• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 70
  • 19
  • 1
  • Tagged with
  • 235
  • 235
  • 189
  • 115
  • 52
  • 44
  • 41
  • 41
  • 37
  • 35
  • 31
  • 27
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Etude mécano-fiabiliste et réduction du modèle des problèmes vibro-acoustiques à paramètres aléatoires

Mansouri, Mohamed 22 April 2013 (has links) (PDF)
Dans de nombreuses applications industrielles, les structures en vibration à dimensionner sont en contact avec un fluide (fluide autour des coques des bateaux, réservoirs, échangeurs de chaleur dans les centrales, l'industrie automobile, etc). Cependant, le comportement dynamique de la structure peut être modifié de façon importante par la présence du fluide. Le dimensionnement doit donc prendre en compte les effets de l'interaction fluide-structure.Ces applications nécessitent un couplage efficace. En outre, l'analyse dynamique des systèmes industriels est souvent coûteuse du point de vue numérique. Pour les modèles éléments finis des problèmes couplés fluide-structure, l'importance de la réduction de la taille devient évidente car les degrés de liberté du fluide seront ajoutés à ceux de la structure. Des méthodes de réduction du modèle seront utilisées pour réduire la taille des matrices obtenues.Traditionnellement, l'étude de ces systèmes couplés est fondée sur une démarche déterministe dans laquelle l'ensemble des paramètres utilisés dans le modèle prennent une valeur fixe.Par contre, il suffit d'avoir procédé à quelques expérimentations pour se rendre compte des limites d'une telle modélisation, d'où la nécessité de la prise en compte des incertitudes sur les paramètres du système couplé.Ce travail de thèse s'articule autour de trois études principales. La première consiste à mener une étude déterministe numérique et analytique des problèmes vibro-acoustiques sans réduction de modèles. Cette dernière est basée sur une formulation non symétrique déplacement/pression et une formulation symétrique déplacement/pression et potentiel des vitesses. Dans la deuxième étude, on propose deux méthodes de réduction du modèle : analyse et synthèse modales pour la résolution des problèmes vibro-acoustiques des grandes tailles des systèmes couplés modélisés par la méthode des éléments finis. La méthode de synthèse modale développée couple une méthode de sous-structuration dynamique de type Craig et Bampton et une méthode de sous domaines acoustiques.Enfin, pour tenir compte des incertitudes sur les paramètres du système couplé, on a développé dans la troisième étude une méthode numérique stochastique de synthèse modale étendue à une étude de fiabilité basée sur les approches FORM et SORM pour la résolution de ces problèmes. Ces démarches vont nous permettre de résoudre les problèmes vibro-acoustiques, sans utiliser les méthodes classiques, qui consistent à faire un calcul modal direct allié à la simulation de Monte Carlo demandant un coup de temps très élevé.Plusieurs exemples académiques et industriels ont été traités pour valider les approches proposées.L'étude numérique est conduite en utilisant un code élaboré sous MATLAB couplé au code commercial ANSYS afin d'évaluer la fiabilité du système couplé. La confrontation des résultats numériques, analytiques et expérimentaux nous permet de valider conjointement le processus de calcul et les méthodes proposées dans le domaine de l'analyse fréquentielle et l'étude fiabiliste des structures immergées. D'un point de vue industriel, ces méthodes visent à promouvoir l'introduction de la culture de l'incertain dans les métiers de la conception et encouragent la construction d'un modèle fiable et robuste pour les problèmes d'interaction fluide-structure.
152

Mesure de pression non-invasive par imagerie cardiovasculaire et modélisation unidimensionnelle de l'aorte

Khalifé, Maya 12 December 2013 (has links) (PDF)
L'imagerie par Résonance Magnétique permet de mesurer l'écoulement sanguin. Au niveau cardiovasculaire, elle permet d'acquérir non seulement des images anatomiques du cœur et des gros vaisseaux mais aussi des images fonctionnelles de vitesse par contraste de phase. Cette technique offre des perspectives dans l'étude de la dynamique des fluides et dans la caractérisation des artères, en particulier pour les grosses artères systémiques comme l'aorte dont le rôle est primordial dans la circulation sanguine. Par ailleurs, l'un des paramètres qui entrent en jeu dans la détermination de la fonction cardiaque et du comportement vasculaire est la pression artérielle. La méthode de référence de la mesure de pression dans l'aorte étant le cathétérisme, plusieurs méthodes combinant la modélisation à l'imagerie ont été proposées afin d'estimer un gradient de pression de façon non invasive. Ce travail de thèse propose de mesurer la pression dans un segment d'aorte grâce à un modèle 1D simplifié et en utilisant les données mesurées par IRM et un modèle 0D représentant le réseau vasculaire périphérique comme conditions aux limites. Aussi, afin d'adapter le modèle à l'aorte du patient, une loi de pression exprimant une relation entre la section aortique à la pression et basée sur la compliance a été utilisée. Cette dernière, liée à la vitesse d'onde de pouls (VOP), a été mesurée en IRM sur les ondes de vitesse.Par ailleurs, les séquences de codage de vitesse et d'accélération sont longues et ponctuées d'artéfacts dus au mouvement du patient. Une apnée est requise afin de limiter le mouvement respiratoire. Cependant, la durée de l'apnée atteint 25 à 30 secondes pour de telles séquences, ce qui est souvent impossible à tenir pour les malades. Une technique d'optimisation de séquences dynamiques par réduction du champ de vue est proposée et étudiée. La technique décrit un dépliement des régions repliées par différence complexe de deux images, l'une codée et l'autre non codée en vitesse. Cette méthode réalise une réduction de plus de 25% de la durée d'apnée.
153

Contribution au traitement des conditions limites et d'interface dans le cadre de la Méthode des Éléments Finis

Chouly, Franz 04 December 2013 (has links) (PDF)
Ce mémoire présente quelques contributions à la prise en compte de diverses conditions limites ou d'interface lors de la résolution de problèmes par la méthode des éléments finis. Diverses techniques sont passées en revue, avec un focus sur celle de Nitsche. Les problèmes traités proviennent de la mécanique des solides et des fluides, comme par exemple l'interaction fluide-structure ou le contact.
154

Modelling and Simulations of Contacts in Particle-Laden Flows / Modélisation et simulations numériques des contacts dans des écoulements chargés en particules

Lambert, Baptiste 17 October 2018 (has links)
Les écoulements chargés en particules sont présents dans de nombreuses applications industrielles telles que le transport de boues ou l’industrie chimique en général. Dans des mélanges constitués de particules solides immergées dans un fluide visqueux, les interactions entre particules jouent un rôle essentiel dans la viscosité globale du mélange.Le phénomène de suspension est causé par des interactions hydrodynamiques à courte distance, connues sous le nom de lubrification. Les forces de lubrification sont généralement sous-estimées en raison de leur nature et de la discrétisation spatiale du problème.Dans cette thèse, nous proposons un modèle de lubrification qui estime les forces et couples hydrodynamiques non résolues par un solveur couplant la résolution des équations de Navier-Stokes incompressible par une méthode de volumes pénalisés, à la résolution de la dynamique des particules par une méthode aux éléments discrets. Les corrections des contraintes hydrodynamiques sont faites localement sur la surface des particules en interaction sans aucune hypothèse sur la forme générale des particules. La version finale du modèle de lubrification proposée peut être utilisée pour des suspensions de particules convexes sans aucune tabulation. La méthode numérique a été validée avec des particules sphériques et des ellipsoïdes, en comparant des simulations à des données expérimentales.Dans le cas de particules sphériques, le modèle de lubrification est aussi précis que les modèles de lubrification existants qui sont limités à ce type de géométrie. La compatibilité du modèle avec des particules convexes a été validée en comparant des simulations,utilisant des ellipsoïdes, à des mesures expérimentales que nous avons réalisées. / Particle-laden flows can be found in many industrial applications such as slurry transport or the chemical industry in general. In mixtures made of solid particles emerged in a viscous fluid, particle interactions play an essential role in the overall mixture viscosity. The suspension phenomenon is caused by short-range hydrodynamic interactions, known as lubrication. Lubrication forces are usually underestimated due to their singularities and the spatial discretization of the numerical schemes. In this thesis, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in incompressible Navier-Stokes flows. Corrections are made locally on the surfaces of the interacting particles without any assumption on the global particle shapes. The final version of the local lubrication model can be used for suspension of convex particles without any tabulations. The numerical method has been validated against experimental data with spherical and ellipsoidal particles. With spherical particles, the lubrication model performs as well as existing numerical models that are limited to this specific particle shape. The model compatibility with convex particles has been validated by comparing simulations using ellipsoids to experimental measurements we made.
155

Numerical simulation of red blood cells flowing in a blood analyzer / Simulations numériques de globules rouges en écoulement dans un analyseur sanguin

Gibaud, Etienne 15 December 2015 (has links)
L'objectif de cette thèse est d'améliorer la compréhension des phénomènes jouant un rôle dans la mesure effectuée dans un analyseur sanguin, en particulier le comptage et la mesure de volumétrie d'une population de globules rouges reposant sur l'effet Coulter. Des simulations numériques sont effectuées dans le but de prédire la dynamique des globules rouges dans les zones de mesure et pour reproduire la mesure électrique associée, servant au comptage et à la volumétrie des cellules. Ces simulations sont effectuées à l'intérieur de configurations industrielles d'analyseur sanguin, en utilisant un outil numérique développé à l'IMAG, le solveur YALES2BIO. En utilisant la méthode des frontières immergées avec suivi de front, un modèle de particule déformable est introduit, celui-ci prend en compte le contraste de viscosité ainsi que les effets mécaniques de la courbure et de l'élasticité sur la membrane. Le solveur est validé grâce à de nombreux cas tests parcourant différents régimes et effets physiques. L'écoulement fluide dans cette géométrie d'analyseur sanguin est caractérisée par un fort gradient de vitesse axial dans la direction de l'écoulement, impliquant la présence d'un écoulement extensionnel au niveau du micro-orifice, là où a lieu la mesure. La dynamique des globules rouges est étudiée par des simulations numériques pour différentes conditions initiales, telles que sa position ou son orientation. Il est observé que les globules rouges vont se réorienter selon l'axe principal de l'analyseur sanguin dans tous les cas. Pour comprendre le phénomène, des modèles analytiques sont adaptés au cas des écoulements extensionnels et reproduisent correctement les tendances de réorientation.Cette thèse présente également la reproduction de la mesure électrique utilisée pour le comptage et la mesure de la distribution des volumes de globules rouges. De nombreuses simulations de la dynamique des globules rouges sont effectuées et utilisées pour générer l'impulsion électrique correspondant au passage du globule rouge dans le micro-orifice. Les amplitudes d'impulsions électriques résultantes permettent la caractérisation de la réponse électrique en fonction des paramètres initiaux de la simulation par une approche statistique. Un algorithme de Monte-Carlo est utilisé pour la quantification des erreurs de mesure liées à l'orientation et la position des globules rouges dans le micro-orifice. Ceci permet la génération d'une distribution de volume mesurée pour une population de globules rouges bien définie et la caractérisation des erreurs de mesure associées. / The aim of this thesis is to improve the understanding of the phenomena involved in the measurement performed in a blood analyzer, namely the counting and sizing of red blood cells based on the Coulter effect. Numerical simulations are performed to predict the dynamics of red blood cells in the measurement regions, and to reproduce the associated electrical measurement used to count and size the cells. These numerical simulations are performed in industrial configurations using a numerical tool developed at IMAG, the YALES2BIO solver. Using the Front-Tracking Immersed Boundary Method, a deformable particle model for the red blood cell is introduced which takes the viscosity contrast as well as the mechanical effects of the curvature and elasticity on the membrane into account. The solver is validated against several test cases spreading over a large range of regimes and physical effects.The velocity field in the blood analyzer geometry is found to consist of an intense axial velocity gradient in the direction of the flow, resulting in a extensional flow at the micro-orifice, where the measurement is performed. The dynamics of the red blood cells is studied with numerical simulations with different initial conditions, such as its position or orientation. They are found to reorient along the main axis of the blood analyzer in all cases. In order to understand the phenomenon, analytical models are adapted to the case of extensional flows and are found to reproduce the observed trends.This thesis also presents the reproduction of the electrical measurement used to count red blood cells and measure their volume distribution. Numerous dynamics simulations are performed and used to generate the electrical pulse corresponding to the passage of a red blood cell inside the micro-orifice. The resulting electrical pulse amplitudes are used to characterize the electrical response depending on the initial parameters of the simulation by means of a statistical approach. A Monte-Carlo algorithm helps quantifying the errors on the measurement of cell depending on its orientation and position inside the micro-orifice. This allows the generation of a measured volume distribution of a well defined red blood cell population and the characterization of the associated measurement errors.
156

Fluid-structure interaction problems involving deformable membranes : application to blood flows at macroscopic and microscopic scales / Problèmes d'interaction fluide-structure impliquant des membranes déformables : application aux écoulements sanguins aux échelles macroscopique et microscopique

Sigüenza, Julien 14 November 2016 (has links)
Cette thèse traite plusieurs aspects scientifiques inhérents à la simulation numérique de problèmes d'interaction fluide-structure impliquant de fines membranes déformables. Deux cas spécifiques relatifs à la biomécanique cardiovasculaire sont considérés : l'interaction de l'écoulement sanguin avec la valve aortique (qui se produit à l'échelle macroscopique), et l'interaction de la membrane des globules rouges avec ses fluides interne et externe (qui se produit à l'échelle microscopique). Dans les deux cas, le couplage fluide-structure est géré par l'intermédiaire d'un formalisme de frontières immergées, en représentant la membrane par un maillage Lagrangien se mouvant au travers d'un maillage fluide Eulérien. Lorsque l'on traite la dynamique des globules rouges, la membrane est considérée comme étant une structure sans masse et infiniment fine. La première question à laquelle on s'intéresse dans cette thèse est la manière de modéliser la microstructure complexe de la membrane des globules rouges. Un moyen possible pour caractériser un modèle de membrane adapté est de simuler l'expérience des pinces optiques, qui consiste en une configuration expérimentale bien contrôlée qui permet d'étudier la mécanique individuelle d'un globule rouge isolé dans une large gamme de déformations. Plusieurs modèles pertinents sont identifiés, mais les caractéristiques de déformation mesurées durant l'expérience des pinces optiques se révèlent n'être pas assez sélectives pour être utilisées dans un contexte de validation. Des mesures de déformation additionnelles sont proposées, qui pourraient permettre une meilleure caractérisation de la mécanique de la membrane des globules rouges. En ce qui concerne les configurations macroscopiques, une méthode numérique innovante est proposée afin de gérer des simulations numériques de membranes 3D continues, en conservant le formalisme de frontières immergées. Dans cette méthode, appelée méthode des frontières immergées épaisses, la membrane a une épaisseur finie. La précision et la robustesse de la méthode sont démontrées par l'intermédiaire d'une variété de cas tests bien choisis. La méthode proposée est ensuite appliquée à un problème d'interaction fluide-structure réaliste, à savoir l'interaction d'un écoulement (sanguin) pulsé avec une valve aortique biomimétique. Une étude combinée expérimentale et numérique est menée, montrant que la méthode est capable de capturer la dynamique globale de la valve, ainsi que les principales caractéristiques de l'écoulement en aval de la valve. Tous les développements ont été effectués dans le solveur YALES2BIO (http://www.math.univ-montp2.fr/~yales2bio/) développé à l'IMAG, qui est donc disponible pour toutes autres améliorations, validations et études applicatives. / This thesis deals with several scientific aspects inherent to the numerical simulation of fluid-structure interaction problems involving thin deformable membranes. Two specific cases relevant to cardiovascular biomechanics are considered: the interaction of the blood flow with the aortic valve (which occurs at the macroscopic scale), and the interaction of the red blood cells membrane with its inner and outer fluids (which occurs at the microscopic scale). In both cases, the fluid-structure interaction coupling is handled using an immersed boundary formalism, representing the membrane by a Lagrangian mesh moving through an Eulerian fluid mesh.When dealing with red blood cells dynamics, the membrane is considered to be an infinitely thin and massless structure. The first question which is addressed in the present thesis work is how to model the complex microstructure of the red blood cells membrane. A possible way to characterize a suitable membrane model is to simulate the optical tweezers experiment, which is a well-controlled experimental configuration enabling to study the individual mechanics of an isolated red blood cell in a large range of deformation. Some relevant membrane models are identified, but the deformation characteristics measured during the optical tweezers experiment reveal to be not selective enough to be used in a validation context. Additional deformation measurements are proposed, which could allow a better characterization of the red blood cell membrane mechanics.Regarding the macroscopic configurations, an innovative numerical method is proposed to handle numerical simulations of 3D continuum membranes, still within the immersed boundary formalism. In this method, called immersed thick boundary method, the membrane has a finite thickness. The accuracy and robustness of the method are demonstrated through a variety of well-chosen test cases. Then, the proposed method is applied to a realistic fluid-structure interaction problem, namely the interaction of a pulsatile (blood) flow with a biomimetic aortic valve. A combined experimental and numerical study is led, showing that the method is able to capture the global dynamics of the valve, as well as the main features of the flow downstream of the valve.All the developments were performed within the YALES2BIO solver (http://www.math.univ-montp2.fr/~yales2bio/) developed at IMAG, which is thus available for further improvements, validations and applicative studies.
157

Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées / Mathematical analysis of the interaction of an inviscid fluid with immersed structures

Benyo, Krisztian 25 September 2018 (has links)
Cette thèse porte sur l’analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour de deux axes principaux. L’un d’eux est l’analyse asymptotique du mouvement d’une particule infinitésimale en milieu liquide. L’autre concerne l’interaction entre des vagues et une structure immergée. La première partie de la thèse repose sur l’analyse mathématique d’un système d’équations différentielles ordinaires non-linéaires d’ordre 2 modélisant le mouvement d’un solide infiniment petit dans un fluide incompressible en 2D. Les inconnues du modèle décrivent la position du solide, c’est-à-dire la position du centre de masse et son angle de rotation. Les équations proviennent de la deuxième loi de Newton avec un prototype de force de type Kutta-Joukowski. Plus précisément, nous étudions la dynamique de ce système lorsque l’inertie du solide tend vers 0. Les principaux outils utilisés sont des développements asymptotiques multiéchelles en temps. Pour la dynamique de la position du centre de masse, l’étude met en évidence des analogies avec le mouvement d’une particule chargée dans un champ électromagnétique et la théorie du centre-guide. En l’occurrence, le mouvement du centreguide est donné par une équation de point-vortex. La dynamique de l’angle est quant à elle donnée par une équation de pendule non-linéaire lentement modulée. Des régimes très différents se distinguent selon les données initiales. Pour de petites vitesses angulaires initiales la méthode de Poincaré-Lindstedt fait apparaitre une modulation des oscillations rapides, alors que pour de grandes vitesses angulaires initiales, un movement giratoire bien plus irrégulier est observé. C’est une conséquence particulière et assez spectaculaire de l’enchevêtrement des trajectoires homocliniques. La deuxième partie de la thèse porte sur le problème des vagues dans le cas où le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet des forces de pression du fluide. Nous avons étudié deux systèmes asymptotiques qui décrivent le cas d’un fluide parfait incompressible en faible profondeur. Ceux-ci correspondent respectivement aux équations de Saint-Venant et de Boussinesq. Grâce à leur caractère bien-posé en temps long, les modèles traités permettent de prendre en compte certains effets de la mécanique du solide, comme les forces de friction, ainsi que les effets non-hydrostatiques. Notre analyse théorique a été complétée par des études numériques. Nous avons développé un schéma de différences finies d’ordre élevé et nous l’avons adapté à ce problème couplé afin de mettre en évidence les effets d’un solide (dont le mouvement est limité à des translations sur le fond) sur les vagues qui passent au dessus de lui. A la suite de ces travaux, nous avons souligné l’influence des forces de friction sur ce genre de systèmes couplés ainsi que sur le déferlement des vagues. Quant à l’amortissement dû aux effets hydrodynamiques, une vague ressemblance avec le phénomène de l’eau morte est mise en évidence. / This PhD thesis concerns the mathematical analysis of the interaction of an inviscid fluid with immersed structures. More precisely it revolves around two main problems: one of them is the asymptotic analysis of an infinitesimal immersed particle, the other one being the interaction of water waves with a submerged solid object. Concerning the first problem, we studied a system of second order non-linear ODEs, serving as a toy model for the motion of a rigid body immersed in a two-dimensional perfect fluid. The unknowns of the model describe the position of the object, that is the position of its center of mass and the angle of rotation; the equations arise from Newton’s second law with the consideration of a Kutta-Joukowski type lift force. It concerns the detailed analysis of the dynamic of this system when the solid inertia tends to 0. For the evolution of the position of the solid’s center of mass, the study highlights similarities with the motion of a charged particle in an electromagnetic field and the wellknown “guiding center approximation”; it turns out that the motion of the corresponding guiding center is given by a point-vortex equation. As for the angular equation, its evolution is given by a slowly-in-time modulated non-linear pendulum equation. Based on the initial values of the system one can distinguish qualitatively different regimes: for small angular velocities, by the Poincaré-Lindstedt method one observes a modulation in the fast time-scale oscillatory terms, for larger angular velocities however erratic rotational motion is observed, a consequence of Melnikov’s observations on the presence of a homoclinic tangle. About the other problem, the Cauchy problem for the water waves equations is considered in a fluid domain which has a free surface on the upper vertical limit and a flat bottom on which a solid object moves horizontally, its motion determined by the pressure forces exerted by the fluid. Two shallow water asymptotic regimes are detailed, well-posedness results are obtained for both the Saint-Venant and the Boussinesq system coupled with Newton’s equation characterizing the solid motion. Using the particular structure of the coupling terms one is able to go beyond the standard scale for the existence time of solutions to the Boussinesq system with a moving bottom. An extended numerical study has also been carried out for the latter system. A high order finite difference scheme is developed, extending the convergence ratio of previous, staggered grid based models. The discretized solid mechanics are adapted to represent important features of the original model, such as the dissipation due to the friction term. We observed qualitative differences for the transformation of a passing wave over a moving solid object as compared to an immobile one. The movement of the solid not only influences wave attenuation but it affects the shoaling process as well as the wave breaking. The importance of the coefficient of friction is also highlighted, influencing qualitative and quantitative properties of the coupled system. Furthermore, we showed the hydrodynamic damping effects of the waves on the solid motion, reminiscent of the so-called dead water phenomenon.
158

Approche ondulatoire pour la description numérique du comportement vibroacoustique large bande des conduites avec fluide interne / Wave finite element based techniques for the prediction of the vibroacoustic behavior of fluid filled pipes

Bhuddi, Ajit 25 November 2015 (has links)
Dans ce travail, une méthode basée sur les éléments finis ondulatoires - Wave Finite Elements (WFE) - est proposée en vue de prédire le rayonnement acoustique de conduites axisyrnétriques de longueur finie, comportant un fluide interne, et immergées dans un fluide acoustique de dimensions infinies. La condition de rayonnement de Sommerfeld est prise en compte en entourant le fluide extérieur d'un perfectly matched layer (PML), c'est-à-dire une couche d'éléments absorbants dans laquelle les ondes acoustiques incidentes sont progressivement amorties. Dans le cadre de l'approche WFE, la conduite, le fluide qu'elle contient, le fluide extérieur et le PML constituent un guide d'ondes multiphysique qui est discrétisé par un maillage éléments finis périodique, et peut être ainsi modélisé comme un assemblage de sous-systèmes identiques de faible longueur. Une base d'ondes se propageant le long de la conduite, calculée à partir du modèle éléments finis d'un sous-système, est utilisée afin de prédire le comportement vibroacoustique de guides d'ondes de longueur finie à moindre coût. Des simulations numériques sont réalisées pour des cas de conduites de structure homogène ou multi-couches. La précision et l'efficacité de la méthode WFE sont clairement établies en comparaison avec la méthode des éléments finis conventionnelle. / In this work, a wave finite element (WFE) method is proposed to predict the sound radiation of finite axisymmetric fluid-filled pipes immersed in an external acoustic fluid of infinite extent, The Sommerfeld radiation condition is taken into account by means of a perfectly matched layer (PML) around the external fluid. Within the WFE framework, the fluid-filled pipe, the surrounding fluid and the PML constitute a multiphysics waveguide that is discretized by means of a periodic finite element mesh, and is treated as an assembly of identical subsystems of small length. Wave modes are computed from the FE model of a multi-physics subsystem and used as a representation basis to assess the vibroacoustic behavior of the finite waveguide at a low computational cost. Numerical experiments are carried out in the cases of axisymmetric pipes of either homogeneous or multi-layered crosssections, The accuracy and efficiency of the proposed approach are dearly highlighted in comparison with the conventional FE method.
159

Analyse aéroélastique d'une pale flexible composite : application au microdrone / Aeroelastic Analysis of Flexible Composite Proprotor Blades for Convertible Micro Air Vehicles

Mohd Zawawi, Fazila 18 September 2014 (has links)
The vision driving the work reported herein is to investigate the fluid-structure interac-tion (FSI) effects of the flexible laminated blades for tilt-body micro-air-vehicles (MAV)proprotors in hover and forward flight configurations. This is in order to exploit the po-tential of flexible-bladed proprotor over the rigid-bladed proprotor in the enhancementof proprotor performance during hovering and cruising at a target forward speed. Forthat, the FSI model taking into account the specific problems devoted to MAV-sizedproprotor made of laminate composite was developed. The FSI model combines aerody-namic model adapting Blade Element Momentum (BEM) theory and structural modeladapting Anisotropic Finite Element Beam (AFEM) theory. The aerodynamic model isdeveloped to be capable of adapting in the analysis on low Reynolds number proprotors.In the structural model, the blade is modeled as an elastic beam undergoing deflectionsin flap, lag, and torsion to capture the coupling effects in anisotropic materials, adaptsthe structural analysis on proprotor blades made of laminate composite. The reliabilityof the developed FSI model is verified through a validation on both aerodynamic andstructural models, separately, on several MAV-sized proprotors. As for a direction to theanalysis on passively-adaptive proprotor blades, an optimal design on actively-adaptiveproprotor was carried out. For this, a program for designing the optimum rigid blades atsingle-point (for either isolated cruise-point or isolated hover-point) and multiple-point(combined cruise and hover point) for proprotors have been developed. The proceduresin the optimal design program employs the numerical iterative inverse design method,based upon the minimum thrust induced losses (MIL). Even if the work in this thesiswas directed primarily towards the proprotor, however, the propulsion system from themotor part was not neglected since the propulsion efficiency is a crucial factor to the suc-cess of MAVs. A cheap and time-effective method of proposing the best motor from theselected commercial motors was developed, based on Taguchi’s method. The sensitivityof the total power consumption to the variation of value of each motor design variableswas also studied. The benefit of the use of tip body in the blade and the effect of bendingon the induced twist and on the thrust degradation, respectively, were also analyzed andidentified. Finally, the systematically designed passively-adaptive composite proprotors were evaluated under steady operating conditions. Hovering and cruise propulsive performance, characterized by total power Ptotal, were compared between the rigid-bladed and flexible-bladed proprotors. As a result of the comparison, the flexible-bladed proprotor with fixed system is found to be capable of slightly enhancing the performance through the reduction in Ptotal over its optimal rigid-bladed proprotor. / L’idée principale du travail rapporté ici est d’étudier les effets de l’intéraction fluide-structure (FSI) de pales laminées flexibles pour les proprotors de micro véhicules aériens(MAV) de type tilt-body dans les configurations de vol stationnaire et en avant. Eneffet, le but est d’exploiter les possibilités offertes par les proprotors à pales flexiblespar rapport aux proprotors à pales rigides pour améliorer leur performance dans cesphases de vol. Le modèle FSI a été développé à cet effet. Ce modèle tient compte desproblèmes spécifiques liés aux proprotors de MAV faits de composite laminé. Il com-bine l’adaptation de modèle aérodynamique par la théorie d’élement de pale (BEM) etl’adaptation de modèle structurel par la théorie des éléments finis de poutre anisotropes(AFEM). Le modèle aérodynamique est développé pour être capable de s’adapter àl’analyse des proprotors à bas nombres de Reynolds. Dans le modèle structural, la paleest modélisée comme une poutre élastique subissant des déviations dans la flexion, latraction et la torsion afin de capturer les effets de couplage de matériaux anisotropes.Il adapte l’analyse structurale des pales du proprotor faites de composite laminé. Lafiabilité du modèle FSI développé est vérifiée à travers une validation par modèles aéro-dynamique et structural, séparément, sur plusieurs proprotors de MAV. Afin de se dirigervers une analyse de pales de proprotors à adaptation passive , une recherche de designoptimal a été effectuée pour des proprotor à adaptation active. Pour cela, un programmepour la conception de pales rigides optimales à un unique point de fonctionnement (soitle vol de croisière soit le vol stationnaire) et à plusieurs points (combinant croisière etvol stationnaire) ont été développés. Les procédures du programme de design optimalemploient les mèthodes de design inverse par itération numérique, sur la base de pertesde poussée induites minimales (MIL). Même si le travail dans cette thèse a été dirigéprincipalement vers le proprotor, la partie moteur du système de propulsion n’a pasété négligée puisque l’efficacité de la propulsion est un facteur crucial pour le succès desMAVs. Une méthode simple et rapide de sélection du meilleur moteur parmi les moteurscommerciaux choisis est élaborée sur la base de la méthode de Taguchi. La sensibilitéde la consommation d’énergie totale à la variation de la valeur de chaque variable deconception du moteur a été étudiée. Le bénéfice de l’utilisation de la charge à la pointe de la pale et l’effet de la flexion sur la torsion induite et sur la dégradation de la poussée respectivement ont aussi été analysés et identifiés. Enfin, les proprotors à pales flexibles conçues systématiquement ont été évalués dans des conditions de fonctionnement stables. Performances en vol stationnaire et performances croisière propulsive, caractérisées par la puissance totale Ptotal ont été comparées entre les proprotors à pales rigides et à pales flexibles. En tant que résultat de la comparaison, les proprotors à pales flexibles s’avère capable d’améliorer légèrement les performances par la réduction de la Ptotal surson optimal proprotors à pales rigides.
160

Solving Incompressible Navier-Stokes Equations on Octree grids : towards Application to Wind Turbine Blade Modelling / Résolution des équations de Navier-Stokes sur maillage octree : vers une application à la modélisation d'une pale d'éolienne

Taymans, Claire 28 September 2018 (has links)
Le sujet de la thèse est le développement d'un outil numérique qui permet de modéliser l'écoulement autour des pales d'éoliennes. Nous nous sommes intéressés à la résolution des équations de Navier-Stokes en incompressible sur des maillages de type octree où les échelles plus petites en proche parois ont été modélisées par la méthode dite des wall functions. Un procédé d'adaptation automatique du maillage (AMR) a été développé pour affiner le maillage dans les zones où la vorticité est plus importante. Le modèle de structure d'une pale d'éolienne a été également implémenté et couplé avec le modèle fluide car une application de l'outil numérique est l'étude des effets des rafales de vent sur les pales d'éolienne. Un travail expérimental a été mené sur une éolienne avec une mesure de vent en amont. Ces données permettent ainsi de calibrer et valider les modèles numériques développés dans la thèse. / The subject of the thesis is the development of a numerical tool that allows to model the flow around wind blades. We are interested in the solving of incompressible Navier-Stokes equations on octree grids, where the smallest scales close to the wall have been modelled by the use of the so-called Wall Functions. An automatic Adaptive Mesh Refinement (AMR) process has been developed in order to refine the mesh in the areas where the vorticity is higher. The structural model of a real wind blade has also been implemented and coupled with the fluid model. Indeed, an application of the numerical tool is the study of the effects of wind gusts on blades. An experimental work has been conducted with an in-service wind turbine with the measurement of wind speed upstream. This data will allow to calibrate and validate the numerical models developed in the thesis.

Page generated in 0.0489 seconds