• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanisms of Lean Flame Extinction

Lasky, Ian M 01 January 2018 (has links) (PDF)
Lean flame blowout is investigated experimentally within a high-speed combustor to analyze the temporal extinction dynamics of turbulent premixed bluff body stabilized flames. The lean blowout process is induced through fuel flow reduction and captured temporally using simultaneous high-speed particle imaging velocimetry (PIV) and CH* chemiluminescence. The evolution of the flame structure, flow field, and the resulting strain rate along the flame are analyzed throughout extinction to distinguish the physical mechanisms of blowout. Flame-vortex dynamics are found to be the main driving mechanism of flame extinction; namely, a reduction of flame-generated vorticity coupled with an increase of downstream shear layer vorticity. The vorticity dynamics are linked to hydrodynamic instabilities that vary as a function of the decreasing equivalence ratio. Frequency analysis is performed to characterize the dynamical changes of the hydrodynamic instability modes during flame extinction. Additionally, various bluff body inflow velocity regimes are investigated to further characterize the extinction instability modes. Both equivalence ratio and flow-driven instabilities are captured through a universal definition of the Strouhal number for the reacting bluff body flow. Finally, a Karlovitz number-based criterion is developed to consistently predict the onset of global extinction for different inflow velocity regimes.
12

Microscopic Surface Textures Created by Interfacial Flow Instabilities

Gu, Jing 01 August 2013 (has links)
In nature, microscopic surface textures impact useful function, such as the drag reduction of shark skin (Dean & Bhushan, 2010) and superhydrophobicity of the lotus leaf(Pan, Kota, Mabry, & Tuteja, 2013). In this study, we explore these phenomena by re-creating microscopic surface textures via the method of interfacial flow instability in drying polyvinylidene fluoride (PVDF) acetone solutions. In general, PVDF films can be made using either spin coating or electrospray deposition with various weight concentrations in acetone. In order to study the morphology of the porous structure of PVDF films, wet deposition samples were fabricated by spin coating or near-field electrospray. Possible theories are discussed and examined to explain the formation of these porous structures resulting in development of a well-controlled method to create porous PVDF films with various pore sizes and pore densities. All samples are characterized and found to exhibit superhydrophobicity and drag reduction. To connect porous PVDF film morphology to the established field of dry particle fabrication, PVDF particle synthesis by far-field electrospray is also reviewed and discussed. An established method to generate polymer particles of different morphologies in other polymers (Almeria-Diez, 2012) by electrospray drying is confirmed using PVDF as well. Due to the ability of scalable and re-configurable electrospray, the microscopic surface textures can be applied to areas of any size to reduce drag or impart water-repelling properties.
13

Characteristics of Hypersonic Wing-Elevon-Cove Flows

Robert A Alviani (14373414) 12 January 2023 (has links)
<p>This dissertation covers a computational investigation into hypersonic flight vehicle geometric imperfections, with a focus on wing-elevon-cove configurations. The primary region of focus for the overall research was the cove region at the juncture of the main wing element and the elevon. This region is associated with the shock-wave/boundary-layer interaction produced by the control surface deflection. There also exists a centrifugal instability at the cove, due to streamline curvature, which is associated with the production of Görtler vortices. The content includes three projects revolving around hypersonic wing-elevon-cove flows. These flows were computed with improved delayed detached-eddy simulation.</p> <p><br></p> <p>The first project was a computational investigation simulating the NASA experimental study done by W.D. Deveikis and W. Bartlett in 1978. This experiment consisted of hypersonic high Reynolds number wind tunnel tests for a shuttle-type reentry vehicle. The computational aerothermodynamic surface loadings for this project were compared to the experimental published data. Grounded with the agreement with mean surface data, this project expanded on the topics explored in the experimental study to include topics such as flow visualization and statistical analysis. The second and third project are extensions of this work and were done in collaboration with Purdue University and the University of Tennessee Space Institute (UTSI). A swept wing-elevon-cove model was designed by Carson Lay, of Purdue University, and is currently being employed in ongoing experiments in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) and at the Tennessee Aerothermodynamics Laboratory (TALon). A computational investigation on hypersonic high Reynolds number wing-elevon-cove flows was conducted with this model, where both corresponding experimental facility conditions were employed. At this time, the experimental data are limited; however, future experimental and computational collaboration is expected.</p> <p><br></p> <p>The motivation behind this research was to expand the knowledge on hypersonic wing-elevon-cove flows, gap heating, and the low-frequency unsteadiness in shock-wave/boundary-layer interactions. Therefore, the intended goal of this work was to provide an accurate characterization of the three hypersonic wing-elevon-cove flows. This was accomplished by using computational data to produce flowfield visualizations, analyze aerothermodynamic loadings, and conduct statistical flow analyses. The results on the three hypersonic wing-elevon-cove computations are presented, analyzed, and discussed throughout this dissertation.</p>
14

Experimental Investigation and Modeling of Key Design Parameters in Flow Boiling and Condensation

Lucas E O'Neill (6944528) 15 August 2019 (has links)
<div>In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, pre-heater, condenser, etc.) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information. Conclusions from this analysis are used to isolate instabilities present within the system due to physical interplay between thermodynamic and hydrodynamic effects. Parametric analysis is undertaken to better understand the conditions under which these instabilities form and their impact on system performance. Several prior stability maps are presented, with new stability maps provided to better address contextual trends discovered in the present study.</div><div>Further, this study utilizes experimental results for vertical upflow boiling of FC-72 in a rectangular channel with finite inlet quality to investigate Density Wave Oscillations (DWOs) and assess their potential impact on design of two-phase systems for future space missions. High-speed flow visualization image sequences are presented and used to directly relate the cyclical passage of High and Low Density Fronts (HDFs and LDFs) to dominant low-frequency oscillations present in transient pressure signals commonly attributed to DWOs. A methodology is presented to determine frequency and amplitude of DWO induced pressure oscillations, which are then plotted for a wide range of relevant operating conditions. Mass velocity (flow inertia) is seen to be the dominant parameter influencing frequency and amplitude of DWOs. Amplitude of pressure oscillations is at most 7% of the time-averaged pressure level for current operating conditions, meaning there is little risk to space missions. Reconstruction of experimental pressure signals using a waveform defined by frequency and amplitude of DWO induced pressure fluctuations is seen to have only moderate agreement with the original signal due to the oversimplifications of treating DWO induced fluctuations as perfectly sinusoidal in nature, assuming they occur at a constant frequency value, and neglecting other transient flow features. This approach is nonetheless determined to have potential value for use as a boundary condition to introduce DWOs in two-phase flow simulations should a model be capable of accurately predicting frequency and amplitude of oscillation.</div><div>Additionally, this study presents a new mechanistic model for Density Wave Oscillations (DWOs) in vertical upflow boiling using conclusions drawn from analysis of flow visualization images and transient experimental results as a basis from which to begin modeling. Counter to many prior studies attributing DWOs to feedback effects between flow rate, pressure drop, and flow enthalpy causing oscillations in position of the bulk boiling boundary, the present instability mode stems primarily from body force acting on liquid and vapor phases in a separated flow regime leading to liquid accumulation in the near-inlet region of the test section, which eventually departs and moves along the channel, acting to re-wet liquid film along the channel walls and re-establish annular, co-current flow. This process was modeled by dividing the test section into three distinct control volumes and solving transient conservation equations for each, yielding predictions of frequencies at which this process occurs as well as amplitude of associated pressure oscillations. Values for these parameters were validated against an experimental database of 236 FC-72 points and show the model provides good predictive accuracy and capably captures the influence of parametric changes to operating conditions.</div><div>Also, this study shows analysis of pressure signals in condensing systems reveal the presence of relevant oscillatory phenomena during flow condensation as well, which may impact performance in applications concerned with precise system control. Towards this end, the present study presents results for oscillatory behavior observed in pressure measurements during flow condensation of FC-72 in a smooth circular tube in vertical upflow, vertical downflow, and horizontal flow orientations. Dynamic behavior observed within the test section is determined to be independent of other components within the flow loop, allowing it to be isolated and interpreted as resulting from physical aspects of two-phase flow with condensation. The presence of a peak oscillatory mode (one of significantly larger amplitude than any others present) is seen for 72% of</div><div>vertical upflow test cases, 61% of vertical downflow, and 54% of horizontal flow. Relative intensities of this peak oscillatory mode are evaluated through calculation of Q Factor for the corresponding frequency response peak. Frequency and amplitude of peak oscillatory modes are also evaluated. Overall, vertical upflow is seen to exhibit the most significant oscillatory behavior, although in its maximum case amplitude is only seen to be 7.9% of time-averaged module inlet pressure, indicating there is little safety risk posed by oscillations under current operating conditions. Flow visualization image sequences for each orientation are also presented and used to draw parallels between physical characteristics of condensate film behavior under different operating conditions and trends in oscillatory behavior detected in pressure signals</div><div>Further, the present work outlines a new methodology utilizing temperature and pressure measurements to identify condensation flow regimes. For vertical upflow condensation, amplitude of dynamic temperature and pressure oscillations are shown to clearly indicate transition from counter-current flow regimes (i.e., falling film, oscillating film, flooding) to annular, co-current flow (climbing film flow regime). In horizontal flow condensation, standard deviation between multiple thermocouple measurements distributed around the tube circumference was calculated at all axial (stream-wise) measurement locations. High values of standard deviation are present for stratified flow (stratified flow, wavy-stratified, plug flow), while axisymmetric flow regimes (i.e., slug flow, annular flow) yield significantly lower values. Successful development of this technique represents a valuable contribution to literature as it allows condensation flow regime to be identified without the often-costly restriction of designing a test section to allow optical access. Identified flow regimes in both vertical upflow and horizontal flow orientations are compared to regime maps commonly found in the literature in pursuit of optimum performing maps.</div><div>Finally, the present study aims to better analyze the influence of body force on flow condensation heat transfer by conducting tests at multiple orientations in Earth’s gravity. Dielectric FC-72 is condensed in a smooth stainless-steel tube with 7.12 mm diameter and 574.55 mm condensing length by counterflow of cooling water across the outer surface of the tube. Test conditions span FC-72 mass velocities of 50.3 – 360.3 kg/m2s, test section inlet pressures of 127.0 – 132.1 kPa, and test section inlet thermodynamic equilibrium qualities of 0.13 – 1.15. A subset of data gathered corresponding to axisymmetric, annular condensation heat transfer is identified and a detailed methodology for data reduction to calculate heat transfer coefficient presented. Uncertainty analysis is also presented and indicates channel average heat transfer coefficients are calculated within ±3.6% to ±26.7% (depending on operating conditions). Analysis of parametric trends for condensation heat transfer reveals the dominant influence of mass velocity (flow inertia), secondary influence of vapor mass fraction (thermodynamic equilibrium quality), and strong dependence on orientation (body force) at low mass velocities. At higher mass velocities results for all orientations investigated begin to converge, indicating body force independent annular condensation heat transfer is achieved. Separated Flow Model predictions of vertical downflow condensation heat transfer provide reasonable agreement with experimental results, evidence by a Mean Absolute Error (MAE) of 31.2%. Evaluation of condensation heat transfer correlations for horizontal flow reveal most correlations struggle for cases with high liquid content. Specific correlations are identified for superior accuracy in predicting the measured data.</div>
15

Ecoulements dans des fractures et milieux poreux en évolution / Flow in evolving fractures and porous media

Eriksen, Fredrik 31 January 2017 (has links)
Cette thèse est une étude expérimentale de la transformation lente et rapide d’un milieu poreux sous l’action de l’écoulement d’un fluide. Le processus rapide est une déformation mécanique avec formation de canaux en raison de la forte pression du fluide, alors que le processus lent correspond à l’évolution chimique des fractures. L’étude de la déformation rapide est effectuée grâce à l’injection d’air à pression constante dans un milieu granulaire sec ou saturé. Par des techniques d’imagerie nous avons pu caractériser l’invasion par des motifs de Saffman-Taylor ; la déformation du milieu ; ainsi que les régimes d’écoulement et la dynamique de croissance des canaux. La pression interstitielle est évaluée numériquement et utilisée pour caractériser la rhéologie. L’étude de la transformation lente repose sur des expériences où de l’eau distillée est injecté à débit constant à travers un échantillon de calcaire fracturé. En comparant l’ouverture des fractures mesurées avant et après l’écoulement, nous avons caractérisé l’évolution des fractures pour différentes durées d’écoulement réactif. / This thesis is an experimental study of flow and transformation of porous media, where we study both fast and slow transformation of the media due to fluid flow. The fast process is mechanical deformation and channel formation due to high fluid pressure, and the slow process is chemical evolution of fractures. In the study of fast deformation, we perform experiments where air is injected at a constant overpressure into a saturated or dry granular medium. From recorded images, we characterize Saffman-Taylor like invasion patterns, surrounding deformation of the medium, flow regimes, and channel growth dynamics. Pore pressure is evaluated numerically, and used to characterize the rheology. In the study of slow transformation, we perform experiments where distilled water is injected at a constant flow rate through a fractured chalk sample. By comparing fracture apertures measured before and after experiments, we study the evolution of fractures for different durations of reactive flow.
16

HYBRID CUTTING EXTRUSION OF COMMERCIALLY PURE ALUMINUM ALLOYS

Mohammed Naziru Issahaq (10702884) 26 April 2021 (has links)
<p>Commercial sheets, strips and wires are currently produced from aluminum alloys by multi-step deformation processing involving rolling and drawing. These processes typically require 10 to 20 steps of deformation, since the plastic strain or reduction that can be imposed in a single step is limited by material workability and process mechanics. In this work, a fundamentally different, single-step approach is demonstrated for producing these aluminum products using machining-based deformation that also enables higher material workability in the formed product. Two process routes are proposed: 1) chip formation by Free Machining (FM), and 2) constrained chip formation by Hybrid Cutting Extrusion (HCE).</p><p>Using the very soft and highly ductile commercially pure aluminum alloys as representative systems, various material flow transitions in response to the concentrated shear deformation are observed in FM including plastic instabilities. The flow instabilities usually manifested as folds of varying amplitudes on the unconstrained surface of the chips, are features that limit the desirability of the chip and potential use for strip applications. To suppress these instabilities, two strategies both involving deformation geometry design are outlined: 1) By using large positive rake angle, the flow can be transformed to be more laminar and thus reduces to a substantial amount, the flow instabilities. This also makes it possible for light rolling/drawing reductions to be adopted to smoothen the residual surface folds to improve the strip finish. 2) By using a constraining tool coupled with the cutting tool in what is referred to as HCE, the initial instability that leads to plastic buckling of the material is suppressed, thereby making the flow laminar and thus improve the quality of the strips.</p><p>Key property attributes of the chips produced by the shear-based deformation processes such as improved mechanical properties and in the case of HCE, superior surface finish compared to conventional processes of rolling/drawing are highlighted. Implications for commercial manufacture of sheet, strip and wire products are discussed.</p>
17

Flow Induced Instabilities, Shear-Thickening And Fluctuation Relations In Sheared Soft Matter

Majumdar, Sayantan 11 1900 (has links) (PDF)
In day to day life we encounter many different materials which are intermediate between crystalline solids and simple liquids that include paints , glues , suspensions, polymers, surfactants, food and cosmetic products and so on. ‘Soft condensed matter’ is an emerging field of science that aims to generalize the flow and various deformation mechanisms in this apparent diverse class of materials from a ‘mesoscopic’ point of view (important length scales for these systems is usually 10nm-1μm) where the actual atomic and molecular details governed by various quantum mechanical laws are not very important. These soft systems are held together by weaken tropic forces and therefore can be perturbed easily (the typical elastic modulus of these materials is many orders of magnitude lower compared to metallic solids). Moreover, very long relaxation times in these systems(∼10−3 to 1 s) have made them ideal candidates to study non-equilibrium physics. The present Thesis is an endeavor to understand linear and non-linear flow behavior and low Reynolds number instabilities in various soft matter systems like suspensions of flocculated carbon nanotubes and carbon black, surfactant gels, colloidal glasses, Langmuir monolayers etc probed mainly by bulk and interfacial rheology, in-situ light scattering, particle image velocimetry(PIV) techniques and Fourier transform rheology. We also use dynamic light scattering techniques for particle sizing and characterization of Brownian systems. Chapter 1 gives a general introduction to soft condensed matter, particularly, the important length and time scales, various interactions and the rich phase behavior emerged from the delicate balance between energy and entropy in these systems. In this context, We describe the detailed phase behavior of two such systems studied in this thesis. We next describe briefly a few important concepts which motivate the main problems studied in the present thesis like the shear-thickening in suspensions of Brownian and non-Brownian particles, non-equilibrium steady state fluctuation relations in driven systems, elasticity driven instabilities in complex fluids, jamming transitions and aging behavior. This is followed by a discussion of the experimental techniques like linear and nonlinear rheology, including the Fourier transform rheology. Chapter 2 discusses the experimental techniques used by us in detail. We first describe the different components and mode of operations of the MCR-300 stress-controlled rheometer (Paar Physica, Germany) and various experimental geometries. Next we discuss the set up for two dimensional rheological measurements. The homebuilt imaging set up for in-situ polarized light scattering and direct imaging studies is described along with the in-situ particle image velocimetry (PIV) to map out the exact spatially resolved velocity profiles in 2D systems. We give a brief account of the techniques of Fourier transform rheology. At the end of this chapter, we briefly describe the angle resolved dynamic light scattering (DLS) set up (Brookhaven Instruments, USA). In Chapter 3, we study colossal discontinuous shear-thickening transition in confined suspensions of fractal clusters formed by multi-wall carbon nanotubes (MWNT) by rheology and in-situ imaging experiments. Monotonic decrease in viscosity with increasing shear stress, known as shear thinning, is a known rheological response to shear flow in complex fluids in general and for flocculated suspensions in particular. In the present experiments we demonstrate a discontinuous shear thickening transition where the viscosity jumps sharply above a critical shear stress by four to six orders of magnitude in flocculated suspensions of MWNT even at very low weight fractions(∼0.5%). Rheo-optical observations reveal the shear-thickened state as a percolated structure of MWNT flocs spanning the system size. We present a dynamic phase diagram of the non-Brownian MWNT dispersions revealing a starting jammed state followed by shear-thinning and shear-thickened states. The present study further suggests that the shear-thickened state obtained as a function of shear stress is likely to be a generic feature of fractal clusters under flow, albeit under confinement. An understanding of the shear thickening phenomena in confined geometries is pertinent for flow controlled fabrication techniques in enhancing the mechanical strength and transport properties of thin films and wires of nanostructured composites as well as in lubrication issues. We try to understand the flow of jammed and shear-thickened states under constant applied strain rate by studying the building up and relaxation of individual stress fluctuation events similar to the flow in dense granular materials. We also characterize the metastable shear thickened states by superposing a small sinusoidal stress component on a steady applied stress as well as by studying the a thermal entropy consuming fluctuations which are also observed for other jammed systems under an applied steady shear stress as described in the next chapter. Chapter 4 reports the study of non-equilibrium fluctuations in concentrated gels and glassy systems(in jammed state), the nature of fluctuations and their systemsize dependence in the framework of fluctuation relation and Generalized Gumbel distribution. In the first part, we show that the shear rate at a fixed shear stress in a micellar gel in a jammed state exhibits large fluctuations, showing positive and negative values, with the mean shear rate being positive. The resulting probability distribution functions (PDFs) of the global power flux to the system vary from Gaussian to non-Gaussian, depending on the driving stress and in all cases show similar symmetry properties as predicted by Gallavotti-Cohen steady state fluctuation relation. The fluctuation relation allows us to determine an effective temperature related to the structural constraints of the jammed state. We have measured the stress dependence of the effective temperature. Further, experiments reveal that the effective temperature and the standard deviation of the shear rate fluctuations increase with the decrease of the systemsize. In the second part of this chapter, we report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the Generalized Gumbel (GG) distribution like many other equilibrium and non-equilibrium systems with high degree of correlations but do not obey Gallavotti-Cohen Steady State Fluctuation Relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution. We also establish the universality of the observations reported in this chapter in the light of other jammed systems under shear. We examine in the first part of Chapter 5, the shear-thinning behavior of a two dimensional yield stress bearing monolayer of sorbitan tristearate at air/water interface. The flow curve (stress vs shear rate) consists of a linear region at low shear stresses/shear rates, followed by a stress plateau at higher values. The velocity profile obtained from particle imaging velocimetry indicates that shear banding occurs showing coexistence of fluidized region near the rotor and solid region with vanishing shear-rate away from the rotor. In the fluidized region, the velocity profile which is linear at low shear rates becomes exponential at the onset of shear-thinning, followed by a time varying velocity profile in the plateau region. At low values of constant applied shear rates, the viscosity of the film increases with time, thus showing aging behavior like in soft glassy three-dimensional (3D) systems. Further, at the low values of the applied stress in the yield stress regime, the shear-rate fluctuations in time show both positive and negative values, similar to that observed in sheared 3D jammed systems. By carrying out a statistical analysis of these shear-rate fluctuations, we estimate the effective temperature of the soft glassy monolayer using the Galavatti-Cohen steady state fluctuation relation. In the second part of this chapter, we study in detail the non-linear viscoelastic behavior of Langmuir monolayers. Under oscillatory shear usually observed in many 3D metastable complex fluids with large structural relaxation times. At large strain amplitudes(γ), the storage modulus (G”) decreases monotonically whereas the loss modulus (G”) exhibits a peak above a critical strain amplitude before it decreases at higher strain amplitudes. The power law decay exponents of G” and G” are in the ratio 2:1. The peak in G” is absent at high temperatures and low concentration of sorbitan tristearate. Strain-rate frequency sweep measurements on the monolayers do indicate a strain-rate dependence of the structural relaxation time. The present study on sorbitan tristearate monolayers clearly indicates that the nonlinear viscoelastic behavior in 2D Langmuir monolayers is very general and exhibits many of the features observed in 3D complex fluids. We report in the first part of Chapter 6 scattering dichroism experiments to quantify the spatio-temporal nematodynamics of shear-thinning worm like micellar gels of surfactant Cetyltrimethylammonium Tosylate (CTAT) in the presence of salt sodium chloride (NaCl) enroute to rheochaos. For shear rates past the plateau onset, we observe a presence of alternating bright and dark‘ intertwined’ birefringent structures along the vorticity direction. The orientational order corresponding to these structures are predominantly oriented at +45deg and−45deg to the flow (v) in the (v,∇v) plane. The orientational dynamics of the nematics especially at the interface between the structures, has a one-to-one correspondence with the temporal behavior of the stress. Experiments show that the spatial motion of the vorticity structures depend on the gap thickness of the Couette cell. We next discuss the random temporal flow behavior of this system at high values of applied shear rate/stress in the framework of elastic turbulence in the second part of this chapter. Here, we study the statistical properties of spatially averaged global injected power fluctuations for the worm-like micellar system described above. At sufficiently high Weissenberg numbers (Wi) the shear rate and hence the injected power p(t) at a constant applied stress shows large irregular fluctuations in time. The nature of the probability distribution function (PDF) of p(t) and the power-law decay of its power spectrum are very similar to that observed in recent studies of elastic turbulence for polymer solutions. Remarkably, these non-Gaussian pdf scan be well described by an universal large deviation functional form given by the Generalized Gumbel (GG) distribution observed in the context of spatially averaged global measures in diverse classes of highly correlated systems. We show by in-situ rheology and polarized light scattering experiments that in the elastic turbulent regime the flow is spatially smooth but random in time, in agreement with a recent hypothesis for elastic turbulence. In Chapter 7, we study the vorticity banding under large amplitude oscillatory shear (LAOS) in a dilute worm-like micellar gel formed by surfactant CTAT by Fourier transform rheology and in-situ polarized light scattering. Under LAOS we found the signature of a non-trivial order-disorder transition of Taylor vortices. In the non-linear regime, higher harmonicde composition of the resulting stress signal reveals that the third harmonic I3 shows a very prominent maximum at the strain value where the number density (nv) of the Taylor vortices is maximum for a wide range of angular frequencies both above and below the linear crossover point. Subsequent increase in applied strain results in distortions of the vortices and a concomitant decrease in nv when I3 also drops very sharply and acts like an order parameter for this order-disorder transition. We further quantify the transition by defining an independent order parameter like quantity from the spatial correlation function of the scattered intensity and equivalently its Fourier transform which essentially captures the non monotonous third harmonic behavior. Lissajous plots indicate an intra-cycle strain hardening for the values of γ corresponding to the peak of I3 similar to that observed for hard-sphere glasses. Our study is an important step forward to correlating the structures developed in the system under LAOS to the appearances of the higher harmonics in the non-linear regime. The Thesis concludes with a summary of the main results and a brief account on the scope of future work as described in Chapter 8.
18

Nanofibres de cellulose pour la production de bionanocomposites / Cellulose nanofibers for the production of bionanocomposites

Nechyporchuk, Oleksandr 02 October 2015 (has links)
Un des principaux challenges dans le contexte du développement des matériaux biocomposites est de remplacer les matières plastiques à base de pétrole par des matériaux biosourcés. En raison de leurs origines naturelles, d'une résistance relativement élevée et de leur capacité à former des produits transparents, les nanofibres de cellulose possèdent un grand potentiel d'applications dans les matériaux composites. Dans ce travail des résultats ont été apportés premièrement sur l'optimisation des procédés de productions de nanofibres de cellulose par des traitements biochimiques et mécaniques, deuxièmement sur leurs propriétés rhéologiques et structurelles en milieu aqueux et troisièmement sur la production de composites à matrice de latex. Les questions de dispersions homogènes de nanofibres de cellulose dans la matrice et des interactions entre ces composants à des fins de renforcement des bio-composites ont été étudiés en détails. / One of the main challenges in the context of biocomposites development is to replace petroleum-based materials with bio-based. Because of their natural origin, relatively high strength and the ability to form transparent products, cellulose nanofibers have a large potential for application in the composite materials. This work was focused primarily on the optimization of cellulose nanofiber production methods using biochemical and mechanical treatments, secondly on their rheological and structural properties in an aqueous medium and thirdly on the production of latex-based composites. The questions of homogeneous dispersion of cellulose nanofibers in the matrix and the interactions between these components for the purpose of matrix reinforcement are particularly addressed.
19

Vlastní tvary vírového proudění / Eigenmodes of the swirling flow

Jízdný, Martin January 2011 (has links)
This thesis deals with study of dynamics of the swirling flow. The swirling flow occurs frequently in hydraulic machinery (e.g., vortex rope in draft tube of the hydraulic turbine) and often influences operation of these machines. For this reason, sufficient knowledge regarding this characteristic flow is necessary for subsequent improvement of hydraulic machines. The theoretical part of this thesis contains description of flow instabilities and their manifestations, notably Kármán vortex street and vortex rope. In the next part, two methods are applied to these two transient flows in order to identify their specific dynamic properties. The first method, Fourier transform, enables to find frequencies of transient flow. The second method, proper orthogonal decomposition (POD), enables to identify planar or spatial eigenmodes of a specific swirling flow. Proper orthogonal decomposition is used in this thesis to identify planar eigenmodes of Kármán vortex street and spatial eigenmodes of vortex rope.
20

Numerical investigation of the flow and instabilities at part-load and speed-no-load in an axial turbine

Kranenbarg, Jelle January 2023 (has links)
Global renewable energy requirements rapidly increase with the transition to a fossil-free society. As a result, intermittent energy resources, such as wind- and solar power, have become increasingly popular. However, their energy production varies over time, both in the short- and long term. Hydropower plants are therefore utilized as a regulating resource more frequently to maintain a balance between production and consumption on the electrical grid. This means that they must be operated away from the design point, also known as the best-efficiency-point (BEP), and often are operated at part-load (PL) with a lower power output. Moreover, some plants are expected to provide a spinning reserve, also referred to as speed-no-load (SNL), to respond rapidly to power shortages. During this operating condition, the turbine rotates without producing any power. During the above mentioned off-design operating conditions, the flow rate is restricted by the closure of the guide vanes. This changes the absolute velocity of the flow and increases the swirl, which is unfavorable. The flow field can be described as chaotic, with separated regions and recirculating fluid. Shear layer formation between stagnant- and rotating flow regions can be an origin for rotating flow structures. Examples are the rotating-vortex-rope (RVR) found during PL operation and the vortical flow structures in the vaneless space during SNL operation, which can cause the flow between the runner blades to stall, also referred to as rotating stall. The flow structures are associated with pressure pulsations throughout the turbine, which puts high stress on the runner and other critical parts and shortens the turbine's lifetime. Numerical models of hydraulic turbines are highly coveted to investigate the detrimental flow inside the hydraulic turbines' different sections at off-design operating conditions. They enable the detailed study of the flow and the origin of the instabilities. This knowledge eases the design and assessment of mitigation techniques that expand the turbines' operating range, ultimately enabling a wider implementation of intermittent energy resources on the electrical grid and a smoother transition to a fossil-free society. This thesis presents the numerical study of the Porjus U9 model, a scaled-down version of the 10 MW prototype Kaplan turbine located along the Luleå river in northern Sweden. The distributor contains 20 guide vanes, 18 stay vanes and the runner is 6-bladed. The numerical model is a geometrical representation of the model turbine located at Vattenfall Research and Development in Älvkarleby, Sweden. The commercial software ANSYS CFX 2020 R2 is used to perform the numerical simulations. Firstly, the draft tube cone section of the U9 model is numerically studied to investigate the sensitivity of a swirling flow to the GEKO (generalized kω) turbulence model. The GEKO model aims to consolidate different eddy viscosity turbulence models. Six free coefficients are changeable to tune the model to flow conditions and obtain results closer to an experimental reference without affecting the calibration of the turbulence model to basic flow test cases. Especially, the coefficients affecting wall-bounded flows are of interest. This study aims to analyze if the GEKO model can be used to obtain results closer to experimental measurements and better predict the swirling flow at PL operation compared to other eddy viscosity turbulence models. Results show that the near-wall- and separation coefficients predict a higher swirl and give results closer to experimentally obtained ones. Secondly, a simplified version of the U9 model is investigated at BEP and PL operating conditions and includes one distributor passage with periodic boundary conditions, the runner and the draft tube. The flow is assumed axisymmetric upstream of the runner, hence the single distributor passage. Previous studies of hydraulic turbines operating at PL show difficulties predicting the flow's tangential velocity component as it is often under predicted. Therefore, a parametric analysis is performed to investigate which parameters affect the prediction of the tangential velocity in the runner domain. Results show that the model predicts the flow relatively well at BEP but has problems at PL; the axial velocity is overpredicted while the tangential is underpredicted. Moreover, the torque is overpredicted. The root cause for the deviation is an underestimation of the head losses. Another contributing reason is that the runner extracts too much swirl from the flow, hence the low tangential velocity and the high torque. Sensitive parameters are the blade clearance, blade angle and mass flow. Finally, the full version of the U9 model is analyzed at SNL operation, including the spiral casing, full distributor, runner and draft tube. During this operating condition, the flow is not axisymmetric; vortical flow structures extend from the vaneless space to the draft tube and the flow stalls between the runner blades. A mitigation technique with independent control of each guide vane is presented and implemented in the model. The idea is to open some of the guidevanes to BEP angle while keeping the remaining ones closed. The aim is to reduce the swirl and prevent the vortical flow structures from developing. Results show that the flow structures are broken down upstream the runner and the rotating stall between the runner blades is reduced, which decreases the pressure- and velocity fluctuations. The flow down stream the runner remains mainly unchanged.

Page generated in 0.0899 seconds