificités de l'architecture matérielle cible. Nous avons validé cette approche en évaluant les performances de cas tests utilisant des méthodes multi-échelle sur des configurations variés de machines hétérogènes. Pour finir nous avons implémenté des applications variées de type diffusion-advection-réaction, de Navier-Stokes incompressible et de type réservoir. Nous avons validé la flexibilité de notre approche et la capacité qu'elle offre à appréhender des problèmes variés puis avons étudié les performances des diverses implémentations. / Industrial simulation software has to manage : the complexity of the underlying physical models, usually expressed in terms of a PDE system completed with algebraic closure laws, the complexity of numerical methods used to solve the PDE systems, and finally the complexity of the low level computer science services required to have efficient software on modern hardware. Nowadays, this complexity management becomes a key issue for the development of scientific software. Some frameworks already offer a number of advanced tools to deal with the complexity related to parallelism in a transparent way. However, all these frameworks often provide only partial answers to the problem as they only deal with hardware complexity and low level numerical complexity like linear algebra. High level complexity related to discretization methods and physical models lack tools to help physicists to develop complex applications. New paradigms for scientific software must be developed to help them to seamlessly handle the different levels of complexity so that they can focus on their specific domain. Generative programming, component engineering and domain-specific languages (either DSL or DSEL) are key technologies to make the development of complex applications easier to physicists, hiding the complexity of numerical methods and low level computer science services. These paradigms allow to write code with a high level expressive language and take advantage of the efficiency of generated code for low level services close to hardware specificities. In the domain of numerical algorithms to solve partial differential equations, their application has been up to now limited to Finite Element (FE) methods, for which a unified mathematical framework has been existing for a long time. Such kinds of DSL have been developed for finite element or Galerkin methods in projects like Freefem++, Getdp, Getfem++, Sundance, Feel++ and Fenics. A new consistent unified mathematical frame has recently emerged and allows a unified description of a large family of lowest-order methods. This framework allows then, as in FE methods, the design of a high level language inspired from the mathematical notation, that could help physicists to implement their application writing the mathematical formulation at a high level. We propose to develop a language based on that frame, embedded in the C++ language. Our work relies on a mathematical framework that enables us to describe a wide family of lowest order methods including multiscale methods based on lowest order methods. We propose a DSEL developed on top of Arcane platform, based on the concepts presented in the unified mathematical frame and on the Feel++ DSEL. The DSEL is implemented with the Boost.Proto library by Niebler, a powerful framework to build a DSEL in C++. We have proposed an extension of the computational framework to multiscale methods and focus on the capability of our approach to handle complex methods.Our approach is extended to the runtime system layer providing an abstract layer that enable our DSEL to generate efficient code for heterogeneous architectures. We validate the design of this layer by benchmarking multiscale methods. This method provides a great amount of independent computations and is therefore the kind of algorithms that can take advantage efficiently of new hybrid hardware technology. Finally we benchmark various complex applications and study the performance results of their implementations with our DSEL.
|
34 |
Modelagem tridimensional da dispersão de poluentes em rios / A three dimensional model for industrial efluent dispersion in riversMachado, Marcio Bezerra 03 June 2006 (has links)
Orientadores: Jose Roberto Nunhez, Edson Tomaz / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-06T01:51:29Z (GMT). No. of bitstreams: 1
Machado_MarcioBezerra_D.pdf: 3569468 bytes, checksum: 4c69c5d76d7d79aa717808b84c4701d2 (MD5)
Previous issue date: 2006 / Resumo: Estudos têm mostrado que a humanidade enfrentará severa falta de água nas próximas décadas. Muitos esforços têm sido direcionados para o desenvolvimento de novas ferramentas computacionais a fim de se garantir uma melhor utilização dos recursos hídricos. Diversos estudos estão sendo realizados utilizando ferramentas de CFD (Computational Fluid Dynamics) para obtenção de novas formas de gerenciamento destes recursos. Neste contexto, é de suma importância o desenvolvimento de novas técnicas para predizer o impacto ambiental causado por emissões industriais em rios de modo que estratégias possam ser planejadas para diminuir os efeitos desta poluição. Este trabalho apresenta um modelo Fluidodinâmico Computacional tridimensional para simular a dispersão de substâncias solúveis em rios. O método dos volumes finitos foi utilizado para aproximar as equações de conservação de momento, de massa e de espécie química. O sistema de coordenadas cartesianas foi escolhido para representar o sistema. Foi utilizado um modelo algébrico de turbulência de ordem zero. O modelo de StreeterPhelps foi usado para predizer a concentração de substâncias orgânicas e de oxigênio dissolvido ao longo do rio. O modelo pode também predizer o impacto causado pela ocorrência de múltiplos pontos de emissão no trecho estudado. O modelo matemático foi desenvolvido em linguagem Fortran. Os resultados mostram que a metodologia proposta é uma boa ferramenta para a avaliação do impacto ambiental causado pela emissão de efluentes em rios. O software é bastante rápido, especialmente quando comparado com outros pacotes de CFD disponíveis comercialmente. Foram feitas comparações entre os resultados numéricos e dados experimentais coletados no rio Atibaia. Os resultados numéricos apresentaram uma boa concordância com os dados coletados experimentalmente / Abstract: A future lack of water in the next decades has been observed by many studies. Much effort has been devoted to find strategies which will help to manage proper1y water resources. Theoretical studies have been used recent1y since the scope of computational fluid dynamics (CFD) has increased, allowing its use in the issue of water quality. In this scenario, it is important to develop new techniques to predict the environmental impact of emissions in rivers so that strategies can be devised to decrease the effects of pollution. This work presents a three-dimensional Computational Fluid Dynamics (CFD) in house model to simulate the dispersion of soluble substances in a river. The finite volume method is used to approximate the momentum, mass and species conservation equations. A Cartesian coordinate system has been chosen to represent the river. Turbulence is taken into account by a zero-order equation model. The Streeter-Phelps model has been used to predict the concentration of organic substances and dissolved oxygen along the river. The model can also predict the impact of multiple effluents discharges. Results show that the proposed methodology is a good tool for the evaluation of the environmental impact caused for pollutants emissions in rivers. The software has been developed from the model and use the Fortran language. It is very fast, especially when compared to available commercial CFD packages. Experimental comparisons for soluble substances dispersion have been made for the Atibaia River. The results show good agreement with experimental data / Doutorado / Desenvolvimento de Processos Químicos / Doutor em Engenharia Química
|
35 |
Esquemas centrais para leis de conservação em meios porososTristão, Denise Schimitz de Carvalho 30 August 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-02T18:09:12Z
No. of bitstreams: 1
deniseschimitzdecarvalhotristao.pdf: 734334 bytes, checksum: 9fda9bda660d5bfec3204e328fe66d1c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T19:58:58Z (GMT) No. of bitstreams: 1
deniseschimitzdecarvalhotristao.pdf: 734334 bytes, checksum: 9fda9bda660d5bfec3204e328fe66d1c (MD5) / Made available in DSpace on 2017-03-06T19:58:58Z (GMT). No. of bitstreams: 1
deniseschimitzdecarvalhotristao.pdf: 734334 bytes, checksum: 9fda9bda660d5bfec3204e328fe66d1c (MD5)
Previous issue date: 2013-08-30 / O desenvolvimento de modelos matemáticos e métodos computacionais para a simulação
de escoamentos em meios porosos é de grande interesse, devido à sua aplicação em diversas
áreas da engenharia e ciências aplicadas. Em geral, na simulação numérica de um
modelo de escoamento em meios porosos, são adotadas estratégias de desacoplamento dos
sistemas de equações diferenciais parciais que o compõem. Este estudo recai sobre esquemas
numéricos para leis de conservação hiperbólicas, cuja aproximação é não-trivial. Os
esquemas de volumes finitos de alta resolução baseados no algoritmo REA (Reconstruct,
Evolve, Average) têm sido empregados com considerável sucesso para a aproximação
de leis de conservação. Recentemente, esquemas centrais de alta ordem, baseados nos
métodos de Lax-Friedrichs e de Rusanov (Local Lax-Friedrichs) têm sido apresentados de
forma a reduzir a excessiva difusão numérica característica destes esquemas de primeira
ordem. Nesta dissertação apresentamos o estudo e a aplicação de esquemas de volumes
finitos centrais de alta ordem para equações hiperbólicas que aparecem na modelagem de
escoamentos em meios porosos. / The development of mathematical models and computational methods for the simulation
of flow in porous media has a great interest because of its applications in engineering
and other sciences. In general, in order to solve numerically the flow model in porous
media the system of partial differential equations are decoupled. This study focus on the
numerical schemes for the hyperbolic conservation laws, which solution is non-trivial. The
finite volume schemes based on high order algorithm REA (Reconstruct, Evolve, Average)
have been used with considerable success for the numerical solution of the conservation
laws. Recently, high-order central schemes, based on the methods of Lax-Friedrichs and
Rusanov (Local Lax-Friedrichs) have been presented, they reduce the excessive numerical
diffusion presented in the first order schemes. In this dissertation we present the study
and application of the high-order finite volume central schemes for hyperbolic equations
as appear in the porous media flow modeling.
|
36 |
Méthodes numériques pour les écoulements et le transport en milieu poreux / Numerical methods for flow and transport in porous mediaVu Do, Huy Cuong 25 November 2014 (has links)
Cette thèse porte sur la modélisation de l’écoulement et du transport en milieu poreux ;nous effectuons des simulations numériques et démontrons des résultats de convergence d’algorithmes.Au Chapitre 1, nous appliquons des méthodes de volumes finis pour la simulation d’écoulements à densité variable en milieu poreux ; il vient à résoudre une équation de convection diffusion parabolique pour la concentration couplée à une équation elliptique en pression.Nous nous appuyons sur la méthode des volumes finis standard pour le calcul des solutions de deux problèmes spécifiques : une interface en rotation entre eau salée et eau douce et le problème de Henry. Nous appliquons ensuite la méthode de volumes finis généralisés SUSHI pour la simulation des mêmes problèmes ainsi que celle d’un problème de bassin salé en dimension trois d’espace. Nous nous appuyons sur des maillages adaptatifs, basés sur des éléments de volume carrés ou cubiques.Au Chapitre 2, nous nous appuyons de nouveau sur la méthode de volumes finis généralisés SUSHI pour la discrétisation de l’équation de Richards, une équation elliptique parabolique pour le calcul d’écoulements en milieu poreux. Le terme de diffusion peut être anisotrope et hétérogène. Cette classe de méthodes localement conservatrices s’applique àune grande variété de mailles polyédriques non structurées qui peuvent ne pas se raccorder.La discrétisation en temps est totalement implicite. Nous obtenons un résultat de convergence basé sur des estimations a priori et sur l’application du théorème de compacité de Fréchet-Kolmogorov. Nous présentons aussi des tests numériques.Au Chapitre 3, nous discrétisons le problème de Signorini par un schéma de type gradient,qui s’écrit à l’aide d’une formulation variationnelle discrète et est basé sur des approximations indépendantes des fonctions et des gradients. On montre l’existence et l’unicité de la solution discrète ainsi que sa convergence vers la solution faible du problème continu. Nous présentons ensuite un schéma numérique basé sur la méthode SUSHI.Au Chapitre 4, nous appliquons un schéma semi-implicite en temps combiné avec la méthode SUSHI pour la résolution numérique d’un problème d’écoulements à densité variable ;il s’agit de résoudre des équations paraboliques de convection-diffusion pour la densité de soluté et le transport de la température ainsi que pour la pression. Nous simulons l’avance d’un front d’eau douce assez chaude et le transport de chaleur dans un aquifère captif qui est initialement chargé d’eau froide salée. Nous utilisons des maillages adaptatifs, basés sur des éléments de volume carrés. / This thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We apply the standard finite volume method to compute the solutions of a problem involving a rotating interface between salt and fresh water and of Henry's problem. We then apply the SUSHI scheme to the same problems as well as to a three dimensional saltpool problem. We use adaptive meshes, based upon square volume elements in space dimension two and cubic volume elements in space dimension three. In Chapter 2, we apply the generalized finite volume method SUSHI to the discretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and heterogeneous. This class of locally conservative methods can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon a priori estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present numerical tests. In Chapter 3, we study a gradient scheme for the Signorini problem. Gradient schemes are nonconforming methods written in discrete variational formulation which are based on independent approximations of the functions and the gradients. We prove the existence and uniqueness of the discrete solution as well as its convergence to the weak solution of the Signorini problem. Finally we introduce a numerical scheme based upon the SUSHI discretization and present numerical results. In Chapter 4, we apply a semi-implicit scheme in time together with a generalized finite volume method for the numerical solution of density driven flows in porous media; it comes to solve nonlinear convection-diffusion parabolic equations for the solute and temperature transport as well as for the pressure. We compute the solutions for a specific problem which describes the advance of a warm fresh water front coupled to heat transfer in a confined aquifer which is initially charged with cold salt water. We use adaptive meshes, based upon square volume elements in space dimension two.
|
37 |
2D Compressible Viscous Flow Computations Using Acoustic Flux Vector Splitting (AFVS) SchemeRavikumar, Devaki 09 1900 (has links)
The present work deals with the extension of Acoustic Flux Vector Splitting (AFVS) scheme for the Compressible Viscous flow computations. Accurate viscous flow computations require much finer grids with adequate clustering of grid points in certain regions. Viscous flow computations are performed on unstructured triangulated grids. Solving Navier-Stokes equations involves the inviscid Euler part and the viscous part. The inviscid part of the fluxes are computed using the Acoustic Flux Vector Splitting scheme and the viscous part which is diffusive in nature does not require upwinding and is taken care using a central difference type of scheme. For these computations both the cell centered and the cell vertex finite volume methods are used. Higher order accuracy on unstructured meshes is achieved using the reconstruction procedure. Test cases are chosen in such a way that the performance of the scheme can be evaluated for different range of mach numbers. We demonstrate that higher order AFVS scheme in conjunction with a suitable grid adaptation strategy produce results that compare well with other well known schemes and the experimental data. An assessment of the relative performance of the AFVS scheme with the Roe scheme is also presented.
|
38 |
Parallele dynamische Adaption hybrider Netze für effizientes verteiltes Rechnen / Parallel dynamic adaptation of hybrid grids for efficient distributed computingAlrutz, Thomas 17 September 2008 (has links)
No description available.
|
39 |
Développement d’un schéma aux volumes finis centré lagrangien pour la résolution 3D des équations de l’hydrodynamique et de l’hyperélasticité / Development of a 3D cell-centered Lagrangian scheme for the numerical modeling of the gas dynamics and hyperelasticity systemsGeorges, Gabriel 19 September 2016 (has links)
La Physique des Hautes Densités d’Énergies (HEDP) est caractérisée par desécoulements multi-matériaux fortement compressibles. Le domaine contenant l’écoulementsubit de grandes variations de taille et est le siège d’ondes de chocs et dedétente intenses. La représentation Lagrangienne est bien adaptée à la descriptionde ce type d’écoulements. Elle permet en effet une très bonne description deschocs ainsi qu’un suivit naturel des interfaces multi-matériaux et des surfaces libres.En particulier, les schémas Volumes Finis centrés Lagrangiens GLACE (GodunovtypeLAgrangian scheme Conservative for total Energy) et EUCCLHYD (ExplicitUnstructured Cell-Centered Lagrangian HYDrodynamics) ont prouvé leur efficacitépour la modélisation des équations de la dynamique des gaz ainsi que de l’élastoplasticité.Le travail de cette thèse s’inscrit dans la continuité des travaux de Maireet Nkonga [JCP, 2009] pour la modélisation de l’hydrodynamique et des travauxde Kluth et Després [JCP, 2010] pour l’hyperelasticité. Plus précisément, cettethèse propose le développement de méthodes robustes et précises pour l’extension3D du schéma EUCCLHYD avec une extension d’ordre deux basée sur les méthodesMUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) et GRP(Generalized Riemann Problem). Une attention particulière est portée sur la préservationdes symétries et la monotonie des solutions. La robustesse et la précision duschéma seront validées sur de nombreux cas tests Lagrangiens dont l’extension 3Dest particulièrement difficile. / High Energy Density Physics (HEDP) flows are multi-material flows characterizedby strong shock waves and large changes in the domain shape due to rarefactionwaves. Numerical schemes based on the Lagrangian formalism are good candidatesto model this kind of flows since the computational grid follows the fluid motion.This provides accurate results around the shocks as well as a natural tracking ofmulti-material interfaces and free-surfaces. In particular, cell-centered Finite VolumeLagrangian schemes such as GLACE (Godunov-type LAgrangian scheme Conservativefor total Energy) and EUCCLHYD (Explicit Unstructured Cell-CenteredLagrangian HYDrodynamics) provide good results on both the modeling of gas dynamicsand elastic-plastic equations. The work produced during this PhD thesisis in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamicpart and the work of Kluth and Després [JCP, 2010] for the hyperelasticitypart. More precisely, the aim of this thesis is to develop robust and accurate methodsfor the 3D extension of the EUCCLHYD scheme with a second-order extensionbased on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)and GRP (Generalized Riemann Problem) procedures. A particular care is taken onthe preservation of symmetries and the monotonicity of the solutions. The schemerobustness and accuracy are assessed on numerous Lagrangian test cases for whichthe 3D extensions are very challenging.
|
40 |
Simulação Numérica de Escoamento Bifásico em reservatório de Petróleo Heterogêneos e Anisotrópicos utilizando um Método de Volumes Finitos “Verdadeiramente” Multidimensional com Aproximação de Alta OrdemSOUZA, Márcio Rodrigo de Araújo 22 September 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-01T15:05:14Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Souza_Tese_2015_09_22.pdf: 8187999 bytes, checksum: 664629aed28d692dce410fefbfe793dc (MD5) / Made available in DSpace on 2016-07-01T15:05:14Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Souza_Tese_2015_09_22.pdf: 8187999 bytes, checksum: 664629aed28d692dce410fefbfe793dc (MD5)
Previous issue date: 2015-09-22 / Anp / Sob certas hipóteses simplificadoras, o modelo matemático que descreve o escoamento
de água e óleo em reservatórios de petróleo pode ser representado por um sistema não linear
de Equações Diferenciais Parciais composto por uma equação elíptica de pressão (fluxo) e
uma equação hiperbólica de saturação (transporte). Devido a complexidades na modelagem
de ambientes deposicionais, nos quais são incluídos camadas inclinadas, canais, falhas e poços
inclinados, há uma dificuldade de se construir um modelo que represente adequadamente
certas características dos reservatórios, especialmente quando malhas estruturadas são usadas
(cartesianas ou corner point). Além disso, a modelagem do escoamento multifásico nessas
estruturas geológicas incluem descontinuidades na variável e instabilidades no escoamento,
associadas à elevadas razões de mobilidade e efeitos de orientação de malha. Isso representa
um grande desafio do ponto de vista numérico. No presente trabalho, uma formulação fundamentada
no Método de Volumes Finitos é estudada e proposta para discretizar as equações
elíptica de pressão e hiperbólica de saturação. Para resolver a equação de pressão três formulações
robustas, com aproximação dos fluxos por múltiplos pontos são estudadas. Essas formulações
são abeis para lidar com tensores de permeabilidade completos e malhas poligonais
arbitrárias, sendo portanto uma generalização de métodos mais tradicionais com aproximação
do fluxo por apenas dois pontos. A discretização da equação de saturação é feita com duas
abordagens com característica multidimensional. Em uma abordagem mais convencional, os
fluxos numéricos são extrapolados diretamente nas superfícies de controle por uma aproximação
de alta resolução no espaço (2ª a 4ª ordem) usando uma estratégia do tipo MUSCL. Uma
estratégia baseada na Técnica de Mínimos Quadrados é usada para a reconstrução polinomial.
Em uma segunda abordagem, uma variação de uma esquema numérico Verdadeiramente Multidimensional
é proposto. Esse esquema diminui o efeito de orientação de malha, especialmente
para malhas ortogonais, mesmo embora alguma falta de robustez possa ser observada
pra malhas excessivamente distorcidas. Nesse tipo de formulação, os fluxos numéricos são
calculados de uma forma multidimensional. Consiste em uma combinação convexa de valores
de saturação ou fluxo fracionário, seguindo a orientação do escoamento através do domínio
computacional. No entanto, a maioria dos esquemas numéricos achados na literatura tem
aproximação apenas de primeira ordem no espaço e requer uma solução implícita de sistemas
algébricos locais. Adicionalmente, no presente texto, uma forma modificada desses esquemas
“Verdadeiramente” Multidimensionais é proposta em um contexto centrado na célula. Nesse
caso, os fluxos numéricos multidimensionais são calculados explicitamente usando aproximações
de alta ordem no espaço. Para o esquema proposto, a robustez e o caráter multidimensional
também leva em conta a distorção da malha por meio de uma ponderação adaptativa. Essa
ponderação regula a característica multidimensional da formulação de acordo com a distorção
da malha. Claramente, os efeitos de orientação de malha são reduzidos. A supressão de oscilações
espúrias, típicas de aproximações de alta ordem, são obtidas usando, pela primeira vez
no contexto de simulação de reservatórios, uma estratégia de limitação multidimensional ou
Multidimensional Limiting Process (MLP). Essa estratégia garante soluções monótonas e podem
ser usadas em qualquer malha poligonal, sendo naturalmente aplicada em aproximações
de ordem arbitrária. Por fim, de modo a garantir soluções convergentes, mesmo para problemas
tipicamente não convexos, associados ao modelo de Buckley-Leverett, uma estratégia
robusta de correção de entropia é empregada. O desempenho dessas formulações é verificado
com a solução de problemas relevantes achados na literatura. / Under certain simplifying assumptions, the problem that describes the fluid flow of oil
and water in heterogeneous and anisotropic petroleum reservoir can be described by a system
of non-linear partial differential equations that comprises an elliptic pressure equation (flow)
and a hyperbolic saturation equation (transport). Due to the modeling of complex depositional
environments, including inclined laminated layers, channels, fractures, faults and the geometrical
modeling of deviated wells, it is difficult to properly build and handle the Reservoir
Characterization Process (RCM), particularly by using structured meshes (cartesian or corner
point), which is the current standard in petroleum reservoir simulators. Besides, the multiphase
flow in such geological structures includes the proper modeling of water saturation
shocks and flow instabilities associated to high mobility ratios and Grid Orientation Effects
(GOE), posing a great challenge from a numerical point of view. In this work, a Full Finite
Volume Formulation is studied and proposed to discretize both, the elliptic pressure and the
hyperbolic saturation equations. To solve the pressure equation, we study and use three robust
Multipoint Flux Approximation Methods (MPFA) that are able to deal with full permeability
tensors and arbitrary polygonal meshes, making it relatively easy to handle complex geological
structures, inclined wells and mesh adaptivity in a natural way. To discretize the saturation
equation, two different multidimensional approaches are employed. In a more conventional
approach, the numerical fluxes are extrapolated directly on the control surfaces for a higher
resolution approximation in space (2nd to 4th order) by a MUSCL (Monotone Upstream Centered
Scheme for Conservation Laws) procedure. A least squares based strategy is employed
for the polynomial reconstruction. In a second approach, a variation of a “Truly” Multidimensional
Finite Volume method is proposed. This scheme diminishes GOE, especially for orthogonal
grids, even though some lack of robustness can be observed for extremely distorted
meshes. In this type of scheme, the numerical flux is computed in each control surface in a
multidimensional way, by a convex combination of the saturation or the fractional flow values,
following the approximate wave orientation throughout the computational domain. However,
the majority of the schemes found in literature is only first order accurate in space and
demand the implicit solution of local conservation problems. In the present text, a Modified
Truly Multidimensional Finite Volume Method (MTM-FVM) is proposed in a cell centered
context. The truly multidimensional numerical fluxes are explicitly computed using higher
order accuracy in space. For the proposed scheme, the robustness and the multidimensional
character of the aforementioned MTM-FVM explicitly takes into account the angular distortion
of the computational mesh by means of an adaptive weight, that tunes the multidimensional
character of the formulation according to the grid distortion, clearly diminishing GOE.
The suppression of the spurious oscillations, typical from higher order schemes, is achieved
by using for the first time in the context of reservoir simulation a Multidimensional Limiting
Process (MLP). The MLP strategy formally guarantees monotone solutions and can be used
with any polygonal mesh and arbitrary orders of approximation. Finally, in order to guarantee
physically meaningful solutions, a robust “entropy fix” strategy is employed. This produces
convergent solutions even for the typical non-convex flux functions that are associated to the
Buckley-Leverett problem. The performance of the proposed full finite volume formulation is
verified by solving some relevant benchmark problems.
|
Page generated in 0.0671 seconds