• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 10
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Calibrage de caméra fisheye et estimation de la profondeur pour la navigation autonome

Brousseau, Pierre-André 08 1900 (has links)
Ce mémoire s’intéresse aux problématiques du calibrage de caméras grand angles et de l’estimation de la profondeur à partir d’une caméra unique, immobile ou en mouvement. Les travaux effectués se situent à l’intersection entre la vision 3D classique et les nouvelles méthodes par apprentissage profond dans le domaine de la navigation autonome. Ils visent à permettre la détection d’obstacles par un drone en mouvement muni d’une seule caméra à très grand angle de vue. D’abord, une nouvelle méthode de calibrage est proposée pour les caméras fisheyes à très grand angle de vue par calibrage planaire à correspondances denses obtenues par lumière structurée qui peuvent être modélisée par un ensemble de caméras génériques virtuelles centrales. Nous démontrons que cette approche permet de modéliser directement des caméras axiales, et validons sur des données synthétiques et réelles. Ensuite, une méthode est proposée pour estimer la profondeur à partir d’une seule image, à partir uniquement des indices de profondeurs forts, les jonctions en T. Nous démontrons que les méthodes par apprentissage profond sont susceptibles d’apprendre les biais de leurs ensembles de données et présentent des lacunes d’invariance. Finalement, nous proposons une méthode pour estimer la profondeur à partir d’une caméra en mouvement libre à 6 degrés de liberté. Ceci passe par le calibrage de la caméra fisheye sur le drone, l’odométrie visuelle et la résolution de la profondeur. Les méthodes proposées permettent la détection d’obstacle pour un drone. / This thesis focuses on the problems of calibrating wide-angle cameras and estimating depth from a single camera, stationary or in motion. The work carried out is at the intersection between traditional 3D vision and new deep learning methods in the field of autonomous navigation. They are designed to allow the detection of obstacles by a moving drone equipped with a single camera with a very wide field of view. First, a new calibration method is proposed for fisheye cameras with very large field of view by planar calibration with dense correspondences obtained by structured light that can be modelled by a set of central virtual generic cameras. We demonstrate that this approach allows direct modeling of axial cameras, and validate it on synthetic and real data. Then, a method is proposed to estimate the depth from a single image, using only the strong depth cues, the T-junctions. We demonstrate that deep learning methods are likely to learn from the biases of their data sets and have weaknesses to invariance. Finally, we propose a method to estimate the depth from a camera in free 6 DoF motion. This involves calibrating the fisheye camera on the drone, visual odometry and depth resolution. The proposed methods allow the detection of obstacles for a drone.
32

Fisheye live streaming : A study of the dewarping function and the performance of the streaming / Fisköga-objektiv direktsändning : Ett studie av fisköga-förvrängning korrigering samt prestanda av direktsändning

Zhengyu, Wang, Al-Shorji, Yousuf January 2018 (has links)
Provision of live streaming of video from fisheye camera is a popular business in the IT sector. Video dewarping is one of its special fields that expands rapidly. As the requirement of video quality becomes higher and higher, there is an increasing need for efficient solutions that can be utilized to process videos in attempts to gain desirable results. The problem is to determine the right combination of transmission bitrate and resolution for live streaming of the dewarped videos. The purpose of this thesis is to develop a prototype solution for dewarping video from fisheye camera and re-stream it to a client. This prototype is used for testing combinations of bitrate and resolution of the video in different scenarios. A system is devised to live stream a video from a fisheye camera, dewarp the video in a server and display the video in media players. The results reveal that the combination of bitrate 3.5 - 4.5 Mbps and resolution 720p is best suited for transmission to avoid noticeable lagging in playback. Comments of observers prove the promising use of the dewarped videos as Virtual Reality(VR) technology. / Direktsänd videoströmning från en kamera med fiskögaobjektiv är ett populärt och snabbväxande, speciellt inom vissa områden som videoförvrängning korrigering. Eftersom kravet på hög högkvalitativ video blir högre och högre, ökas också behovet av en effektiv videobearbetnings lösning för att få önskvärda resultat. Problemet är att bestämma rätt kombination av överföringsbithastighet och upplösning för direktströmning av bearbetade videon. Syftet med detta examensarbete är att utveckla en prototyplösning som korrigerar videoförvrängning från en kamera med fisköga-objektiv samt vidaresända den korrigerade videon till en klient. Denna prototyp används för att testa olika kombinationer av bithastighet och upplösning i olika scenarier. Ett prototypsystem utvecklades för att direktsända video från en kamera med fisköga-objektiv, korrigera videoförvrängningen i en server och spela upp de korrigerade video i en mediaspelare. Resultatet visar att kombinationen av bithastigheten mellan 3.5 - 4.5 Mbps och upplösningen 720p är den mest lämpliga för att undvika märkbara fördröjningar hos klienten. Den potentiella framtida användningen av den bearbetade videon inom Virtuell verklighet (VV) är lovande baserat på observatörernas kommentarer.
33

A Novel Approach for Spherical Stereo Vision / Ein Neuer Ansatz für Sphärisches Stereo Vision

Findeisen, Michel 27 April 2015 (has links) (PDF)
The Professorship of Digital Signal Processing and Circuit Technology of Chemnitz University of Technology conducts research in the field of three-dimensional space measurement with optical sensors. In recent years this field has made major progress. For example innovative, active techniques such as the “structured light“-principle are able to measure even homogeneous surfaces and find its way into the consumer electronic market in terms of Microsoft’s Kinect® at the present time. Furthermore, high-resolution optical sensors establish powerful, passive stereo vision systems in the field of indoor surveillance. Thereby they induce new application domains such as security and assistance systems for domestic environments. However, the constraint field of view can be still considered as an essential characteristic of all these technologies. For instance, in order to measure a volume in size of a living space, two to three deployed 3D sensors have to be applied nowadays. This is due to the fact that the commonly utilized perspective projection principle constrains the visible area to a field of view of approximately 120°. On the contrary, novel fish-eye lenses allow the realization of omnidirectional projection models. Therewith, the visible field of view can be enlarged up to more than 180°. In combination with a 3D measurement approach, thus, the number of required sensors for entire room coverage can be reduced considerably. Motivated by the requirements of the field of indoor surveillance, the present work focuses on the combination of the established stereo vision principle and omnidirectional projection methods. The entire 3D measurement of a living space by means of one single sensor can be considered as major objective. As a starting point for this thesis chapter 1 discusses the underlying requirement, referring to various relevant fields of application. Based on this, the distinct purpose for the present work is stated. The necessary mathematical foundations of computer vision are reflected in Chapter 2 subsequently. Based on the geometry of the optical imaging process, the projection characteristics of relevant principles are discussed and a generic method for modeling fish-eye cameras is selected. Chapter 3 deals with the extraction of depth information using classical (perceptively imaging) binocular stereo vision configurations. In addition to a complete recap of the processing chain, especially occurring measurement uncertainties are investigated. In the following, Chapter 4 addresses special methods to convert different projection models. The example of mapping an omnidirectional to a perspective projection is employed, in order to develop a method for accelerating this process and, hereby, for reducing the computational load associated therewith. Any errors that occur, as well as the necessary adjustment of image resolution, are an integral part of the investigation. As a practical example, an application for person tracking is utilized in order to demonstrate to which extend the usage of “virtual views“ can increase the recognition rate for people detectors in the context of omnidirectional monitoring. Subsequently, an extensive search with respect to omnidirectional imaging stereo vision techniques is conducted in chapter 5. It turns out that the complete 3D capture of a room is achievable by the generation of a hemispherical depth map. Therefore, three cameras have to be combined in order to form a trinocular stereo vision system. As a basis for further research, a known trinocular stereo vision method is selected. Furthermore, it is hypothesized that, applying a modified geometric constellation of cameras, more precisely in the form of an equilateral triangle, and using an alternative method to determine the depth map, the performance can be increased considerably. A novel method is presented, which shall require fewer operations to calculate the distance information and which is to avoid a computational costly step for depth map fusion as necessary in the comparative method. In order to evaluate the presented approach as well as the hypotheses, a hemispherical depth map is generated in Chapter 6 by means of the new method. Simulation results, based on artificially generated 3D space information and realistic system parameters, are presented and subjected to a subsequent error estimate. A demonstrator for generating real measurement information is introduced in Chapter 7. In addition, the methods that are applied for calibrating the system intrinsically as well as extrinsically are explained. It turns out that the calibration procedure utilized cannot estimate the extrinsic parameters sufficiently. Initial measurements present a hemispherical depth map and thus con.rm the operativeness of the concept, but also identify the drawbacks of the calibration used. The current implementation of the algorithm shows almost real-time behaviour. Finally, Chapter 8 summarizes the results obtained along the studies and discusses them in the context of comparable binocular and trinocular stereo vision approaches. For example the results of the simulations carried out produced a saving of up to 30% in terms of stereo correspondence operations in comparison with a referred trinocular method. Furthermore, the concept introduced allows the avoidance of a weighted averaging step for depth map fusion based on precision values that have to be calculated costly. The achievable accuracy is still comparable for both trinocular approaches. In summary, it can be stated that, in the context of the present thesis, a measurement system has been developed, which has great potential for future application fields in industry, security in public spaces as well as home environments.
34

A Novel Approach for Spherical Stereo Vision

Findeisen, Michel 23 April 2015 (has links)
The Professorship of Digital Signal Processing and Circuit Technology of Chemnitz University of Technology conducts research in the field of three-dimensional space measurement with optical sensors. In recent years this field has made major progress. For example innovative, active techniques such as the “structured light“-principle are able to measure even homogeneous surfaces and find its way into the consumer electronic market in terms of Microsoft’s Kinect® at the present time. Furthermore, high-resolution optical sensors establish powerful, passive stereo vision systems in the field of indoor surveillance. Thereby they induce new application domains such as security and assistance systems for domestic environments. However, the constraint field of view can be still considered as an essential characteristic of all these technologies. For instance, in order to measure a volume in size of a living space, two to three deployed 3D sensors have to be applied nowadays. This is due to the fact that the commonly utilized perspective projection principle constrains the visible area to a field of view of approximately 120°. On the contrary, novel fish-eye lenses allow the realization of omnidirectional projection models. Therewith, the visible field of view can be enlarged up to more than 180°. In combination with a 3D measurement approach, thus, the number of required sensors for entire room coverage can be reduced considerably. Motivated by the requirements of the field of indoor surveillance, the present work focuses on the combination of the established stereo vision principle and omnidirectional projection methods. The entire 3D measurement of a living space by means of one single sensor can be considered as major objective. As a starting point for this thesis chapter 1 discusses the underlying requirement, referring to various relevant fields of application. Based on this, the distinct purpose for the present work is stated. The necessary mathematical foundations of computer vision are reflected in Chapter 2 subsequently. Based on the geometry of the optical imaging process, the projection characteristics of relevant principles are discussed and a generic method for modeling fish-eye cameras is selected. Chapter 3 deals with the extraction of depth information using classical (perceptively imaging) binocular stereo vision configurations. In addition to a complete recap of the processing chain, especially occurring measurement uncertainties are investigated. In the following, Chapter 4 addresses special methods to convert different projection models. The example of mapping an omnidirectional to a perspective projection is employed, in order to develop a method for accelerating this process and, hereby, for reducing the computational load associated therewith. Any errors that occur, as well as the necessary adjustment of image resolution, are an integral part of the investigation. As a practical example, an application for person tracking is utilized in order to demonstrate to which extend the usage of “virtual views“ can increase the recognition rate for people detectors in the context of omnidirectional monitoring. Subsequently, an extensive search with respect to omnidirectional imaging stereo vision techniques is conducted in chapter 5. It turns out that the complete 3D capture of a room is achievable by the generation of a hemispherical depth map. Therefore, three cameras have to be combined in order to form a trinocular stereo vision system. As a basis for further research, a known trinocular stereo vision method is selected. Furthermore, it is hypothesized that, applying a modified geometric constellation of cameras, more precisely in the form of an equilateral triangle, and using an alternative method to determine the depth map, the performance can be increased considerably. A novel method is presented, which shall require fewer operations to calculate the distance information and which is to avoid a computational costly step for depth map fusion as necessary in the comparative method. In order to evaluate the presented approach as well as the hypotheses, a hemispherical depth map is generated in Chapter 6 by means of the new method. Simulation results, based on artificially generated 3D space information and realistic system parameters, are presented and subjected to a subsequent error estimate. A demonstrator for generating real measurement information is introduced in Chapter 7. In addition, the methods that are applied for calibrating the system intrinsically as well as extrinsically are explained. It turns out that the calibration procedure utilized cannot estimate the extrinsic parameters sufficiently. Initial measurements present a hemispherical depth map and thus con.rm the operativeness of the concept, but also identify the drawbacks of the calibration used. The current implementation of the algorithm shows almost real-time behaviour. Finally, Chapter 8 summarizes the results obtained along the studies and discusses them in the context of comparable binocular and trinocular stereo vision approaches. For example the results of the simulations carried out produced a saving of up to 30% in terms of stereo correspondence operations in comparison with a referred trinocular method. Furthermore, the concept introduced allows the avoidance of a weighted averaging step for depth map fusion based on precision values that have to be calculated costly. The achievable accuracy is still comparable for both trinocular approaches. In summary, it can be stated that, in the context of the present thesis, a measurement system has been developed, which has great potential for future application fields in industry, security in public spaces as well as home environments.:Abstract 7 Zusammenfassung 11 Acronyms 27 Symbols 29 Acknowledgement 33 1 Introduction 35 1.1 Visual Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2 Challenges in Visual Surveillance . . . . . . . . . . . . . . . . . . . . . . . 38 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 Fundamentals of Computer Vision Geometry 43 2.1 Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.1 Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.2 Projective Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 Camera Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Geometrical Imaging Process . . . . . . . . . . . . . . . . . . . . . 45 2.2.1.1 Projection Models . . . . . . . . . . . . . . . . . . . . . . 46 2.2.1.2 Intrinsic Model . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1.3 Extrinsic Model . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.1.4 Distortion Models . . . . . . . . . . . . . . . . . . . . . . 51 2.2.2 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.2.1 Complete Forward Model . . . . . . . . . . . . . . . . . . 52 2.2.2.2 Back Projection . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.3 Equiangular Camera Model . . . . . . . . . . . . . . . . . . . . . . 54 2.2.4 Generic Camera Models . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2.4.1 Complete Forward Model . . . . . . . . . . . . . . . . . . 56 2.2.4.2 Back Projection . . . . . . . . . . . . . . . . . . . . . . . 58 2.3 Camera Calibration Methods . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.1 Perspective Camera Calibration . . . . . . . . . . . . . . . . . . . . 59 2.3.2 Omnidirectional Camera Calibration . . . . . . . . . . . . . . . . . 59 2.4 Two-View Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.1 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4.2 The Fundamental Matrix . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.3 Epipolar Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 Fundamentals of Stereo Vision 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.1 The Concept Stereo Vision . . . . . . . . . . . . . . . . . . . . . . 67 3.1.2 Overview of a Stereo Vision Processing Chain . . . . . . . . . . . . 68 3.2 Stereo Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.1 Extrinsic Stereo Calibration With Respect to the Projective Error 70 3.3 Stereo Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.1 A Compact Algorithm for Rectification of Stereo Pairs . . . . . . . 73 3.4 Stereo Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.1 Disparity Computation . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.2 The Correspondence Problem . . . . . . . . . . . . . . . . . . . . . 77 3.5 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.1 Depth Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.2 Range Field of Measurement . . . . . . . . . . . . . . . . . . . . . 80 3.5.3 Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 80 3.5.4 Measurement Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5.4.1 Quantization Error . . . . . . . . . . . . . . . . . . . . . 82 3.5.4.2 Statistical Distribution of Quantization Errors . . . . . . 83 4 Virtual Cameras 87 4.1 Introduction and Related Works . . . . . . . . . . . . . . . . . . . . . . . 88 4.2 Omni to Perspective Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.1 Forward Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.2 Backward Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2.3 Fast Backward Mapping . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4.1 Intrinsics of the Source Camera . . . . . . . . . . . . . . . . . . . . 102 4.4.2 Intrinsics of the Target Camera . . . . . . . . . . . . . . . . . . . . 102 4.4.3 Marginal Virtual Pixel Size . . . . . . . . . . . . . . . . . . . . . . 104 4.5 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.6 Virtual Perspective Views for Real-Time People Detection . . . . . . . . . 110 5 Omnidirectional Stereo Vision 113 5.1 Introduction and Related Works . . . . . . . . . . . . . . . . . . . . . . . 113 5.1.1 Geometrical Configuration . . . . . . . . . . . . . . . . . . . . . . . 116 5.1.1.1 H-Binocular Omni-Stereo with Panoramic Views . . . . . 117 5.1.1.2 V-Binocular Omnistereo with Panoramic Views . . . . . 119 5.1.1.3 Binocular Omnistereo with Hemispherical Views . . . . . 120 5.1.1.4 Trinocular Omnistereo . . . . . . . . . . . . . . . . . . . 122 5.1.1.5 Miscellaneous Configurations . . . . . . . . . . . . . . . . 125 5.2 Epipolar Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.1 Cylindrical Rectification . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.2 Epipolar Equi-Distance Rectification . . . . . . . . . . . . . . . . . 128 5.2.3 Epipolar Stereographic Rectification . . . . . . . . . . . . . . . . . 128 5.2.4 Comparison of Rectification Methods . . . . . . . . . . . . . . . . 129 5.3 A Novel Spherical Stereo Vision Setup . . . . . . . . . . . . . . . . . . . . 129 5.3.1 Physical Omnidirectional Camera Configuration . . . . . . . . . . 131 5.3.2 Virtual Rectified Cameras . . . . . . . . . . . . . . . . . . . . . . . 131 6 A Novel Spherical Stereo Vision Algorithm 135 6.1 Matlab Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . 135 6.2 Extrinsic Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3 Physical Camera Configuration . . . . . . . . . . . . . . . . . . . . . . . . 137 6.4 Virtual Camera Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.4.1 The Focal Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4.2 Prediscussion of the Field of View . . . . . . . . . . . . . . . . . . 138 6.4.3 Marginal Virtual Pixel Sizes . . . . . . . . . . . . . . . . . . . . . . 139 6.4.4 Calculation of the Field of View . . . . . . . . . . . . . . . . . . . 142 6.4.5 Calculation of the Virtual Pixel Size Ratios . . . . . . . . . . . . . 143 6.4.6 Results of the Virtual Camera Parameters . . . . . . . . . . . . . . 144 6.5 Spherical Depth Map Generation . . . . . . . . . . . . . . . . . . . . . . . 147 6.5.1 Omnidirectional Imaging Process . . . . . . . . . . . . . . . . . . . 148 6.5.2 Rectification Process . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.3 Rectified Depth Map Generation . . . . . . . . . . . . . . . . . . . 150 6.5.4 Spherical Depth Map Generation . . . . . . . . . . . . . . . . . . . 151 6.5.5 3D Reprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7 Stereo Vision Demonstrator 163 7.1 Physical System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2 System Calibration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.2.1 Intrinsic Calibration of the Physical Cameras . . . . . . . . . . . . 165 7.2.2 Extrinsic Calibration of the Physical and the Virtual Cameras . . 166 7.2.2.1 Extrinsic Initialization of the Physical Cameras . . . . . 167 7.2.2.2 Extrinsic Initialization of the Virtual Cameras . . . . . . 167 7.2.2.3 Two-View Stereo Calibration and Rectification . . . . . . 167 7.2.2.4 Three-View Stereo Rectification . . . . . . . . . . . . . . 168 7.2.2.5 Extrinsic Calibration Results . . . . . . . . . . . . . . . . 169 7.3 Virtual Camera Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.4 Software Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.5.1 Qualitative Assessment . . . . . . . . . . . . . . . . . . . . . . . . 172 7.5.2 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . 174 8 Discussion and Outlook 177 8.1 Discussion of the Current Results and Further Need for Research . . . . . 177 8.1.1 Assessment of the Geometrical Camera Configuration . . . . . . . 178 8.1.2 Assessment of the Depth Map Computation . . . . . . . . . . . . . 179 8.1.3 Assessment of the Depth Measurement Error . . . . . . . . . . . . 182 8.1.4 Assessment of the Spherical Stereo Vision Demonstrator . . . . . . 183 8.2 Review of the Different Approaches for Hemispherical Depth Map Generation184 8.2.1 Comparison of the Equilateral and the Right-Angled Three-View Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 8.2.2 Review of the Three-View Approach in Comparison with the Two- View Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.3 A Sample Algorithm for Human Behaviour Analysis . . . . . . . . . . . . 187 8.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 A Relevant Mathematics 191 A.1 Cross Product by Skew Symmetric Matrix . . . . . . . . . . . . . . . . . . 191 A.2 Derivation of the Quantization Error . . . . . . . . . . . . . . . . . . . . . 191 A.3 Derivation of the Statistical Distribution of Quantization Errors . . . . . . 192 A.4 Approximation of the Quantization Error for Equiangular Geometry . . . 194 B Further Relevant Publications 197 B.1 H-Binocular Omnidirectional Stereo Vision with Panoramic Views . . . . 197 B.2 V-Binocular Omnidirectional Stereo Vision with Panoramic Views . . . . 198 B.3 Binocular Omnidirectional Stereo Vision with Hemispherical Views . . . . 200 B.4 Trinocular Omnidirectional Stereo Vision . . . . . . . . . . . . . . . . . . 201 B.5 Miscellaneous Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 202 Bibliography 209 List of Figures 223 List of Tables 229 Affidavit 231 Theses 233 Thesen 235 Curriculum Vitae 237

Page generated in 0.0451 seconds