• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 24
  • 22
  • 13
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 246
  • 246
  • 73
  • 72
  • 66
  • 56
  • 47
  • 46
  • 35
  • 32
  • 31
  • 28
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Design of heterogeneous coherence hierarchies using manager-client pairing

Beu, Jesse Garrett 09 April 2013 (has links)
Over the past ten years, the architecture community has witnessed the end of single-threaded performance scaling and a subsequent shift in focus toward multicore and manycore processing. While this is an exciting time for architects, with many new opportunities and design spaces to explore, this brings with it some new challenges. One area that is especially impacted is the memory subsystem. Specifically, the design, verification, and evaluation of cache coherence protocols becomes very challenging as cores become more numerous and more diverse. This dissertation examines these issues and presents Manager-Client Pairing as a solution to the challenges facing next-generation coherence protocol design. By defining a standardized coherence communication interface and permissions checking algorithm, Manager-Client Pairing enables coherence hierarchies to be constructed and evaluated quickly without the high design-cost previously associated with hierarchical composition. Further, Manager-Client Pairing also allows for verification composition, even in the presence of protocol heterogeneity. As a result, this rapid development of diverse protocols is ensured to be bug-free, enabling architects to focus on performance optimization, rather than debugging and correctness concerns, while comparing diverse coherence configurations for use in future heterogeneous systems.
172

Quantitative modeling and analysis of service-oriented real-time systems using interval probabilistic timed automata

Krause, Christian, Giese, Holger January 2012 (has links)
One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properties for a restricted class of service-oriented real-time systems using formal methods. To properly motivate the choice for the used approach, we devise a requirements catalogue for the modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used models and require distinguished analysis approaches. The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on the outlined requirements, we give evidence that this model provides both enough expressiveness for a realistic and modular specifiation of the targeted class of systems, and suitable formal methods for analyzing properties, such as safety and reliability properties in a quantitative manner. As technical means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic time-bounded reachability analysis and computation of expected reachability rewards and costs. To carry out the quantitative analysis using probabilistic model checking, we developed an extension of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking and computation of expected rewards and costs. We discuss the performance of our extended version of Prism and compare the interval-based IPTA approach to models with fixed probabilities. / Eine der wichtigsten Herausforderungen in der Entwicklung von Service-orientierten Systemen ist die Vorhersage und die Zusicherung von nicht-funktionalen Eigenschaften, wie Ausfallsicherheit und Verfügbarkeit von zusammengesetzten, interorganisationellen Diensten. Diese Systeme sind oft charakterisiert durch eine Vielzahl von inhärenten Unsicherheiten, welche sowohl in der Modellierung als auch in der Analyse eine Rolle spielen. Die verschiedenen relevanten Arten von Unsicherheiten können eingeteilt werden in (1) epistemische Unsicherheiten aufgrund von unvollständigem Wissen und (2) Zufall als Mittel in Protokollen oder als Resultat von physikalischen Prozessen. In diesem Bericht wird ein probabilistisches, Zeit-behaftetes Modell untersucht, welches es ermöglicht quantitative Aussagen über nicht-funktionale Eigenschaften von einer eingeschränkten Klasse von Service-orientierten Echtzeitsystemen mittels formaler Methoden zu treffen. Zur Motivation und Einordnung wird ein Anforderungskatalog für probabilistische Echtzeitsysteme mit Unsicherheiten erstellt und gezeigt, dass die Unsicherheiten vom Typ (1) und (2) in den untersuchten Systemen einen Ein uss auf die Wahl der Modellierungs- und der Analysemethode haben. Als formales Modell werden Interval Probabilistic Timed Automata (IPTA) benutzt. Basierend auf den erarbeiteten Anforderungen wird gezeigt, dass dieses Modell sowohl ausreichende Ausdrucksstärke für eine realistische und modulare Spezifikation als auch geeignete formale Methoden zur Bestimmung von quantitativen Sicherheits- und Zuverlässlichkeitseigenschaften bietet. Als technisches Mittel für die quantitative Analyse wird probabilistisches Model Checking, speziell probabilistische Zeit-beschränkte Erreichbarkeitsanalyse und Bestimmung von Erwartungswerten für Kosten und Vergütungen eingesetzt. Um die quantitative Analyse mittels probabilistischem Model Checking durchzuführen, wird eine Erweiterung des Prism-Werkzeugs zur Modellierung und Analyse von IPTA eingeführt. Die präsentierte Erweiterung von Prism ermöglicht die Modellierung von probabilistischen Unsicherheiten mittelsWahrscheinlichkeitsintervallen, wie sie für IPTA benötigt werden. Zur Verifikation wird probabilistische Erreichbarkeitsanalyse und die Berechnung von Erwartungswerten durch das Werkzeug unterstützt. Es wird die Performanz der Prism-Erweiterung untersucht und der Intervall-basierte IPTA-Ansatz mit Modellen mit festen Wahrscheinlichkeitswerten verglichen.
173

The Omnibus language and integrated verification approach

Wilson, Thomas January 2007 (has links)
This thesis describes the Omnibus language and its supporting framework of tools. Omnibus is an object-oriented language which is superficially similar to the Java programming language but uses value semantics for objects and incorporates a behavioural interface specification language. Specifications are defined in terms of a subset of the query functions of the classes for which a frame-condition logic is provided. The language is well suited to the specification of modelling types and can also be used to write implementations. An overview of the language is presented and then specific aspects such as subtleties in the frame-condition logic, the implementation of value semantics and the role of equality are discussed. The challenges of reference semantics are also discussed. The Omnibus language is supported by an integrated verification tool which provides support for three assertion-based verification approaches: run-time assertion checking, extended static checking and full formal verification. The different approaches provide different balances between rigour and ease of use. The Omnibus tool allows these approaches to be used together in different parts of the same project. Guidelines are presented in order to help users avoid conflicts when using the approaches together. The use of the integrated verification approach to meet two key requirements of safe software component reuse, to have clear descriptions and some form of certification, are discussed along with the specialised facilities provided by the Omnibus tool to manage the distribution of components. The principles of the implementation of the tool are described, focussing on the integrated static verifier module that supports both extended static checking and full formal verification through the use of an intermediate logic. The different verification approaches are used to detect and correct a range of errors in a case study carried out using the Omnibus language. The case study is of a library system where copies of books, CDs and DVDs are loaned out to members. The implementation consists of 2278 lines of Omnibus code spread over 15 classes. To allow direct comparison of the different assertion-based verification approaches considered, run-time assertion checking, extended static checking and then full formal verification are applied to the application in its entirety. This directly illustrates the different balances between error coverage and ease-of-use which the approaches offer. Finally, the verification policy system is used to allow the approaches to be used together to verify different parts of the application.
174

Formal methods for functional verification of cache-coherent systems-on-chip / Méthodes Formelles pour la vérification fonctionnelle des systèmes sur puce cache cohérent

Kriouile, Abderahman 17 September 2015 (has links)
Les architectures des systèmes sur puce (System-on-Chip, SoC) actuelles intègrent de nombreux composants différents tels que les processeurs, les accélérateurs, les mémoires et les blocs d'entrée/sortie, certains pouvant contenir des caches. Vu que l'effort de validation basée sur la simulation, actuellement utilisée dans l'industrie, croît de façon exponentielle avec la complexité des SoCs, nous nous intéressons à des techniques de vérification formelle. Nous utilisons la boîte à outils CADP pour développer et valider un modèle formel d'un SoC générique conforme à la spécification AMBA 4 ACE récemment proposée par ARM dans le but de mettre en œuvre la cohérence de cache au niveau système. Nous utilisons une spécification orientée contraintes pour modéliser les exigences générales de cette spécification. Les propriétés du système sont vérifié à la fois sur le modèle avec contraintes et le modèle sans contraintes pour détecter les cas intéressants pour la cohérence de cache. La paramétrisation du modèle proposé a permis de produire l'ensemble complet des contre-exemples qui ne satisfont pas une certaine propriété dans le modèle non contraint. Notre approche améliore les techniques industrielles de vérification basées sur la simulation en deux aspects. D'une part, nous suggérons l'utilisation du modèle formel pour évaluer la bonne construction d'une unité de vérification d'interface. D'autre part, dans l'objectif de générer des cas de test semi-dirigés intelligents à partir des propriétés de logique temporelle, nous proposons une approche en deux étapes. La première étape consiste à générer des cas de tests abstraits au niveau système en utilisant des outils de test basé sur modèle de la boîte à outils CADP. La seconde étape consiste à affiner ces tests en cas de tests concrets au niveau de l'interface qui peuvent être exécutés en RTL grâce aux services d'un outil commercial de génération de tests dirigés par les mesures de couverture. Nous avons constaté que notre approche participe dans la transition entre la vérification du niveau interface, classiquement pratiquée dans l'industrie du matériel, et la vérification au niveau système. Notre approche facilite aussi la validation des propriétés globales du système, et permet une détection précoce des bugs, tant dans le SoC que dans les bancs de test commerciales. / State-of-the-art System-on-Chip (SoC) architectures integrate many different components, such as processors, accelerators, memories, and I/O blocks. Some of those components, but not all, may have caches. Because the effort of validation with simulation-based techniques, currently used in industry, grows exponentially with the complexity of the SoC, this thesis investigates the use of formal verification techniques in this context. More precisely, we use the CADP toolbox to develop and validate a generic formal model of a heterogeneous cache-coherent SoC compliant with the recent AMBA 4 ACE specification proposed by ARM. We use a constraint-oriented specification style to model the general requirements of the specification. We verify system properties on both the constrained and unconstrained model to detect the cache coherency corner cases. We take advantage of the parametrization of the proposed model to produce a comprehensive set of counterexamples of non-satisfied properties in the unconstrained model. The results of formal verification are then used to improve the industrial simulation-based verification techniques in two aspects. On the one hand, we suggest using the formal model to assess the sanity of an interface verification unit. On the other hand, in order to generate clever semi-directed test cases from temporal logic properties, we propose a two-step approach. One step consists in generating system-level abstract test cases using model-based testing tools of the CADP toolbox. The other step consists in refining those tests into interface-level concrete test cases that can be executed at RTL level with a commercial Coverage-Directed Test Generation tool. We found that our approach helps in the transition between interface-level and system-level verification, facilitates the validation of system-level properties, and enables early detection of bugs in both the SoC and the commercial test-bench.
175

Encodage Efficace des Systèmes Critiques pour la Vérificaton Formelle par Model Checking à base de Solveurs SAT / Effective Encoding of Critical Systems for SAT-Based Model Checking.

Baud-Berthier, Guillaume 20 September 2018 (has links)
Le développement de circuits électroniques et de systèmes logiciels critiques pour le ferroviaire ou l’avionique, par exemple, demande à être systématiquement associé à un processus de vérification formelle permettant de garantir l’exhaustivité des tests. L’approche formelle la plus répandue dans l’industrie est le Model Checking. Le succès de son adoption provient de deux caractéristiques : (i) son aspect automatique, (ii) sa capacité à produire un témoin (un scénario rejouable) lorsqu’un comportement indésirable est détecté, ce qui fournit une grande aide aux concepteurs pour corriger le problème. Néanmoins, la complexité grandissante des systèmes à vérifier est un réel défi pour le passage à l’échelle des techniques existantes. Pour y remédier, différents algorithmes de model checking (e.g., parcours symbolique des états du système, interpolation), diverses méthodes complémentaires (e.g., abstraction,génération automatique d’invariants), et de multiples procédures de décision(e.g., diagramme de décision, solveur SMT) sont envisageables.Dans cette thèse, nous nous intéressons plus particulièrement à l’induction temporelle.Il s’agit d’un algorithme de model checking très utilisé dans l’industrie pour vérifier les systèmes critiques. C’est également l’algorithme principal de l’outil développé au sein de l’entreprise Safe River, entreprise dans laquelle cette thèse a été effectuée. Plus précisément, l’induction temporelle combine deux techniques :(i) BMC (Bounded Model Checking), une méthode très efficace pour la détection debugs dans un système (ii) k-induction, une méthode ajoutant un critère de terminaison à BMC lorsque le système n’admet pas de bug. Ces deux techniques génèrent des formules logiques propositionnelles pour lesquelles il faut en déterminer la satisfaisabilité.Pour se faire, nous utilisons un solveur SAT, c’est-à-dire une procédure de décision qui détermine si une telle formule admet une solution.L’originalité des travaux proposés dans cette thèse repose en grande partie sur la volonté de renforcer la collaboration entre le solveur SAT et le model checker.Nos efforts visent à accroître l’interconnexion de ces deux modules en exploitant la structure haut niveau du problème. Nous avons alors défini des méthodes profitant de la structure symétrique des formules. Cette structure apparaît lors du dépliage successif de la relation de transition, et nous permet de dupliquer les clauses ou encore de déplier les transitions dans différentes directions (i.e., avant ou arrière). Nous avons aussi pu instaurer une communication entre le solveur SAT et le model checker permettant de : (i) simplifier la représentation au niveau du model checker grâce à des informations déduites par le solveur, et (ii) aider le solveur lors de la résolution grâce aux simplifications effectuées sur la représentation haut niveau. Une autre contribution importante de cette thèse est l’expérimentation des algorithmes proposées. Cela se concrétise par l’implémentation d’un model checker prenant en entrée des modèles AIG (And-Inverter Graph) dans lequel nous avons pu évaluer l’efficacité de nos différentes méthodes. / The design of electronic circuits and safety-critical software systems in railway or avionic domains for instance, is usually associated with a formal verification process. More precisely, test methods for which it is hard to show completeness are combined with approaches that are complete by definition. Model Checking is one of those approaches and is probably the most prevalent in industry. Reasons of its success are mainly due to two characteristics, namely: (i) its fully automatic aspect, and (ii) its ability to produce a short execution trace of undesired behaviors, which is very helpful for designers to fix the issues. However, the increasing complexity of systems to be verified is a real challenge for the scalability of existing techniques. To tackle this challenge, different model checking algorithms (e.g., symbolic model checking, interpolation), various complementary methods (e.g., abstraction, automatic generation of invariants) and multiple decision procedures (e.g., decision diagram, SMT solver) can be considered. In this thesis, we particularly focus on temporal induction. It is a model checking algorithm widely used in the industry to check safety-critical systems. This is also the core algorithm of the tool developed within SafeRiver, company in which this thesis was carried out. More precisely, temporal induction consists of a combination of BMC (Bounded Model Checking) and k-induction. BMC is a very efficient bugfinding method. While k-induction adds a termination criterion to BMC when the system does not admit bugs. These two techniques generate formulas for which it is necessary to determine their satisfiability. To this end, we use a SAT solver as a decision procedure to determine whether a propositional formula has a solution. The main contribution of this thesis aims to strengthen the collaboration between the SAT solver and the model checker. The improvements proposed mainly focus on increasing the interconnections of these two modules by exploiting the high-level structure of the problem.We have therefore defined several methods taking advantage of the symmetrical structure of the formulas. This structure emerges during the successive unfolding of the transition relation, and allows us to duplicate clauses or even unroll the transitions in different directions (i.e., forward or backward). We also established a communication between the solver and the model checker, which has for purpose to: (i) simplify the model checker representation using the information inferred by the solver, and (ii) assist the solver during resolution with simplifications performed on the high-level representation. Another important contribution of this thesis is the empirical evaluation of the proposed algorithms on well-established benchmarks. This is achieved concretely via the implementation of a model checker taking AIG (And-Inverter Graph) as input, from which we were able to evaluate the effectiveness of our algorithms.
176

Aide à la vérification de programmes concurrents par transformation de code et de spécifications / Assisted concurrent program verification by code and specification transformation

Blanchard, Allan 06 December 2016 (has links)
Vérifier formellement des programmes concurrents est une tâche difficile. S’il existe différentes techniques pour la réaliser, très peu sont effectivement mises en oeuvre pour des programmes écrits dans des langages de programmation réalistes. En revanche, les techniques de vérification formelles de programmes séquentiels sont utilisées avec succès depuis plusieurs années déjà, et permettent d’atteindre de hauts degrés de confiance dans nos systèmes. Cette thèse propose une alternative aux méthodes d’analyses dédiées à la vérification de programmes concurrents consistant à transformer le programme concurrent en un programme séquentiel pour le rendre analysable par des outils dédiés aux programmes séquentiels. Nous nous plaçons dans le contexte de FRAMA-C, une plate-forme d’analyse de code C spécifié avec le langage ACSL. Les différentes analyses de FRAMA-C sont des greffons à la plate-forme, ceux-ci sont à ce jour majoritairement dédiés aux programmes séquentiels. La méthode de vérification que nous proposons est appliquée manuellement à la vérification d’un code concurrent issu d’un hyperviseur. Nous automatisons la méthode à travers un nouveau greffon à FRAMA-C qui permet de produire automatiquement, depuis un programme concurrent spécifié, un programme séquentiel spécifié équivalent. Nous présentons les bases de sa formalisation, ayant pour but d’en prouver la validité. Cette validité n’est valable que pour la classe des programmes séquentiellement consistant. Nous proposons donc finalement un prototype de solveur de contraintes pour les modèles mémoire faibles, capable de déterminer si un programme appartient bien à cette classe en fonction du modèle mémoire cible. / Formal verification of concurrent programs is a hard task. There exists different methods to perform such a task, but very few are applied to the verification of programs written using real life programming languages. On the other side, formal verification of sequential programs is successfully applied for many years, and allows to get high confidence in our systems. As an alternative to dedicated concurrent program analyses, we propose a method to transform concurrent programs into sequential ones to make them analyzable by tools dedicated to sequential programs. This work takes place within the analysis framework FRAMA-C, dedicated to the analysis of C code specified with ACSL. The different analyses provided by FRAMA-C are plugins to the framework, which are currently mostly dedicated to sequential programs. We apply this method to the verification of a concurrent code taken from an hypervisor. We describe the automation of the method implemented by a new plugin to FRAMAC that allow to produce, from a specified concurrent program, an equivalent specified sequential program. We present the basis of a formalization of the method with the objective to prove its validity. This validity is admissible only for the class of sequentially consistent programs. So, we finally propose a prototype of constraint solver for weak memory models, which is able to determine whether a program is in this class or not, depending on the targeted hardware.
177

Environnement de développement d’applications multipériodiques sur plateforme multicoeur. : La boîte à outils SchedMCore / Multiperiodic application development environment on multicore architecture. : The SchedMCore framework

Cordovilla Mesonero, Mikel 02 April 2012 (has links)
Les logiciels embarqués critiques de contrôle-commande sont soumis à des contraintes fortes englobant le déterminisme, la correction logique et la correction temporelle. Nous supposons que les spécifications sont exprimées à l'aide du langage formel de description d'architectures logicielles temps réel multipériodiques Prelude. L'objectif de cette thèse est, à partir d'un programme Prelude ou d'un ensemble de tâches temps réel dépendantes, de générer un code multithreadé exécutable sur une architecture multicœur tout en respectant la sémantique initiale. Pour cela, nous avons développé une boîte à outil, SchedMCore,permettant : - d'une part, la vérification formelle de l'ordonnançabilité. La vérification proposée est basée sur le parcours exhaustif du comportement avec pas de temps discret. Il est alors possible d'analyser des politiques en-ligne (FP, gEDF, gLLF et LLREF) mais également de calculer une affectation de priorité fixe valide et une séquence valide hors-ligne.- d'autre part, l'exécution multithreadée sur une cible multicœur. L'exécutif encode les politiques proposées étudiées dans la partie d'analyse d'ordonnançabilité, à savoir les quatre politiques en-ligne ainsi que les séquences valides générées. L'exécutif permet 3 modes d'utilisation, allant de la simulation temporelle à l'exécution temps précis des comportements des tâches. Il est compatible Posix et facilement portable sur divers OS. / A real-time control-command embedded system is subject to strong constraints such as determinism, logical and temporal correctness. We assume that the specifications are expressed using the formal software architecture description language Prelude, dedicated to real-time multiperiodic applications. The goal of this thesis is, given a Prelude program or dependent real-time taskset, to generate amultithreaded executable code over a multicore architecture while respecting the original semantic. To do so we have developed a toolbox, SchedMcore, that allows: - the formal verification of schedulability. The verification is based on the exhaustive exploration of the behaviour with a discret time frame. It is possible to analyse on-line policies (FP, gEDF, gLLF et LLREF), as well as to compute a fixed valid priority assignment and a valid off-line sequence.- the multithreaded execution over a multicore target. The framework encodes the same policies as those studied in the first part (the four on-line policies and the generated sequences). The framework provides three usage modes, from temporal simulation to time accurate execution. The executive is compatible with Posix and easily portable on several OS.
178

Méthodes pour la vérification des protocoles cryptographiques dans le modèle calculatoire / Methods for cryptographic protocols verification in the computational model

Duclos, Mathilde 29 January 2016 (has links)
Les échanges des informations confidentielles ou critiques dans un environnement public, et donc potentiellement hostile, nécessitent l'emploi de techniques cryptographiques (protocoles et primitives). Malheureusement, l'expérience montre qu'une mauvaise conception, ou une expression peu claire des propriétés et hypothèses de sécurité attendues conduisent à des attaques, et qu'il faut parfois des années avant que celles-ci soient découvertes et corrigées. D'où l'adoption croissante de la sécurité prouvable, où on donne une définition rigoureuse des objectifs de sécurité et des démonstrations mathématiques que ceux-ci sont remplis. Par ailleurs, la complexité et la diversité des systèmes cryptographiques croît également. Il est donc largement admis qu'il n'est plus viable d'écrire ou vérifier manuellement des démonstrations cryptographiques (Bellare& Rogaway 2004, Shoup 2004, Halevi 2005) et qu'il faut développer des méthodes de vérification des systèmes cryptographiques assistées par ordinateur. L'objectif de cette thèse est d'effectuer des progrès significatifs dans cette direction. Plus précisement on s'interesse à la preuve formelle de protocoles cryptographiques. Vérifier des protocoles cryptographiques requiert le développement d'un cadre théorique qui doit permettre: - une modélisation précise des protocoles cryptographiques et des propriétés de sécurité qu'on veut prouver dans le modèle calculatoire. - mise en place de stratégies d'automatisation de preuves. - prise en compte des modèles plus réalistes pour l'adversaire (canaux cachés, ressources de calcul). A la fin de la thèse on a obtenu un cadre formel et un ensemble de méthodes logicielles capable d'aider à la vérification des protocoles cryptographiques. / Critical and private information are exchanged on public environment. To protect it from dishonest users, we use cryptographic tools. Unfortunately, bad conception, poorly written security properties and required security hypothesis lead to attacks, and it may take years before one discover the attack and fix the security schemes involved. In this context, provable security provides formal definitions for security objectives and implied mathematical proofs that these objectives are fullfilled. On another hand, complexity and variety of cryptographic systems are increasing, and proofs by hand are too complicated to write and to verify (Bellare& Rogaway 2004, Shoup 2004, Halevi 2005). Thus, we need computer-assisted verification methods for cryptographic systems. The aim of this thesis is to progress in this direction. More precisely we want significant progress over formal proofs on cryptographic protocols. To verify cryptographic protocols we need to develop a theoritical framework providing: - a precise modelisation for cryptographic protocols and security properties we want to prove in the computationnal model, - designing tactics to automate proofs, - taking into account realistic models for adversary (side-channels...). By the end of the thesis we have enhanced a theoretical framework and computing tools helping verifying cryptographic protocols.
179

Towards an integrative approach for the modeling and formal verification of biological regulatory networks / Vers une approche intégrée pour la modélisation et la vérification formelle des réseaux de régulation biologique / Em direcção a uma abordagem integrativa para a modelação e a verificação de redes de regulação biológicas

Gonçalves Monteiro, Pedro Tiago 17 May 2010 (has links)
L'étude des grands modèles de réseaux biologiques par l'utilisation d'outils d'analyse et de simulation conduit à un grand nombre de prédictions. Cela soulève la question de savoir comment identifier les prédictions intéressantes de nouveaux phénomènes, qui peuvent être confrontés à des données expérimentales. Les techniques de vérification formelle basées sur le model checking constituent une technologie puissante pour faire face à cette augmentation d'échelle et de complexité pour l'analyse de ces réseaux. L'application de ces techniques est par contre difficile, pour plusieurs raisons. Premièrement, le domaine de la biologie des systèmes a mis en évidence quelques propriétés dynamiques du réseau, comme la multi-stabilité et les oscillations, qui ne sont pas facilement exprimables avec les logiques temporelles classiques. Deuxièmement, la difficulté de poser des questions pertinentes et intéressantes en logique temporelle est difficile pour les utilisateurs non-experts. Enfin, la plupart des modèles existants et des outils de simulation ne sont pas capables d'appliquer des techniques de model checking d'une manière transparente. La mise en œuvre des approches développées dans ce travail contribue à enlever des obstacles pour l'utilisation de la technologie de vérification formelle en biologie. Leur application a été validée sur l'analyse et la simulation de deux modèles biologiques complexes. / The study of large models of biological networks by means of analysis and simulation tools leads to large amounts of predictions. This raises the question of how to identify interesting predictions of novel phenomena that can be confronted with experimental data. Formal verification techniques based on model-checking have recently been used to the analysis of these networks, providing a powerful technology to keep up with this increase in scale and complexity. The application of these techniques is hampered, however, by several key issues. First, the systems biology domain brought to the fore a few properties of the network dynamics like multistability and oscillations, that are not easily expressed using classical temporal logics. Second, the problem of posing relevant and interesting questions in temporal logic, is difficult for non-expert users. Finally, most of the existing modeling and simulation tools are not capable of applying model-checking techniques in a transparent way. The approaches developed in this work lower the obstacles to the use of formal verification in systems biology. They have been validated on the analysis and simulation of two real and complex biological models. / O estudo de redes biológicas tem originado o desenvolvimento de modelos cada vez mais complexos e detalhados. O estudo de redes biológicas complexas utilizando ferramentas de análise e simulação origina grandes quantidades de previsões. Isto levanta a questão de como identificar previsões interessantes de novos fenómenos que possam ser comparados com dados experimentais. As técnicas de verificação formal baseadas em model-checking têm sido usadas na análise destas redes, fornecendo uma tecnologia poderosa para acompanhar o aumento de escala e complexidade do problema. A aplicação destas técnicas tem sido dificultada por um conjunto importante de factores. Em primeiro lugar, em biologia de sistemas têm sido tratadas diversas questões acerca da dinâmica da rede, como a multi-estabilidade e oscilações, que não são facilmente expressas usando lógicas temporais clássicas. Em segundo lugar, o problema de como elaborar perguntas relevantes em lógica temporal, é difícil para o utilizador comum. Por último, a maioria das ferramentas de modelação e simulação não estão preparadas para a aplicação de técnicas de model-checking de forma transparente. Os métodos desenvolvidos nesta tese aliviam os obstáculos no uso da verificação formal em biologia de sistemas. Estes métodos foram validados através da análise e simulação de dois modelos biológicos complexos.
180

Verifica??o formal automatizada para sistemas de racioc?nio procedural (PRS) utilizando redes de petri coloridas (RPC)

Ara?jo, Ricardo Wagner de 02 September 2005 (has links)
Made available in DSpace on 2015-03-03T15:08:46Z (GMT). No. of bitstreams: 1 RicardoWA.pdf: 1646499 bytes, checksum: efcc744c6ff7cea26befa0adbedb8c6a (MD5) Previous issue date: 2005-09-02 / Este trabalho apresenta uma t?cnica de verifica??o formal de Sistemas de Racioc?nio Procedural, PRS (Procedural Reasoning System), uma linguagem de programa??o que utiliza a abordagem do racioc?nio procedural. Esta t?cnica baseia-se na utiliza??o de regras de convers?o entre programas PRS e Redes de Petri Coloridas (RPC). Para isso, s?o apresentadas regras de convers?o de um sub-conjunto bem expressivo da maioria da sintaxe utilizada na linguagem PRS para RPC. A fim de proceder fia verifica??o formal do programa PRS especificado, uma vez que se disponha da rede de Petri equivalente ao programa PRS, utilizamos o formalismo das RPCs (verifica??o das propriedades estruturais e comportamentais) para analisarmos formalmente o programa PRS equivalente. Utilizamos uma ferramenta computacional dispon?vel para desenhar, simular e analisar as redes de Petri coloridas geradas. Uma vez que disponhamos das regras de convers?o PRS-RPC, podemos ser levados a querer fazer esta convers?o de maneira estritamente manual. No entanto, a probabilidade de introdu??o de erros na convers?o ? grande, fazendo com que o esfor?o necess?rio para garantirmos a corretude da convers?o manual seja da mesma ordem de grandeza que a elimina??o de eventuais erros diretamente no programa PRS original. Assim, a convers?o automatizada ? de suma import?ncia para evitar que a convers?o manual nos leve a erros indesej?veis, podendo invalidar todo o processo de convers?o. A principal contribui??o deste trabalho de pesquisa diz respeito ao desenvolvimento de uma t?cnica de verifica??o formal automatizada que consiste basicamente em duas etapas distintas, embora inter-relacionadas. A primeira fase diz respeito fias regras de convers?o de PRS para RPC. A segunda fase ? concernente ao desenvolvimento de um conversor para fazer a transforma??o de maneira automatizada dos programas PRS para as RPCs. A convers?o autom?tica ? poss?vel, porque todas as regras de convers?o apresentadas seguem leis de forma??o gen?ricas, pass?veis de serem inclu?das em algoritmos

Page generated in 0.1335 seconds