• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 10
  • 8
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 78
  • 78
  • 41
  • 41
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Transcranial Ultrasound Holograms for the Blood-Brain Barrier Opening

Jiménez Gambín, Sergio 02 September 2021 (has links)
[ES] El tratamiento de enfermedades neurológicas está muy limitado por la ineficiente penetración de los fármacos en el tejido cerebral dañado debido a la barrera hematoencefálica (BHE), lo que imposibilita mejorar la salud del paciente. La BHE es un mecanismo de protección natural para evitar la difusión de agentes potencialmente peligrosas para el sistema nervioso central. No obstante, la BHE se puede inhibir mediante ultrasonidos focalizados e inyección de microburbujas de forma segura, localizada y transitoria, una tecnología empleada mundialmente. La principal ventaja es su carácter no invasivo, siendo así muy atractiva y cómoda para el paciente. Normalmente, la zona cerebral enferma se trata en su parte central empleando un único foco. Sin embargo, enfermedades como el Alzheimer o el Parkinson requieren un tratamiento sobre estructuras de geometría compleja y tamaño elevado, situadas en ambos hemisferios cerebrales. Por tanto, la tecnología actual está muy limitada al no cumplir dichos requisitos. Esta tesis doctoral tiene como objetivo el desarrollo de una técnica novedosa, basada en hologramas acústicos, para resolver las limitaciones presentes en los tratamientos neurológicos empleando ultrasonidos. Se estudian las lentes acústicas holográficas impresas en 3D, que acopladas a un transductor mono-elemento, permiten el control preciso del frente de onda ultrasónico tanto para (1) compensar las distorsiones que sufre el haz hasta alcanzar el cerebro, como (2) focalizarlo simultáneamente en regiones múltiples y de geometría compleja o formando de vórtices acústicos, proporcionando así efectividad en tiempo y coste. Por ello, la investigación desarrollada en esta tesis abre un camino prometedor en el campo de la biomedicina que permitirá mejorar los tratamientos neurológicos, además de aplicaciones en neuroestimulación o ablación térmica del tejido. / [CA] El tractament de malalties neurològiques està molt limitat per la ineficient penetració del fàrmac en el teixit cerebral danyat a causa de la barrera hematoencefàlica (BHE), i així no és possible una millora de salut del pacient. La BHE és un mecanisme de protecció natural per a evitar la difusió d'agents potencialment perillosos per al Sistema Nervios Central. No obstant això, aquesta barrera es pot inhibir mitjancant una tecnologia emprada mundialment basada en ultrasons focalitzats i injeccio de microbombolles. El principal avantatge és el seu caràcter no invasiu, sent així molt atractiva i còmoda per al pacient, i permet obrir la BHE de manera segura, localitzada i transitòria. Normalment, la zona cerebral malalta es tracta en la seua part central, emprant un unic focus. No obstant això, malalties com l'Alzheimer o el Parkinson requereixen un tractament al llarg d'estructures de geometria complexa i grandària elevada, situades en tots dos hemisferis cerebrals. Per tant, la tecnologia actual està fortament limitada al no complir amb aquests requeriments. Aquesta tesi doctoral està enfocada a investigar i desenvolupar una tècnica nova, basada en hologrames acústics, per a solucionar les limitacions presents en els tractaments neurològics. Una lent acústica holograca de baix cost impresa en 3D acoblada a un transductor d'element simple permet el control precs del front d'ona ultrasònic punt per a (1) compensar les distorsions que pateix el feix en el seu camí cap al cervell, i (2) focalització simultània del feix en regions multiples i de geometria complexa, proporcionant aix un tractament efectiu en temps i cost. Per això, la investigació desenvolupada en aquesta tesi demostra la possibilitat de realitzar qualsevol tractament neurològic, a més d'aplicacions en la neuroestimulació o l'ablació tèrmica dins del camp biomèdic. / [EN] Treatments for neurological diseases are strongly limited by the inefficient penetration of therapeutic drugs into the diseased brain due to the blood-brain barrier (BBB), and therefore no health improvement can be achieved. In fact, the BBB is a protection mechanism of the human body to avoid the diffusion of potentially dangerous agents into the central nervous system. Nevertheless, this barrier can be successfully inhibited by using a worldwide spread technology based on microbubble-enhanced focused ultrasound. Its main advantage is its non-invasive nature, thus defining a patient-friendly clinical procedure that allows to disrupt the BBB in a safe, local and transient manner. Conventionally, the diseased brain structure has been targeted in its center, with a single focus. However, Alzheimer's or Parkinson's Diseases do require that ultrasound is delivered to entire, complex-geometry and large-volume structures located at both hemispheres of the brain. Therefore, current technology presents several limitations as it does not fulfill these requirements. This doctoral thesis aims to develop a novel technique based on using focused ultrasound acoustic holograms to solve the existing limitations to treat neurological diseases. In this dissertation, we study 3D-printed holographic acoustic lenses coupled to a single-element transducer that allow to accurately control the acoustic wavefront to both (1) compensate distortions suffered by the beam in its path to the brain, and (2) simultaneous focusing in multiple and complex-geometry structures or acoustic vortex generation, providing a time- and cost- efficient procedure. Therefore, the research carried out throughout this thesis opens a promising path in the biomedical field to improve the treatment for neurological diseases, neurostimulation or tissue ablation applications. / Acknowledgments to the Spanish institution Generalitat Valenciana, which funding grant allowed me to develop this doctoral thesis, and as well funded my research stay at Columbia University. The development of the entire thesis was supported through grant Nª. ACIF/2017/045. Particularly, the research carried out in Chapter 3 and Chapter 4 was possible thanks to and supported through grant BEFPI/2019/075. Action co-financied by the Agència Valenciana de la Innovació through grant INNVAL10/19/016 and by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022). / Jiménez Gambín, S. (2021). Transcranial Ultrasound Holograms for the Blood-Brain Barrier Opening [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171373
72

Design of Acoustic Lenses for Ultrasound Focusing Applications

Pérez López, Sergio 17 January 2022 (has links)
Tesis por compendio / [ES] La focalización de ultrasonidos tiene muchas aplicaciones en una gran variedad de áreas tanto científicas como industriales. Los ultrasonidos focalizados son una de las herramientas principales usada por médicos en todo el mundo para obtener imágenes biomédicas de diferentes tipos de tejidos y órganos de manera no invasiva. En las últimas décadas, el uso de ultrasonidos focalizados de alta intensidad (HIFU, por sus siglas en inglés) ha surgido como una de las técnicas principales para el tratamiento de cáncer mediante la ablación térmica de tumores de manera no invasiva. Además, los ultrasonidos focalizados están emergiendo en los últimos años como uno de los métodos más prometedores para el tratamiento de las enfermedades cerebrales, con la aparición de nuevas técnicas disruptivas como la apertura reversible de la barrera hematoencefálica o la neuromodulación. En entornos industriales, los ultrasonidos son ampliamente utilizados como uno de los métodos principales para la evaluación no destructiva de materiales y estructuras, debido a que las ondas acústicas pueden penetrar en los objetos a distancias donde la luz no puede debido a la elevada absorción y dispersión. En este sentido, diseñar estructuras capaces de focalizar ultrasonidos es de una gran relevancia tanto para la comunidad científica como para los sectores médicos e industriales. Esta tesis presenta nuevos diseños de lentes acústicas capaces de controlar los parámetros principales del haz de ultrasonidos focalizados, proporcionando diferentes tipos de perfiles de focalización adecuados para una gran variedad de aplicaciones y escenarios. En particular, se han diseñado y adaptado al campo de los ultrasonidos las lentes de Fresnel (Fresnel Zone Plates, FZPs), ampliamente utilizadas en el campo de la óptica. Se ha presentado una nueva técnica de modulación espacio-temporal capaz de controlar la posición del foco de ultrasonidos tanto en espacio como en tiempo, aumentando así la versatilidad de este tipo de dispositivos. También se ha demostrado el funcionamiento en el campo de la acústica de nuevos diseños basados en aplicar secuencias binarias a una lente de Fresnel convencional, como las secuencias fractales de Cantor o las secuencias de M-bonacci generalizadas, capaces de modificar las propiedades de focalización de las lentes, incluyendo el número, posición y forma de los focos acústicos. Además, se introduce un nuevo diseño de lentes esféricas rellenas de líquido capaces de generar jets ultrasónicos, con mucho potencial en aplicaciones de imagen de alta resolución en campo cercano. Se ha demostrado que, cambiando el líquido interno de la lente o ajustando el ratio de mezcla entre dos líquidos, se pueden controlar los parámetros principales del jet. Los diseños propuestos en la tesis han sido validados tanto empleando simulaciones numéricas como realizando medidas experimentales, allanando el camino para el uso de este tipo de estructuras en aplicaciones de focalización de ultrasonidos. / [CA] La focalització d'ultrasons té moltes aplicacions en moltes àrees científiques i industrials. Els ultrasons focalitzats són una de les eines principals utilitzada per metges a tot el món per obtenir imatges biomèdiques de diferents tipus de teixits i òrgans de manera no invasiva. En les últimes dècades, els ultrasons focalitzats d'alta intensitat (HIFU, per les seues sigles en anglès) han aparegut com una de les tècniques principals per al tractament de càncer mitjançant l'ablació de tumors de manera no invasiva. A més, els ultrasons focalitzats estan emergint en els últims anys com un dels mètodes més prometedors per al tractament de les malalties cerebrals, amb l'aparició de noves tècniques disruptives com l'obertura reversible de la barrera hematoencefàlica o la neuromodulació. En entorns industrials, els ultrasons són àmpliament utilitzats com un dels mètodes principals per a l'avaluació no destructiva de materials i estructures, pel fet que les ones acústiques poden penetrar en els objectes a distàncies on la llum no pot a causa de l'elevada absorció i dispersió. En aquest sentit, dissenyar estructures capaces de focalitzar ultrasons és d'una gran rellevància tant per a la comunitat científica com per als sectors mèdics i industrials. Aquesta tesi presenta nous dissenys de lents acústiques capaços de controlar els paràmetres principals del feix d'ultrasons focalitzats, proporcionant diferents tipus de perfils de focalització adequats per a una gran varietat d'aplicacions i escenaris. En particular, s'han dissenyat i adaptat al camp dels ultrasons les lents de Fresnel (Fresnel Zone Plates, FZPs), àmpliament utilitzades en el camp de l'òptica. S'ha presentat una nova tècnica de modulació espai-temporal capaç de controlar la posició del focus d'ultrasons tant en espai com en temps, augmentant així la versatilitat d'aquest tipus de dispositius. També s'ha demostrat el funcionament en el camp de l'acústica de nous dissenys basats en aplicar seqüències binàries a una lent de Fresnel convencional, com les seqüències fractals de Cantor o les seqüències de M-bonacci generalitzades, capaces de modificar les propietats de focalització de les lents, incloent el nombre, posició i forma dels focus acústics. A més, s'introdueix un nou disseny de lents esfèriques plenes de líquid capaces de generar jets ultrasònics, amb molt potencial en aplicacions d'imatge d'alta resolució en camp proper. S'ha demostrat que, canviant el líquid intern de la lent o ajustant la ràtio de barreja entre dos líquids, es poden controlar els paràmetres principals del jet. Els dissenys proposats en la tesi han estat validats tant emprant simulacions numèriques com realitzant mesures experimentals, aplanant el camí per a l'ús d'aquest tipus d'estructures en aplicacions de focalització d'ultrasons. / [EN] Ultrasound focusing has many applications in a wide range of fields. Focused ultrasound is one of the main tools used by doctors all over the world to obtain biomedical images of different kind of tissues non-invasively. In the past decades, high intensity focused ultrasound (HIFU) appeared as one of the fundamental techniques for cancer treatment through non-invasive thermal tumor ablation. In addition, focused ultrasonic waves are recently emerging as one of the main tools to treat brain diseases, with novel disruptive techniques such as blood-brain barrier opening or neuromodulation. In industrial environments, ultrasonic waves are widely employed as one of the primary methods for the non-destructive evaluation (NDE) of materials and structures, as acoustic waves are able to penetrate deep into objects otherwise opaque using optical techniques. In this sense, designing structures capable of focusing ultrasonic waves is of great interest and relevance for the scientific, the industrial, and the biomedical sectors. This thesis devises new designs of acoustic lenses capable of controlling the main parameters of the focused ultrasound beam, achieving different kinds of focusing profiles suitable for a wide variety of scenarios. In particular, Fresnel Zone Plates (FZPs), commonly used in optics, are designed and adapted to the ultrasound domain. A novel spatio-temporal modulation technique capable of controlling the ultrasound focus location in both time and space is presented, increasing the versatility of this kind of devices. New design techniques based on applying a binary sequence to FZPs are also demonstrated, such as Cantor fractal sequences or generalized M-bonacci sequences, which modify the focusing properties of the lens, including the number, location, and shape of the different acoustic foci. In addition, acoustic jets generated by liquid-filled spherical lenses are devised for near-field high resolution imaging, demonstrating their applicability in the ultrasound domain. It is demonstrated that, by changing the inner liquid of the spherical lens or by tuning the mixing ratio between two liquids, the main focal parameters of the ultrasonic jet can be accurately controlled. The proposed designs are validated using both numerical simulations and experimental measurements, paving the way for the use of these kind of structures in focused ultrasound applications. / This work would not have been possible without the following funding sources: PAID-01-18 personal FPI grant from Universitat Politècnica de València; Spanish government MINECO TEC2015-70939-R project; Spanish government MICINN RTI2018-100792-B-I00 project; Generalitat Valenciana AICO/2020/139 project. / Pérez López, S. (2021). Design of Acoustic Lenses for Ultrasound Focusing Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179907 / Compendio
73

Liposomes thermosensibles furtifs pour l'administration du 5-Fluorouracile déclenchée par ultrasons / 5-Fluorouracil-loaded thermosensitive stealth® liposomes for focused ultrasound-mediated triggered delivery

Al Sabbagh, Chantal 26 September 2014 (has links)
Nous avons optimisé des liposomes thermosensibles, encapsulant un principe actif anticancéreux, le 5-Fluorouracile (5-FU), afin de déclencher sa libération par une hyperthermie locale modérée (39-42°C) induite par des ultrasons focalisés. L'hyperthermie sera appliquée au niveau de la tumeur, afin d'améliorer l’efficacité thérapeutique et de réduire la toxicité systémique. Les liposomes ont été formulés par hydratation du film lipidique en mélangeant la 1,2-dipalmitoyl-sn-glycéro-3-phosphocholine (DPPC) pour sa thermosensibilité à 41,5 ± 0,5°C, le cholestérol (CHOL) pour favoriser la stabilité des liposomes vis-à-vis des composants du sang, et le 1,2-distéaroyl-sn-glycéro-3-phosphoéthanolamine-N-[méthoxy(polyéthylène glycol)-2000] (DSPE-PEG) pour assurer la furtivité de la formulation. Les expériences ont confirmé que les liposomes formulés à base de DPPC/CHOL/DSPE-PEG dans un ratio molaire 90 : 5 : 5 mol% sont thermosensibles. Des liposomes composés du même mélange lipidique dans un rapport 65 : 30 : 5 mol% ont été considérés comme contrôle négatif non thermosensible. L’optimisation de l’encapsulation passive du 5-FU a permis d’obtenir une efficacité d’encapsulation (5-FU encapsulé/5-FU total) de 13%, mais le 5-FU est très faiblement retenu (12%) dans la cavité aqueuse des liposomes du fait du gradient osmotique à la dilution. La rétention du 5-FU a été optimisée (93%) par la technique d’encapsulation active basée sur la complexation intraliposomale du 5-FU avec le complexe cuivre-polyéthylèneimine préalablement encapsulé dans les liposomes. Cette technique a également permis d’améliorer l’efficacité d’encapsulation d’un facteur trois environ (37%), avec un taux de charge (ratio final 5-FU/lipides, mole/mole) de 50% environ. Nous avons alors obtenu des liposomes thermosensibles d'un diamètre hydrodynamique de 65 nm et de charge de surface de -10 mV. Les liposomes non thermosensibles, ont été caractérisés par un diamètre hydrodynamique de 105 nm et une charge de surface de -4,9 mV. La libération du 5-FU déclenchée par une hyperthermie induite par des ultrasons focalisés a été mesurée in vitro. En réponse à une hyperthermie de 42°C, les liposomes thermosensibles libèrent 68% de leur contenu, au bout de 10 min, alors que les liposomes non thermosensibles en libèrent moins de 20%. En outre, la cytotoxicité des liposomes encapsulant le complexe 5-FU-cuivre-polyéthylèneimine a été évaluée vis-à-vis de la lignée cellulaire HT-29 du carcinome colorectal humain. Les résultats ont révélé que les lipides à une concentration de 800 µM ne sont pas cytotoxiques (80% de viabilité). De plus, la complexation du 5-FU n’influence pas sa cytotoxicité ce qui prouve que la toxicité provient du 5-FU et non des excipients. En revanche, l’encapsulation du complexe 5-FU-cuivre-polyéthylèneimine dans les liposomes induit une diminution de la concentration inhibitrice médiane de 115 (solution du complexe) à 49 µM environ, corrélée à leur internalisation cellulaire. La pharmacocinétique chez des souris porteuses d’un modèle de tumeur colorectale HT-29 xénogreffée a montré que les liposomes permettent de prolonger d’un facteur 1,4 la demi-vie plasmatique de distribution du 5-FU. De plus, les aires sous la courbe des concentrations plasmatiques sur 24 h sont 1,9 et 2,9 fois plus élevées lorsque le 5-FU est administré sous forme de liposomes thermosensibles et non thermosensibles, respectivement, par rapport à la solution de 5-FU. Enfin, les liposomes non thermosensibles augmentent significativement d'un facteur 2 l'accumulation du 5-FU dans la tumeur par rapport à la solution de 5-FU. En conclusion, les liposomes thermosensibles développés présentent un fort intérêt pour une application thérapeutique en combinaison avec des ultrasons focalisés. / We optimized thermosensitive liposomes encapsulating an anticancer drug, 5-Fluorouracil (5-FU), in order to trigger the release upon focused ultrasound-mediated mild hyperthermia at the tumor. This approach would improve drug efficacy and would lower side effects. Liposomes were prepared by the lipid hydration method by mixing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for its temperature sensitivity at 41.5 ± 0.5°C, cholesterol (CHOL) to promote liposome stability towards blood components, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) to confer stealthiness to the formulation. The experiments confirmed that the liposomes formulated with DPPC/CHOL/DSPE-PEG in a molar ratio 90:5:5 mol% are thermosensitive, while liposomes composed of the same lipid mixture in a ratio 65:30:5 mol% were considered non thermosensitive negative control. The optimization of passive encapsulation of 5-FU yielded an encapsulation efficacy (encapsulated 5-FU/total 5-FU) of 13%. 5-FU was, however, very weakly retained (12%) in the aqueous core of liposomes following dilution due to the generation of an osmotic gradient. The retention of 5-FU has been optimized (93%) by the active encapsulation technique based on the intraliposomal complexation of 5FU with copper-polyethylenimine complex encapsulated beforehand into liposomes. This technique also improved 5-FU encapsulation efficacy by 3-fold (37%), yielding a loading efficiency (final drug/lipid ratio, mol/mol) of approximately 50%. The resulting thermosensitive liposomes and non thermosensitive liposomes have a hydrodynamic diameter and a surface charge around 65 nm and -10 mV, and 105 nm and -4.9 mV, respectively. Heat-triggered drug delivery was evaluated using focused ultrasound, and showed a release of 68% of the encapsulated 5-FU from thermosensitive liposomes, within 10 min, whereas release remained below 20% for the non thermosensitive formulation. Furthermore, the cytotoxicity of 5-FU-copper-polyethylenimine complex-loaded liposomes towards HT-29 human colorectal carcinoma cell line was evaluated. Results revealed that lipids at a concentration of 800 µM are not cytotoxic (80% viability). Moreover, 5-FU complexation has no impact on its cytotoxic activity, disclosing that liposomes toxicity arose from 5-FU and not from the excipients. Nevertheless, 5-FU-copper-polyethylenimine complex-loaded liposomes exhibited a lower half maximal inhibitory concentration of 49 µM compared to 115 µM for complex solution. This enhancement of cytotoxicity was attributed to the cellular internalization of liposomes. Pharmacokinetics in mice bearing HT-29 xenograft tumor showed that liposomes can extend the plasma distribution half-life of 5-FU by a factor 1.4. Furthermore, areas under the concentration-time curve over 24 h were higher by 1.9- and 2.9-fold when the drug was encapsulated into thermosensitive and non thermosensitive liposomes, respectively, compared to free 5-Fluorouracil. Finally, non thermosensitive liposomes significantly increased 5-FU accumulation in tumor by 2-fold, compared to 5-FU solution. In conclusion, these 5-FU-loaded thermosensitive liposomes represent valuable carriers to investigate the therapeutic efficacy following focused ultrasound-mediated heat application.
74

German S3 Evidence-Based Guidelines on Focal Therapy in Localized Prostate Cancer: The First Evidence-Based Guidelines on Focal Therapy

Borkowetz, Angelika, Blana, Andreas, Böhmer, Dirk, Cash, Hannes, Ehrmann, Udo, Franiel, Tobias, Henkel, Thomas-Oliver, Höcht, Stefan, Kristiansen, Glen, Machtens, Stefan, Niehoff, Peter, Penzkofer, Tobias, Pinkawa, Michael, Radtke, Jan Philipp, Roth, Wilried, Witzsch, Ullrich, Ganzer, Roman, Schlemmer, Heinz Peter, Grimm, Marc-Oliver, Hakenberg, Oliver W., Schostak, Martin 22 February 2024 (has links)
Background: Focal therapy (FT) is an option to treat localized prostate cancer (PCa) and preserve healthy prostate tissue in order to reduce known side effects from primary whole-gland treatment. The available FT modalities are manifold. Until now, national and international PCa guidelines have been cautious to propose recommendations regarding FT treatment since data from prospective controlled trials are lacking for most FT modalities. Moreover, none of the international guidelines provides a separate section on FT. In this purpose, we provide a synopsis of the consensusbased German S3 guidelines for a possible international use. - Summary: The recently published update of the German S3 guidelines, an evidence- and consensus-based guideline, provides a section on FT with recommendations for diagnostic work-up, indications, modalities, and follow-up. This section consists of 12 statements and recommendations for FT in the treatment of localized PCa. Key Message: The German S3 guidelines on PCa are the first to incorporate recommendations for FT based on evidence and expert consensus including indication criteria for FT, pretreatment, and followup diagnostic pathways as well as an extended overview of FT techniques and the current supportive evidence.
75

Thermothérapies par ultrasons focalisés et radiofréquences guidées par imagerie de résonance magnétique / Magnetic Resonance Imaging guided focused ultrasound and radiofrequency ablations : Methodological developments for the treatment of liver cancer and cardiac arrythmias

Elbes, Delphine 18 December 2012 (has links)
La thèse s’articule autour du développement des thermothérapies hépatique et cardiaque guidées par Imagerie de Résonance Magnétique (IRM). La première partie est axée sur le développement d’une méthode permettant d’augmenter la taille des lésions induites par ultrasons focalisés de haute intensité (HIFU). Le seuil de d’intensité acoustique fut déterminé par IRM de la force de radiation acoustique et l’effet caractérisé par IRM de température ex vivo et in vivo dans le foie de porc. La deuxième partie présente le développement d’une méthode permettant une focalisation HIFU hépatique intercostale avec utilisation de la déflection électronique du faisceau pour le suivi du mouvement respiratoire ou /et une ablation multipoint. La méthode proposée repose sur une mise à jour des éléments du transducteur HIFU à désactiver en fonction du point de focalisation sélectionné, à partir d’une projection géométrique de l’ombre des côtes sur la surface du transducteur, mesurée sur des images IRM anatomiques. Nous avons montré qu’il est possible de réduire significativement le chauffage des côtes tout en conservant une élévation de température dans le foie suffisante pour induire une lésion thermique. La troisième partie expose la mise en place de l’IRM de température pour le monitoring des ablations par radiofréquences (RF) dans le cœur. Plusieurs aspects sont abordés, notamment la précision de la thermométrie, la possibilité de réaliser des ablations thermiques par cathéter RF sous IRM de température in vivo dans le cœur de brebis, ainsi que l’utilisation du cathéter comme sonde d’imagerie dans l’objectif d’accroitre la précision de la thermométrie cardiaque. / My manuscript studies the development of mini and non invasive thermotherapies guided by magnetic resonance imaging (MRI) in the treatment of hepatic and cardiac diseases. The first part was the development of a method to increase the lesion size, induced by HIFU, and based on bubble enhanced heating (BEH). The acoustic power threshold of the BEH was determined by MR acoustic radiation force imaging (MR-ARFI) and the thermal effect was characterized by MR thermometry on ex vivo and in vivo in pig livers. The second part developed a strategy to perform HIFU through the rib cage using beam steering to track the respiratory movement or to performed multipoint ablation while avoiding heating of ribs. Transducer elements localized in the geometric projection of the shadow of ribs, relatively to the targeted focal point, were switched off.The third part was the development of the MR thermometry on the heart for the monitoring of radiofrequency ablation (RFA). Several aspects were investigated, in particular the thermometry precision, the feasibility to perform catheter radiofrequency ablation under MR thermometry in vivo in a sheep heart, the possibility to use the catheter as an MR antenna to increase spatial resolution of MR thermometry images.
76

??tude de micelles de copolym??res ?? blocs r??pondants ?? deux stimuli

Xuan, Juan January 2014 (has links)
R??sum?? : Les copolym??res ?? blocs sensibles aux stimuli (SR-BCPs) et leurs assemblages, tels que les micelles, les v??sicules et les hydrogels, peuvent subir des changements physiques ou chimiques en r??ponse ?? l'??volution des conditions environnementales. Pour un excellent SR-BCP, habituellement, de l??g??res modifications de l'environnement sont suffisantes pour induire des modifications relativement drastiques dans la conformation, la structure ou les propri??t??s du polym??re. Ces polym??res sont aussi appel??s polym??res stimuli-r??actifs ou polym??res intelligents et ils ont un grand potentiel d'application dans de nombreux domaines. Au cours des deux derni??res d??cennies, un int??r??t de recherche et d??veloppement particulier a ??t?? port?? sur l'exploitation des SR-BCPs pour utilisation comme syst??mes de relargage de m??dicaments. Dans de nombreux cas, les changements induits par des stimuli dans la structure ou la morphologie des assemblages de BCPs peuvent entra??ner la lib??ration de l'esp??ce encapsul??e, parfois d'une mani??re contr??lable spatialement et temporellement par le choix d'un stimulus appropri?? et en ajustant les param??tres de la m??thode de stimulation utilis??e. De fa??on g??n??rale, le fait d???avoir un certain type de groupements r??actifs ?? un stimulus donn?? dans la structure permet aux SR-BCPs de reconna??tre et r??agir ?? ce stimulus. Malgr?? les ??normes progr??s r??alis??s sur les SR-BCPs, un certain nombre de questions fondamentales restent ?? r??soudre afin de leur permettre de se trouver dans des applications pratiques. Pour y arriver, la cl?? ou le d??fi r??side dans l???am??lioration du niveau et de la complexit?? de contr??le sur les SR-BCPs ainsi que la sensibilit?? avec laquelle ces polym??res r??agissent ?? des stimuli. G??n??ralement, il est souhaitable d'obtenir une r??action rapide sous l'action d'une stimulation mod??r??e. A cette fin, il est n??cessaire d???effectuer des recherches fondamentales sur la conception rationnelle de nouveaux SR-BCPs ainsi que sur le d??veloppement de m??thodes de stimulation qui peuvent amplifier l'effet d'un stimulus. Les travaux de recherche pr??sent??s dans cette th??se s'inscrivent dans ce domaine de recherche. Plus sp??cifiquement, nous avons ??tudi?? des micelles de BCPs qui r??pondent ?? deux types de stimuli. D'une part, nous avons ??tudi?? un m??canisme d'amplification bas?? sur l???effet des ultrasons combin?? ?? la thermosensibilit?? de BCPs. D'autre part, nous avons d??velopp?? une nouvelle conception de BCPs qui permet aux micelles d?????tre d??truites soit de mani??re photochimique, soit par des r??actions d'oxydo-r??duction, tout en ayant le nombre minimum des groupes stimuli-r??actifs dans la structure du polym??re. Notre recherche a g??n??r?? de nouvelles connaissances dans ce domaine et sugg??re de nouveaux moyens sur la fa??on dont les questions de sensibilit?? et de contr??le complexe des micelles SR-BCPs peuvent ??tre abord??es, contribuant ainsi ?? l'avancement des connaissances fondamentales. Le c??ur de cette th??se est compos?? de trois publications r??sultant des projets r??alis??s. Dans le premier projet, afin de coupler la sensibilit?? aux ultrasons et la thermosensibilit??, nous avons men?? une ??tude ayant pour but de trouver des structures possibles de polym??res qui sont susceptibles d'??tre affect??es par les ultrasons. Nous avons effectu?? une ??tude comparative sur la destruction des micelles form??es par divers BCPs et la lib??ration concomitante d'un colorant hydrophobe encapsul?? (rouge du Nil) par les ultrasons focalis??s de haute intensit?? (HIFU). Nous avons constat?? que toutes les micelles form??es par les quatre copolym??res diblocs synth??tis??s, ??tant constitu??s d'un m??me bloc du polyoxyde d'??thyl??ne (PEO) hydrophile et d???un bloc de polym??thacrylate hydrophobe diff??rent, peuvent ??tre perturb??es par les ultrasons. Toutefois, l'ampleur de la perturbation et la lib??ration du colorant encapsul?? dans la micelle est influenc??e par la structure chimique du block hydrophobe. En particulier, les micelles du PEO-b-PIBMA (poly(1-isobutoxym??thacrylate d'??thyle)) et du PEO-b-PTHPMA (poly(m??thacrylate de 2-t??trahydropyrannyle)), qui poss??dent une unit?? ac??tal labile dans le groupe lat??ral, subissent des perturbations plus importantes en raison, probablement, d???une r??action d???hydrolyse de l???ester induite par les ultrasons, donnant lieu ?? une lib??ration plus rapide du colorant. En revanche, les micelles du PEO-b-PMMA (poly(m??thacrylate de m??thyle)), dont le bloc polym??thacrylate est plus stable, sont plus r??sistantes aux ultrasons et pr??sentent une cin??tique de lib??ration du colorant plus lente que les autres micelles. De plus, l???analyse des spectres infrarouges des solutions micellaires, enregistr??s avant et apr??s l???exposition aux ultrasons, sugg??re une r??action d???hydrolyses pour le PEO-b-PIBMA et le PEO-b-PTHPMA, mais montre l'absence d???une quelconque r??action chimique pour le PEO-b-PMMA. L'effet de la structure de copolym??re ?? blocs sur la r??activit?? des micelles ?? l'irradiation HIFU ?? hautes fr??quences permet de mieux comprendre comment des micelles de BCPs sensibles aux ultrasons peuvent ??tre con??ues. Sur la base du premier projet, dans le deuxi??me projet, nous avons d??montr?? une nouvelle approche pouvant amplifier l'effet de HIFU sur la destruction des micelles de BCPs en solution aqueuse. L???id??e est d???introduire une petite quantit?? des unit??s comonom??res sensibles aux ultrasons dans le bloc thermosensible et initialement hydrophobe. On peut alors former une micelle dont le noyau est compos?? du polym??re sensible aux ultrasons. Si la r??action induite par les ultrasons sur le noyau permet d???augmenter la temp??rature de solution critique inf??rieure (LCST) du polym??re thermosensible au-dessus de la temp??rature de la solution micellaire, la micelle doit ??tre dissolue car tout le BCP est devenu soluble dans l???eau. Pour tester la validit?? de ce nouveau m??canisme, nous avons synth??tis?? et ??tudi?? un copolym??re dibloc de PEO-b-P(MEO[indice inf??rieur 2]MA-co-THPMA) (MEO[indice inf??rieur 2]MA repr??sente 2-(2-m??thoxy??thoxy) m??thacrylate d'??thyle), dans lequel le bloc thermosensible P(MEO[indice inf??rieur 2]MA-co-THPMA) est hydrophobe ?? T>LCST. Le THPMA a ??t?? choisi en raison de sa plus grande r??activit?? vis-??-vis des faisceaux HIFU que les autres monom??res ??tudi??s dans le premier projet. Les r??sultats montrent que les HIFU peuvent effectivement augmenter la LCST du bloc P(MEO[indice inf??rieur 2]MA-co-THPMA) et, par cons??quent, induire la dissociation des micelles ?? une temp??rature constante de la solution. Une analyse spectrale en RMN [indice sup??rieur 13]C a fourni des preuves montrant que l'hydrolyse des groupes THPMA se produit sous l???irradiation HIFU et que la destruction des micelles provient d'une augmentation de la LCST en raison de la conversion des motifs hydrophobes THPMA en motifs acides m??thacryliques (MAA) hydrophiles. Cette m??thode de modifier la LCST par une irradiation des ultrasons est g??n??rale et peut ??tre appliqu??e aux autres groupements sensibles aux ultrasons dans la conception de ce type de SR-BCPs. Cette ??tude a ainsi d??montr?? un nouveau m??canisme d'amplification et de contr??le des micelles de BCPs via la modification induite par les ultrasons de la temp??rature de transition de phase (LCST) du bloc constituant le noyau micellaire. Le troisi??me projet pr??sent?? dans cette th??se portait sur une conception rationnelle de BCPs ayant un but pr??cis: permettre aux micelles d?????tre perturb??es par deux types de stimuli en utilisant le nombre minimal des unit??s sensibles ?? des stimuli dans la structure de BCPs. Pour ce faire, nous avons con??u et synth??tis?? un nouveau copolym??re tribloc amphiphile de type ABC, soit le poly(oxyde d'??thyl??ne) - disulfure ??? polystyrene - o-nitrobenzyle - poly(2-(dim??thylamino) ??thylm??thacrylate) (PEO-S-S-PS-ONB-PDMAEMA). Il dispose d'une liaison disulfure redox-clivable entre les blocs PEO et PS ainsi que d'un groupe o-nitrobenzyle (ONB) photoclivable ?? la jonction des blocs PS et PDMAEMA. Nous avons montr?? que ce mod??le est une strat??gie utile pour permettre aux micelles de BCPs de r??pondre soit ?? un agent r??ducteur comme le dithiothr??itol (DTT) dans une solution, soit ?? l'exposition ?? la lumi??re UV, tout en ayant le nombre minimum des groups stimuli-r??actifs dans la structure du copolym??re (deux unit??s par cha??ne). Nos investigations ont r??v??l?? que les micelles de ce copolym??re tribloc peuvent ??tre perturb??es de diff??rentes fa??ons. Lorsqu'un seul stimulus est appliqu??, l'enl??vement d'un type des cha??nes de polym??re hydrophile ?? partir de la couronne de micelles, soit le PEO par clivage par oxydo-r??duction ou le PDMAEMA par photoclivage, entra??ne un effet limit?? de d??stabilisation sur la dispersion des micelles. L'agglom??ration de quelques micelles appara??t mais la dispersion reste essentiellement stable. En revanche, en cas d'utilisation combin??e des deux stimuli qui clivent ?? la fois le PEO et le PDMAEMA, une agr??gation importante du polym??re se produit ?? la suite de l'??limination de l'amphiphilicit?? du polym??re. // Abstract : Stimuli-responsive block copolymers (SR-BCPs) and their assemblies, such as micelles, vesicles and hydrogels, can undergo physical or chemical changes in response to changing environmental conditions. For an excellent SR-BCP, usually, slight changes in the environment are sufficient to induce relatively drastic changes in either the conformation or structure or properties of the polymer. Stimuli-reactive polymers are often referred to as smart polymers and they have great application potential in many fields. Over the past two decades, particular research and development interest has been focused on exploiting SR-BCP assemblies as drug delivery systems (DDSs). In many cases, stimuli-induced changes in the structure or morphology of BCP assemblies (drug carriers) can result in the release of loaded species, sometimes in a spatially and temporally controllable manner by choosing an appropriate stimulus and adjusting the parameters of the used stimulating method. Generally speaking, by having a certain type of stimuli-reactive moieties in the structure, SR-BCP assemblies have an ability to recognize a specific stimulus and react to its presence accordingly. Despite the tremendous progress achieved on SR-BCPs, a number of fundamental issues remain to be addressed in order to enable real-life applications of these smart polymers. Of them, an increasing level and complexity of control on SR-BCPs as well as the sensitivity with which these polymers react to stimuli are key and challenging. It is highly desirable to obtain a fast reaction under the action of a modest stimulation. To this end, fundamental research is necessary on rational and creative BCP structural design as well as on development of stimulation methods that can amplify the effect of a stimulus. The research work presented in this thesis falls into this important topic. More specifically, we studied BCP micelles that are responsive to two types of stimuli. On the one hand, we investigated an amplification mechanism based on coupling the ultrasound reactivity with the thermosensitivity of BCPs. On the other hand, we developed a BCP structural design that allows micelles to be disrupted by either light or redox agents while having the minimum number of stimuli-reactive moieties in the polymer structure. Our research provided new insights into and suggested new means on how the issues of sensitivity and complex control of SR-BCP micelles can be tackled, thus contributing to the advancement of fundamental knowledge. The core of this thesis is comprised of three publications resulting from the projects realized in our research work. In order to couple the ultrasound sensitivity and thermosensitivity, in the first project, we carried out studies to find possible polymer structures that are susceptible to be affected by ultrasound. We conducted a comparative study on the disruption of the micelles formed by various BCPs and the concomitant release of an encapsulated hydrophobic dye (Nile Red) by high-intensity focused ultrasound (HIFU). It was found that all micelles formed by the four synthesized diblock copolymers, being composed of a hydrophilic poly(ethylene oxide) (PEO) block and a different polymethacrylate hydrophobic block, could be disrupted by ultrasound. However, the extent of the micellar disruption and dye release was found to be influenced by the chemical structure of the micelle-core-forming hydrophobic polymethacrylate. In particular, micelles of PEO-b-PIBMA (poly(1-(isobutoxy)ethyl methacrylate)) and PEO-b-PTHPMA (poly(2-tetrahydropyranyl methacrylate)), whose hydrophobic blocks have a labile acetal unit in the side group and are more likely to undergo ester hydrolysis, could be disrupted more severely by ultrasound, giving rise to a faster release of Nile Red. By contrast, micelles of PEO-b-PMMA (poly(methyl methacrylate)), whose polymethacrylate block is more stable, appear to be more resistant to ultrasound irradiation and exhibit a slower rate of dye release than other BCPs. Moreover, infrared spectra recorded with micelles before and after ultrasound irradiation of the aqueous solution of the micelles give evidence for the occurrence of chemical reactions, most likely hydrolysis, for PEO-b-PIBMA and PEO-b-PTHPMA, but absence of chemical reactions for PEO-b-PMMA. The effect of BCP chemical structure on the reaction of micelles to high-frequency HIFU irradiation shows the perspective of designing and developing ultrasound-sensitive BCP micelles for ultrasound-based delivery applications. On the basis of the first project, in the second project, we demonstrated a new approach that could amplify the effect of HIFU on the disassembly of BCP micelles in aqueous solution. By introducing a small amount of ultrasound-labile comonomer units into the micelle core-forming thermosensitive polymer, the ultrasound-induced reaction of the comonomer could increase the lower critical solution temperature (LCST) of the thermosensitive polymer due to a polarity change, which renders the BCP soluble in water without changing the solution temperature and, consequently, results in disassembly of BCP micelles. To prove the validity of this new mechanism, we synthesized and investigated a diblock copolymer of PEO-b-P(MEO[subscript 2]MA-co-THPMA) (MEO[subscript 2]MA stands for 2-(2-methoxyethoxy)ethyl methacrylate). In the thermosensitive random copolymer block P(MEO[subscript 2]MA-co-THPMA), which is hydrophobic at T>LCST, THPMA was chosen due to its greater reactivity under HIFU than other monomer structures investigated in the first project. We found that HIFU could indeed increase the LCST of the P(MEO[subscript 2]MA-co-THPMA) block and, as a result, dissociate the BCP micelles at a constant temperature. A [superscript 13]C NMR spectral analysis provided critical evidence that hydrolysis of the THPMA groups occurs under HIFU irradiation and the micellar disassembly originates from an increase in the LCST due to the ultrasound-induced conversion of hydrophobic comonomer units of THPMA onto hydrophilic methacrylic acid (MAA). This ultrasound-changeable-LCST approach is general and can be applied by exploring other ultrasound-labile moieties in the BCP design. By transducing an ultrasound-induced effect into a changing thermosensitivity of the micelle core-forming block, this study demonstrated a new amplification and control mechanism for SR-BCP micelles. The third project presented in this thesis dealt with a rational BCP design that had a specific purpose: allowing BCP micelles to be disrupted by two types of stimuli while using the minimum number of stimuli-reactive moieties in the BCP structure. The unveiling of such BCP structures provides insight into how to make BCP micelles sensitive to stimuli. To do this, we designed and synthesized a new amphiphilic ABC-type triblock copolymer, namely, poly(ethylene oxide)-disulfide-polystyrene- o-nitrobenzyl-poly(2-(dimethylamino)ethylmethacrylate) (PEO-S-S-PS-ONB-PDMAEMA), which features a redox-cleavable disulfide linkage between the PEO and PS blocks as well as a photocleavable ONB group as the junction of the PS and PDMAEMA blocks. We demonstrated that this design is a useful strategy to allow BCP micelles to respond to both a reducing agent like dithiothreitol (DTT) in solution and exposure to UV light while having the minimum number of stimuli-reactive moieties in the block copolymer structure (two units per chain). Our investigations found that the micelles of this triblock copolymer could be disrupted in different ways. When only one stimulus is applied, the removal of one type of hydrophilic polymer chains from the micelle corona, either PEO by redox-cleavage or PDMAEMA by photocleavage, results in a limited destabilization effect on the dispersion of the micelles. The agglomeration between a few micelles appears but the dispersion remains essentially stable. By contrast, under combined use of the two stimuli that cleaves both PEO and PDMAEMA, severe polymer aggregation occurs as a result of elimination of the polymer amphiphilicity. Moreover, by loading the hydrophobic Nile Red in the micelles, the fluorescence quenching of the dye by aqueous medium under the different uses of the two stimuli appears to correlate with the different extents of the micellar disruption. // ?????? : ??????????????????????????????SR-BCPs???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????SR-BCP???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????-??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????SR-BCP?????????????????????????????????DDSs???????????????????????????????????????BCP?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????-????????????????????????SR-BCP??????????????????????????????????????????????????????????????????????????? ??????SR-BCPs?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????SR-BCPs?????????????????????????????????????????????????????????????????????SR-BCPs???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????BCP???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????BCP???????????????????????????BCPs???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????-???????????????BCP???????????????????????????????????????????????????????????????????????????????????????SR-BCP???????????????????????????????????????????????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????BCPs????????????????????????????????????????????????HIFU?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????PEO-b-PIBMA????????? 1-????????????????????????????????????????????? ??????PEO-b-PTHPMA?????????2-???????????????????????????????????? ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????????????????????PEO-b-PMMA?????????????????????????????????????????????????????????????????????????????????????????????????????????PEO-b-PMMA????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????PEO-b-PIBMA???PEO-b-PTHPMA????????????????????????????????????????????????PEO-b-PMMA???????????????????????????????????????HIFU????????????BCP???????????????????????????????????????????????????????????????????????????-??????BCP????????????????????? ??????????????????????????????????????????????????????????????????????????????????????????????????????HIFU??????????????????BCP???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????LCST?????????????????????????????????????????????????????????BCP??????????????????????????????BCP??????????????????????????????????????????????????????????????????????????????????????????????????????PEO-b-P(MEO2MA-co-THPMA) ???MEO2MA ??????2-???2-??????????????????????????????????????????????????????T > LCST????????????????????????????????????P(MEO2MA-co-THPMA)?????????????????????THPMA?????????????????????????????????????????????????????????????????????????????????HIFU?????????????????????????????????????????????????????????????????? ??????HIFU???????????????????????????P(MEO2MA-co-THPMA)?????????LCST?????????BCP??????????????????????????????????????????13C NMR ???????????????????????????THPMA?????????????????????????????????????????????THPMA??????????????????????????????MAA?????????LCST?????????????????????????????????????????????????????????????????????LCST??????????????????????????????????????????????????????BCP???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????SR-BCP????????????????????????????????? ????????????????????????????????????????????????????????????????????????????????????????????????BCP????????????????????????????????????????????????????????????????????????BCP?????????????????????????????????????????????BCP?????????????????????????????????????????????????????????BCP????????????????????????????????????????????????????????????????????????ABC???????????????????????????????????????????????? - ???????????? - ???????????? - ??? - ???????????? - ?????? 2 - ???????????????????????????????????????????????? (PEO-S-S-PS-ONB-PDMAEMA)?????????PEO???PS???????????????????????????????????????????????????PS???PDMAEMA?????????????????????????????????ONB????????????????????????????????????????????????????????????-??????????????????????????????????????????????????????BCP????????????????????????????????????????????? ???DDT????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????PEO????????????????????????PDMAEMA?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????PEO???PDMAEMA?????????????????????????????????????????????????????????????????????????????????????????????????????? ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
77

Applications de la force de Lorentz en acoustique médicale / Applications of Lorentz force in medical acoustics

Grasland-Mongrain, Pol 12 December 2013 (has links)
La capacité de la force de Lorentz à relier un déplacement mécanique à un courant électrique présente un intérêt certain pour l'acoustique médicale, et trois applications ont été étudiées dans cette thèse. Dans la première partie de ce travail, un hydrophone a été développé pour effectuer des champs de vitesse acoustique. Cet hydrophone était constitué d'un fil de cuivre vibrant dans un champ magnétique. Un modèle a été élaboré pour déterminer une relation entre la pression acoustique et le courant électrique mesure, qui est induit par force de Lorentz lorsque le fil vibre dans un champ acoustique. Un prototype a ensuite été conçu et sa résolution spatiale, sa réponse fréquentielle, sa sensibilité, sa résistance et sa réponse directionnelle ont été examinées. Une méthode d'imagerie appelée Tomographie d'Impedance Electrique par Force de Lorentz a aussi été étudiée. Dans cette méthode, un tissu biologique est déplacé par ultrasons dans un champ magnétique, ce qui induit un courant électrique par force de Lorentz. L'impédance électrique du tissu peut ensuite être déduite de la mesure du courant. Cette technique a été appliquée pour réaliser des images d'un fantôme de gélatine, d'un muscle de bœuf, et d'une lésion thermique dans un échantillon de poulet. Cela a montré que la méthode est potentiellement utile pour fournir un contraste supplémentaire à des images ultrasonores classiques. Enfin, cette thèse a démontré que des ondes de cisaillement peuvent être générées dans des tissus mous par force de Lorentz. Cela a été réalisé en appliquant un courant électrique par deux électrodes dans un solide mou place dans un champ magnétique. Des ondes de cisaillement ont été observées dans des échantillons de gélatine et de foie. La vitesse des ondes de cisaillement a été utilisée pour calculer l'élasticité et leur source pour cartographier la conductivité électrique des échantillons / The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical impedance of the tissue can be deduced from the measurement of the current. This technique was applied for imaging a gelatin phantom, a beef muscle sample, and a thermal lesion in a chicken breast sample. This showed the method may be useful for providing additional contrast to conventional ultrasound imaging. Finally, this thesis demonstrated that shear waves can be generated in soft tissues using Lorentz force. This work was performed by applying an electrical current with two electrodes in a soft solid placed in a magnetic field. Shear waves were observed in gelatin phantom and liver sample. The speed of the shear waves were used to compute elasticity and their source to map the electrical conductivity of the samples
78

Étude de micelles de copolymères à blocs répondants à deux stimuli

Xuan, Juan January 2014 (has links)
Résumé : Les copolymères à blocs sensibles aux stimuli (SR-BCPs) et leurs assemblages, tels que les micelles, les vésicules et les hydrogels, peuvent subir des changements physiques ou chimiques en réponse à l'évolution des conditions environnementales. Pour un excellent SR-BCP, habituellement, de légères modifications de l'environnement sont suffisantes pour induire des modifications relativement drastiques dans la conformation, la structure ou les propriétés du polymère. Ces polymères sont aussi appelés polymères stimuli-réactifs ou polymères intelligents et ils ont un grand potentiel d'application dans de nombreux domaines. Au cours des deux dernières décennies, un intérêt de recherche et développement particulier a été porté sur l'exploitation des SR-BCPs pour utilisation comme systèmes de relargage de médicaments. Dans de nombreux cas, les changements induits par des stimuli dans la structure ou la morphologie des assemblages de BCPs peuvent entraîner la libération de l'espèce encapsulée, parfois d'une manière contrôlable spatialement et temporellement par le choix d'un stimulus approprié et en ajustant les paramètres de la méthode de stimulation utilisée. De façon générale, le fait d’avoir un certain type de groupements réactifs à un stimulus donné dans la structure permet aux SR-BCPs de reconnaître et réagir à ce stimulus. Malgré les énormes progrès réalisés sur les SR-BCPs, un certain nombre de questions fondamentales restent à résoudre afin de leur permettre de se trouver dans des applications pratiques. Pour y arriver, la clé ou le défi réside dans l’amélioration du niveau et de la complexité de contrôle sur les SR-BCPs ainsi que la sensibilité avec laquelle ces polymères réagissent à des stimuli. Généralement, il est souhaitable d'obtenir une réaction rapide sous l'action d'une stimulation modérée. A cette fin, il est nécessaire d’effectuer des recherches fondamentales sur la conception rationnelle de nouveaux SR-BCPs ainsi que sur le développement de méthodes de stimulation qui peuvent amplifier l'effet d'un stimulus. Les travaux de recherche présentés dans cette thèse s'inscrivent dans ce domaine de recherche. Plus spécifiquement, nous avons étudié des micelles de BCPs qui répondent à deux types de stimuli. D'une part, nous avons étudié un mécanisme d'amplification basé sur l’effet des ultrasons combiné à la thermosensibilité de BCPs. D'autre part, nous avons développé une nouvelle conception de BCPs qui permet aux micelles d’être détruites soit de manière photochimique, soit par des réactions d'oxydo-réduction, tout en ayant le nombre minimum des groupes stimuli-réactifs dans la structure du polymère. Notre recherche a généré de nouvelles connaissances dans ce domaine et suggère de nouveaux moyens sur la façon dont les questions de sensibilité et de contrôle complexe des micelles SR-BCPs peuvent être abordées, contribuant ainsi à l'avancement des connaissances fondamentales. Le cœur de cette thèse est composé de trois publications résultant des projets réalisés. Dans le premier projet, afin de coupler la sensibilité aux ultrasons et la thermosensibilité, nous avons mené une étude ayant pour but de trouver des structures possibles de polymères qui sont susceptibles d'être affectées par les ultrasons. Nous avons effectué une étude comparative sur la destruction des micelles formées par divers BCPs et la libération concomitante d'un colorant hydrophobe encapsulé (rouge du Nil) par les ultrasons focalisés de haute intensité (HIFU). Nous avons constaté que toutes les micelles formées par les quatre copolymères diblocs synthétisés, étant constitués d'un même bloc du polyoxyde d'éthylène (PEO) hydrophile et d’un bloc de polyméthacrylate hydrophobe différent, peuvent être perturbées par les ultrasons. Toutefois, l'ampleur de la perturbation et la libération du colorant encapsulé dans la micelle est influencée par la structure chimique du block hydrophobe. En particulier, les micelles du PEO-b-PIBMA (poly(1-isobutoxyméthacrylate d'éthyle)) et du PEO-b-PTHPMA (poly(méthacrylate de 2-tétrahydropyrannyle)), qui possèdent une unité acétal labile dans le groupe latéral, subissent des perturbations plus importantes en raison, probablement, d’une réaction d’hydrolyse de l’ester induite par les ultrasons, donnant lieu à une libération plus rapide du colorant. En revanche, les micelles du PEO-b-PMMA (poly(méthacrylate de méthyle)), dont le bloc polyméthacrylate est plus stable, sont plus résistantes aux ultrasons et présentent une cinétique de libération du colorant plus lente que les autres micelles. De plus, l’analyse des spectres infrarouges des solutions micellaires, enregistrés avant et après l’exposition aux ultrasons, suggère une réaction d’hydrolyses pour le PEO-b-PIBMA et le PEO-b-PTHPMA, mais montre l'absence d’une quelconque réaction chimique pour le PEO-b-PMMA. L'effet de la structure de copolymère à blocs sur la réactivité des micelles à l'irradiation HIFU à hautes fréquences permet de mieux comprendre comment des micelles de BCPs sensibles aux ultrasons peuvent être conçues. Sur la base du premier projet, dans le deuxième projet, nous avons démontré une nouvelle approche pouvant amplifier l'effet de HIFU sur la destruction des micelles de BCPs en solution aqueuse. L’idée est d’introduire une petite quantité des unités comonomères sensibles aux ultrasons dans le bloc thermosensible et initialement hydrophobe. On peut alors former une micelle dont le noyau est composé du polymère sensible aux ultrasons. Si la réaction induite par les ultrasons sur le noyau permet d’augmenter la température de solution critique inférieure (LCST) du polymère thermosensible au-dessus de la température de la solution micellaire, la micelle doit être dissolue car tout le BCP est devenu soluble dans l’eau. Pour tester la validité de ce nouveau mécanisme, nous avons synthétisé et étudié un copolymère dibloc de PEO-b-P(MEO[indice inférieur 2]MA-co-THPMA) (MEO[indice inférieur 2]MA représente 2-(2-méthoxyéthoxy) méthacrylate d'éthyle), dans lequel le bloc thermosensible P(MEO[indice inférieur 2]MA-co-THPMA) est hydrophobe à T>LCST. Le THPMA a été choisi en raison de sa plus grande réactivité vis-à-vis des faisceaux HIFU que les autres monomères étudiés dans le premier projet. Les résultats montrent que les HIFU peuvent effectivement augmenter la LCST du bloc P(MEO[indice inférieur 2]MA-co-THPMA) et, par conséquent, induire la dissociation des micelles à une température constante de la solution. Une analyse spectrale en RMN [indice supérieur 13]C a fourni des preuves montrant que l'hydrolyse des groupes THPMA se produit sous l’irradiation HIFU et que la destruction des micelles provient d'une augmentation de la LCST en raison de la conversion des motifs hydrophobes THPMA en motifs acides méthacryliques (MAA) hydrophiles. Cette méthode de modifier la LCST par une irradiation des ultrasons est générale et peut être appliquée aux autres groupements sensibles aux ultrasons dans la conception de ce type de SR-BCPs. Cette étude a ainsi démontré un nouveau mécanisme d'amplification et de contrôle des micelles de BCPs via la modification induite par les ultrasons de la température de transition de phase (LCST) du bloc constituant le noyau micellaire. Le troisième projet présenté dans cette thèse portait sur une conception rationnelle de BCPs ayant un but précis: permettre aux micelles d’être perturbées par deux types de stimuli en utilisant le nombre minimal des unités sensibles à des stimuli dans la structure de BCPs. Pour ce faire, nous avons conçu et synthétisé un nouveau copolymère tribloc amphiphile de type ABC, soit le poly(oxyde d'éthylène) - disulfure – polystyrene - o-nitrobenzyle - poly(2-(diméthylamino) éthylméthacrylate) (PEO-S-S-PS-ONB-PDMAEMA). Il dispose d'une liaison disulfure redox-clivable entre les blocs PEO et PS ainsi que d'un groupe o-nitrobenzyle (ONB) photoclivable à la jonction des blocs PS et PDMAEMA. Nous avons montré que ce modèle est une stratégie utile pour permettre aux micelles de BCPs de répondre soit à un agent réducteur comme le dithiothréitol (DTT) dans une solution, soit à l'exposition à la lumière UV, tout en ayant le nombre minimum des groups stimuli-réactifs dans la structure du copolymère (deux unités par chaîne). Nos investigations ont révélé que les micelles de ce copolymère tribloc peuvent être perturbées de différentes façons. Lorsqu'un seul stimulus est appliqué, l'enlèvement d'un type des chaînes de polymère hydrophile à partir de la couronne de micelles, soit le PEO par clivage par oxydo-réduction ou le PDMAEMA par photoclivage, entraîne un effet limité de déstabilisation sur la dispersion des micelles. L'agglomération de quelques micelles apparaît mais la dispersion reste essentiellement stable. En revanche, en cas d'utilisation combinée des deux stimuli qui clivent à la fois le PEO et le PDMAEMA, une agrégation importante du polymère se produit à la suite de l'élimination de l'amphiphilicité du polymère. // Abstract : Stimuli-responsive block copolymers (SR-BCPs) and their assemblies, such as micelles, vesicles and hydrogels, can undergo physical or chemical changes in response to changing environmental conditions. For an excellent SR-BCP, usually, slight changes in the environment are sufficient to induce relatively drastic changes in either the conformation or structure or properties of the polymer. Stimuli-reactive polymers are often referred to as smart polymers and they have great application potential in many fields. Over the past two decades, particular research and development interest has been focused on exploiting SR-BCP assemblies as drug delivery systems (DDSs). In many cases, stimuli-induced changes in the structure or morphology of BCP assemblies (drug carriers) can result in the release of loaded species, sometimes in a spatially and temporally controllable manner by choosing an appropriate stimulus and adjusting the parameters of the used stimulating method. Generally speaking, by having a certain type of stimuli-reactive moieties in the structure, SR-BCP assemblies have an ability to recognize a specific stimulus and react to its presence accordingly. Despite the tremendous progress achieved on SR-BCPs, a number of fundamental issues remain to be addressed in order to enable real-life applications of these smart polymers. Of them, an increasing level and complexity of control on SR-BCPs as well as the sensitivity with which these polymers react to stimuli are key and challenging. It is highly desirable to obtain a fast reaction under the action of a modest stimulation. To this end, fundamental research is necessary on rational and creative BCP structural design as well as on development of stimulation methods that can amplify the effect of a stimulus. The research work presented in this thesis falls into this important topic. More specifically, we studied BCP micelles that are responsive to two types of stimuli. On the one hand, we investigated an amplification mechanism based on coupling the ultrasound reactivity with the thermosensitivity of BCPs. On the other hand, we developed a BCP structural design that allows micelles to be disrupted by either light or redox agents while having the minimum number of stimuli-reactive moieties in the polymer structure. Our research provided new insights into and suggested new means on how the issues of sensitivity and complex control of SR-BCP micelles can be tackled, thus contributing to the advancement of fundamental knowledge. The core of this thesis is comprised of three publications resulting from the projects realized in our research work. In order to couple the ultrasound sensitivity and thermosensitivity, in the first project, we carried out studies to find possible polymer structures that are susceptible to be affected by ultrasound. We conducted a comparative study on the disruption of the micelles formed by various BCPs and the concomitant release of an encapsulated hydrophobic dye (Nile Red) by high-intensity focused ultrasound (HIFU). It was found that all micelles formed by the four synthesized diblock copolymers, being composed of a hydrophilic poly(ethylene oxide) (PEO) block and a different polymethacrylate hydrophobic block, could be disrupted by ultrasound. However, the extent of the micellar disruption and dye release was found to be influenced by the chemical structure of the micelle-core-forming hydrophobic polymethacrylate. In particular, micelles of PEO-b-PIBMA (poly(1-(isobutoxy)ethyl methacrylate)) and PEO-b-PTHPMA (poly(2-tetrahydropyranyl methacrylate)), whose hydrophobic blocks have a labile acetal unit in the side group and are more likely to undergo ester hydrolysis, could be disrupted more severely by ultrasound, giving rise to a faster release of Nile Red. By contrast, micelles of PEO-b-PMMA (poly(methyl methacrylate)), whose polymethacrylate block is more stable, appear to be more resistant to ultrasound irradiation and exhibit a slower rate of dye release than other BCPs. Moreover, infrared spectra recorded with micelles before and after ultrasound irradiation of the aqueous solution of the micelles give evidence for the occurrence of chemical reactions, most likely hydrolysis, for PEO-b-PIBMA and PEO-b-PTHPMA, but absence of chemical reactions for PEO-b-PMMA. The effect of BCP chemical structure on the reaction of micelles to high-frequency HIFU irradiation shows the perspective of designing and developing ultrasound-sensitive BCP micelles for ultrasound-based delivery applications. On the basis of the first project, in the second project, we demonstrated a new approach that could amplify the effect of HIFU on the disassembly of BCP micelles in aqueous solution. By introducing a small amount of ultrasound-labile comonomer units into the micelle core-forming thermosensitive polymer, the ultrasound-induced reaction of the comonomer could increase the lower critical solution temperature (LCST) of the thermosensitive polymer due to a polarity change, which renders the BCP soluble in water without changing the solution temperature and, consequently, results in disassembly of BCP micelles. To prove the validity of this new mechanism, we synthesized and investigated a diblock copolymer of PEO-b-P(MEO[subscript 2]MA-co-THPMA) (MEO[subscript 2]MA stands for 2-(2-methoxyethoxy)ethyl methacrylate). In the thermosensitive random copolymer block P(MEO[subscript 2]MA-co-THPMA), which is hydrophobic at T>LCST, THPMA was chosen due to its greater reactivity under HIFU than other monomer structures investigated in the first project. We found that HIFU could indeed increase the LCST of the P(MEO[subscript 2]MA-co-THPMA) block and, as a result, dissociate the BCP micelles at a constant temperature. A [superscript 13]C NMR spectral analysis provided critical evidence that hydrolysis of the THPMA groups occurs under HIFU irradiation and the micellar disassembly originates from an increase in the LCST due to the ultrasound-induced conversion of hydrophobic comonomer units of THPMA onto hydrophilic methacrylic acid (MAA). This ultrasound-changeable-LCST approach is general and can be applied by exploring other ultrasound-labile moieties in the BCP design. By transducing an ultrasound-induced effect into a changing thermosensitivity of the micelle core-forming block, this study demonstrated a new amplification and control mechanism for SR-BCP micelles. The third project presented in this thesis dealt with a rational BCP design that had a specific purpose: allowing BCP micelles to be disrupted by two types of stimuli while using the minimum number of stimuli-reactive moieties in the BCP structure. The unveiling of such BCP structures provides insight into how to make BCP micelles sensitive to stimuli. To do this, we designed and synthesized a new amphiphilic ABC-type triblock copolymer, namely, poly(ethylene oxide)-disulfide-polystyrene- o-nitrobenzyl-poly(2-(dimethylamino)ethylmethacrylate) (PEO-S-S-PS-ONB-PDMAEMA), which features a redox-cleavable disulfide linkage between the PEO and PS blocks as well as a photocleavable ONB group as the junction of the PS and PDMAEMA blocks. We demonstrated that this design is a useful strategy to allow BCP micelles to respond to both a reducing agent like dithiothreitol (DTT) in solution and exposure to UV light while having the minimum number of stimuli-reactive moieties in the block copolymer structure (two units per chain). Our investigations found that the micelles of this triblock copolymer could be disrupted in different ways. When only one stimulus is applied, the removal of one type of hydrophilic polymer chains from the micelle corona, either PEO by redox-cleavage or PDMAEMA by photocleavage, results in a limited destabilization effect on the dispersion of the micelles. The agglomeration between a few micelles appears but the dispersion remains essentially stable. By contrast, under combined use of the two stimuli that cleaves both PEO and PDMAEMA, severe polymer aggregation occurs as a result of elimination of the polymer amphiphilicity. Moreover, by loading the hydrophobic Nile Red in the micelles, the fluorescence quenching of the dye by aqueous medium under the different uses of the two stimuli appears to correlate with the different extents of the micellar disruption. // 摘要 : 刺激响应嵌段共聚物(SR-BCPs)和它们的自组装体(例如胶束、囊泡和水凝胶)可以对环境的改变做出物理或者化学变化的响应。对于优良的SR-BCP,在通常情况下,环境中的微小变化都足以诱导无论是在聚合物构象或者结构或者性能上相对很大的变化。刺激-反应性聚合物通常被称为智能聚合物,它们在许多领域具有很大的应用潜力。在过去的二十年中,专业的研究和新产品的开发一直聚焦在利用SR-BCP自组装体作为载药体系(DDSs)。在许多情况下,刺激诱导BCP自组装体(药物载体)结构或者形貌的改变都可以导致加载药物的释放。通过选择适当的刺激和调节用于刺激方法的参数,可以实现加载药物在空间和时间上的可控释放。一般来说,通过具有特定类型的刺激-反应性结构部分,SR-BCP自组装体就具有了识别特定刺激并做出相应反应的能力。 尽管SR-BCPs已经取得了巨大的发展,但是使这些智能聚合物能够在现实生活中得到应用,一些根本性的问题仍然需要加以解决。其中的关键和挑战是增加对SR-BCPs控制的深度和复杂性,以及对刺激响应的敏感度。使SR-BCPs能够在适度的刺激作用下做出快速的反应是人们梦寐以求的。为此,对于合理地创造性地设计BCP结构以及发展可以放大刺激效应的刺激方法的基础研究是非常有必要的。在本论文中提出的研究工作属于这一重要课题。具体来说,我们研究了双重刺激响应BCP胶束。一方面,基于BCPs的超声温度双重敏感性,我们研究了一种放大机制。另一方面,我们开发设计了一种在聚合物结构中只含有最少数目刺激-反应单元的BCP结构,可以让胶束被光或者还原剂破坏。我们的研究对于如何解决SR-BCP胶束的敏感性和复杂可控性提出了新的见解和方法,从而有利于基础知识的进步。 本论文的核心是由三篇已经发表的研究工作组成。为了实现超声和温度双重敏感性,在第一个研究课题中,我们对于容易受超声影响的聚合物结构进行了研究。我们比较了由不同BCPs组成的胶束结构在高强度聚焦超声(HIFU)作用下的破坏情况以及伴随着的包覆疏水染料(尼罗红)的释放情况。实验结果显示,四种以聚环氧乙烷为亲水端,不同的聚甲基丙烯酸酯为疏水端的两嵌段聚合物胶束都可以被超声扰动。然而,形成胶束疏水内核的聚甲基丙烯酸酯的化学结构影响胶束破坏和染料释放的程度。特别是,PEO-b-PIBMA(聚( 1-(异丁氧基)乙基甲基丙烯酸酯) )和PEO-b-PTHPMA(聚(2-四氢吡喃基甲基丙烯酸酯) )的疏水端具有不稳定的酯键侧基,因此在超声作用下更容易酯键水解。他们的胶束也更容易 被超声扰动,从而更快的释放尼罗红。相比之下,PEO-b-PMMA(聚甲基丙烯酸甲酯)的聚甲基丙烯酸酯链段比较稳定。因此相对于其他胶束,PEO-b-PMMA胶束在超声下更稳定,释放染料的速度也相对较慢。根据超声辐照前后胶束水溶液的红外光谱显示,PEO-b-PIBMA和PEO-b-PTHPMA在超声辐照下发生了水解反应,但是PEO-b-PMMA没有发生化学反应。在高频率HIFU辐照下,BCP的化学结构对胶束反应的影响展现了设计和发展应用超声-敏感BCP胶束的新视角。 在第一个研究课题的基础上,在第二个研究课题中,我们展示了一种可以放大HIFU在水溶液中对BCP胶束破坏效果的新方法。通过在形成胶束内核的温敏性聚合物中引入少量的超声不稳定共聚单体,由于超声诱导共聚体极性的变化从而增加温敏性聚合物的最低临界溶液温度(LCST)。这使得在没有改变溶液温度的情况下,BCP溶于水,并进一步导致BCP胶束的瓦解。为了证明这种新机制的可行性,我们合成并研究了二嵌段共聚物PEO-b-P(MEO2MA-co-THPMA) (MEO2MA 代表2-(2-甲氧基乙氧基)乙基甲基丙烯酸酯)。当T > LCST时,无规的热敏嵌段共聚物P(MEO2MA-co-THPMA)是疏水的。选择THPMA是因为在第一个研究课题里,相比于其他结构的单体,它对于HIFU的辐照更敏感,具有更大的反应活性。我们发现, 通过HIFU的辐照确实可以增加P(MEO2MA-co-THPMA)链段的LCST,导致BCP胶束在温度不变的情况下瓦解。13C NMR 提供了关于超声诱导THPMA基团水解和由于超声诱导使疏水的THPMA共聚单元转变成亲水的MAA从而使LCST增加进一步导致胶束瓦解的关键证据。这种超声改变LCST的方法具有普遍意义,可以被用来探索在BCP设计中其他的超声不稳定基团。通过把超声诱导效应转换成胶束内核的温敏性变化,这项研究展示了一种全新的SR-BCP胶束的放大和控制机制。 在这篇论文中所展示的第三个研究课题是设计一个具有特定目的的合理的BCP结构。即允许在使用最少的刺激响应官能团的情况下,BCP胶束可以在两种刺激下瓦解。这种BCP结构的展示可以使我们更深入的了解如何使BCP胶束对刺激敏感。为此,我们设计并合成了新的两亲性ABC型三嵌段共聚物,即聚(环氧乙烷) - 二硫化物 - 聚苯乙烯 - 邻 - 硝基苄基 - 聚( 2 - (二甲基氨基)乙基甲基丙烯酸酯) (PEO-S-S-PS-ONB-PDMAEMA)。它在PEO和PS嵌段之间具有可还原裂解的二硫键,在PS和PDMAEMA嵌段之间具有可光裂解的ONB基团。我们证实,对于使具有最少数量的刺激-反应官能团(每条分子链上仅有两个)的BCP胶束可以同时在还原剂二硫苏糖醇 (DDT)水溶液中和紫外光照下发生响应,此设计是一种行之有效的策略。我们研究发现,这种三嵌段共聚物胶束可以以不同的方式被破坏。当只施加一种刺激时,无论是还原裂解PEO链段,或是光裂解PDMAEMA链段,都只有一种亲水链从胶束外壳被移走,这都只能导致胶束分散有限的不稳定。虽然一些胶束之间发生了团聚,但是分散体系总体上基本保持稳定。与之相对的,在两种刺激同时作用的情况下,PEO和PDMAEMA链段的同时断裂使聚合物的两亲性消失,从而导致聚合物严重的聚集。此外, 在两种刺激不同的施加情况下,通过在胶束中装载疏水尼罗红的方式,结果显示染料的荧光在水中的淬灭与胶束被破坏的不同程度有关。

Page generated in 0.0765 seconds