31 |
Einfluss struktureller Heterogenitäten auf die mechanischen Eigenschaften Cu-Zr-basierter metallischer GläserEscher, Benjamin 11 November 2019 (has links)
Metallische Gläser erreichen aufgrund ihrer ungeordneten, amorphen Struktur eine Streckgrenze, welche andere metallische Materialien in den Schatten stellt (bis zu 5 GPa). Dabei wird aufgrund ihres geringen E-Moduls eine elastische Verformung von circa zwei Prozent erreicht und damit eine sonst unerreichte Menge elastischer Energie aufgenommen. Leider besitzen die metallischen Gläser auch einen enormen Nachteil: Aufgrund der Erweichung der Gläser bei plastischer Verformung kommt es zur Lokalisierung dieser in sogenannten Scherbändern (SBs). Dies führt nahezu ohne plastische Verformung zum Versagen des Materials. Es gibt bereits viele Methoden diesen Nachteil zu überwinden, indem man die Verformung durch das Einbringen von strukturellen Heterogenitäten auf eine Vielzahl von Scherbändern verteilt: Beispielsweise durch elastische Belastung, plastische Verformung mit eingeschränkten Freiheitsgraden, oder das Einbringen einer Fremdphase. Allerdings sind die dabei wirkenden Mechanismen und Wechselwirkungen zwischen der Struktur und der Verformung noch nicht vollständig verstanden. In dieser Arbeit wurde daher zum einen die Struktur des Glases beeinflusst und diese Änderungen charakterisiert und zum anderen die Wirkung dieser Veränderung auf das Verformungsverhalten untersucht.
Als Ausgangszustand wurden dabei gegossene Stäbe und Platten vier verschiedener Legierungen (mit ansteigender Glasbildungsfähigkeit: Cu47,5Zr47,5Al5, Cu46Zr46Al8, Cu45Zr45Al5Ag5, Cu36Zr48Al8Ag8; von 1,5 mm bis 25 mm kritischem Gießdurchmesser) verwendet, welche mechanischen Verformungen unterzogen wurden, um strukturelle Heterogenitäten einzubringen. Zudem wurden B2-Glasmatrixkomposite mit der Formgedächtnisphase B2-CuZr beim Abschrecken der Schmelze (Cu47,5Zr46,5Al5-Sc1) bzw. beim Rascherhitzen über die Kristallisationstemperatur (Cu44Zr44Al8Hf2-Co2) hergestellt. Die angewandten Methoden decken ein breites Spektrum der in der Literatur diskutierten Vorbehandlungen mit einem Einfluss auf die Struktur und die mechanischen Eigenschaften ab.
Die systematischen und umfangreichen Untersuchungen in dieser Arbeit beleuchten detailliert den Zusammenhang zwischen der Struktur und der Verformung metallischer Gläser. Die Struktur wird gezielt manipuliert um eine Veränderung ihrer Heterogenität zu induzieren. Dabei wird auf Veränderungen in atomaren Längenskalen ebenso eingegangen, wie auf die makroskopischen Unterschiede. Außerdem wird die Abhängigkeit der induzierten strukturellen Änderungen von der Stabilität des Glases betrachtet. Dies alles stellt einen wichtigen Beitrag zum Verständnis des Verformungsverhaltens metallischer Gläser dar. In letzter Konsequenz ermöglichen die Erkenntnisse, durch eine gezieltere Manipulation der Struktur, eine erhöhte plastische Verformung im metallischen Glas zu erreichen.
|
32 |
Oxygen Transport as a Structure Probe for Amorphous Polymeric SystemsLiu, Richard Yufeng 05 January 2005 (has links)
No description available.
|
33 |
Influence of solvent viscosity, polarity and polarizability on the chemiluminescence parameters of inter and intramolecular electron transfer initiated chemiexcitation systems / Influência da viscosidade, polaridade e polarizabilidade do solvente sobre os parâmetros de quimiluminescência de sistemas de quimiexcitação iniciadas por transferência de electron inter e intramolecularesKhalid, Muhammad 21 August 2015 (has links)
The cyclic peroxides: diphenoyl peroxide (1), spiro-adamantyl-1,2-dioxetanone (2) and 4-(3-tert-butyldimethylsilyloxyphenyl)-4-methoxyspiro[1.2-dioxetane-3.2\'-adamantane] (3) synthesized, purified and characterized, also their kinetic and chemiluminescence (CL) properties were determined. The influence of solvent polarity on the chemiexcitation parameters of the catalyzed decomposition of 1 and 2, as well as the induced decomposition of 3 were examined in several binary solvent mixtures with different polarity and polarizability parameters, but similar viscosities. For solvents with low polarity, singlet quantum yields for the intermolecular catalyzed decomposition of diphenoyl peroxide (1,) and 1,2-dioxetanone (2) increase in function of medium polarity, showing maximum values in mediums of intermediate polarity, and decreasing in highly polar mixtures. For the induced decomposition of 3, the quantum yield showed to increase with increasing solvent polarity, including high polar solvent systems. In the binary solvent systems studied, the polarizability parameter showed to be contrary to the polarity values, therefore, it might appear that an increase of polarizability leads to a decrease in the singlet quantum yields for catalyzed decomposition of diphenoyl peroxide (1) and the induced decomposition of 3, however an increase in the singlet quantum yields for 1,2-dioxetanone 2. The three CL systems were also studied in binary solvent mixtures with different viscosities but similar polarity and polarizability parameters and singlet quantum yields showed an increase with increasing medium viscosity. Data were analyzed by using the collisional and the free volume models. The highly efficient intramolecular system induced 1,2-dioxetane 3 decomposition showed to be much more sensible to viscosity effects than the inefficient intermolecular systems. This surprising fact indicates that, even showing a significant solvent-cage effect, the induced 1,2-dioxetane should occur by an intramolecular electron back transfer. Moreover, chemiluminescence parameters of these systems were studied in several pure solvents. The obtained singlet quantum yields were correlated with viscosity, polarizability and polarity parameters by using multiple linear regression analysis. / Os peróxidos cíclicos: peróxido de difenoila (1), spiro-adamantil-1,2-dioxetanona (2) e 4-(3-terc-butildimetilsililoxifenil)-4-metoxispiro[1,2-dioxetano-3.2\'-adamantano] (3) foram sintetizados, purificados e caracterizados e as suas propriedades cinéticas e de quimiluminescência (CL) determinadas. A influência da polaridade do solvente sobre os parâmetros de quimi-excitação da decomposição catalisada de 1 e 2, e a decomposição induzida de 3 foi examinada em diversas misturas binárias de solventes com parâmetros de polaridade e polarizabilidade diferente, mas viscosidades semelhantes. Para solventes com baixa polaridade, os rendimentos quânticos singlete para a decomposição catalisada intermolecular do peróxido de difenoila (1) e 1,2-dioxetanona (2) aumentam em função da polaridade do meio, mostrando valores máximos em meios com polaridade intermediária, e diminuim para misturas altamente polares. Para a decomposição induzida de 3, o rendimento quântico mostrou aumentar com o aumento da polaridade do solvente, inclusive para sistemas com alta polaridade. Nos sistemas binários de solventes estudados, os parâmetros de polarizabilidade mostraram-se contrários aos valores de polaridade, portanto, parece que um aumento da polarizability leva a uma diminuição nos rendimentos quânticos singlete para a decomposição catalisada do peróxido de difenoila (1) e a decomposição induzida de 3, no entanto, um aumento nos rendimentos quânticos singlete para a 1,2-dioxetanona 2. Os três sistemas de CL também foram estudados em misturas binárias de solventes com diferentes viscosidades, mas com parâmetros de polaridade e polarizabilidade semelhantes e os rendimentos quânticos singlete mostraram aumentar com o aumento da viscosidade do meio. Os dados foram analisados usando tanto o modelos colisional quando o modelo de volume livre. Surpreendentemente, o sistema altamente eficiente decomposição induzida intramolecular do 1,2-dioxetano 3 mostrou-se muito mais sensível aos efeitos da viscosidade do que os sistemas intermoleculares ineficientes, o que indica claramente que a decomposição induzida do 1,2-dioxetano deve ocorrer por um processo de retro-transferência de elétron intramolecular. Além disso, os parâmetros de quimiluminescência destes sistemas foram estudados em vários solventes puros. Os rendimentos quânticos singlete obtidos foram correlacionados com parâmetros de viscosidade, polarizabilidade e polaridade usando análise de regressão linear múltipla.
|
34 |
Atomistic simulations of defect nucleation and free volume in nanocrystalline materialsTucker, Garritt J. 20 May 2011 (has links)
Atomistic simulations are employed in this thesis to investigate defect nucleation and free volume of grain boundaries and nanocrystalline materials. Nanocrystalline materials are of particular interest due to their improved mechanical properties and alternative strain accommodation processes at the nanoscale. These processes, or deformation mechanisms, within nanocrystalline materials are strongly dictated by the larger volume fraction of grain boundaries and interfaces due to smaller average grain sizes. The behavior of grain boundaries within nanocrystalline materials is still largely unknown. One reason is that experimental investigation at this scale is often difficult, time consuming, expensive, or impossible with current resources. Atomistic simulations have shown the potential to probe fundamental behavior at these length scales and provide vital insight into material mechanisms. Therefore, work conducted in this thesis will utilize atomistic simulations to explore structure-property relationships of face-centered-cubic grain boundaries, and investigate the deformation of nanocrystalline copper as a function of average grain size. Volume-averaged kinematic metrics are formulated from continuum mechanics theory to estimate nonlocal deformation fields and probe the nanoscale features unique to strain accommodation mechanisms in nanocrystalline metals. The kinematic metrics are also leveraged to explore the tensile deformation of nanocrystalline copper at 10K. The distribution of different deformation mechanisms is calculated and we are able to partition the role of competing mechanisms in the overall strain of the nanocrystalline structure as a function of grain size. Grain boundaries are observed to be influential in smaller grained structures, while dislocation glide is more influential as grain size increases. Under compression, however, the resolved compressive normal stress on interfaces hinders grain boundary plasticity, leading to a tension-compression asymmetry in the strength of nanocrystalline copper. The mechanisms responsible for the asymmetry are probed with atomistic simulations and the volume-averaged metrics. Finally, the utility of the metrics in capturing nonlocal nanoscale deformation behavior and their potential to inform higher-scaled models is discussed.
|
35 |
Process-induced Long-term Deformation Behavior of Injection Molded Semicrystalline ThermoplasticsBanik, Kaushik 30 August 2006 (has links) (PDF)
Process-induced Long-term Deformation Behavior of Injection Molded Semicrystalline Thermoplastics
Injection molding is a very complex process because the polymer experiences a complex thermorheological history during molding that influences the molecular orientation, residual stresses, frozen-in free volume and crystallinity inside the part. These generally govern the final part properties. Therefore it is highly desirable to anticipate the effect of process parameters on the resulting microstructure and mechanical properties of the finished part in the long run. In the case of a semicrystalline thermoplastic part, the problem in understanding the deformation behavior arises from its two-phase structure and a tendency exists to concentrate primarily on the effect of the crystalline phase on the deformation behavior, while the contribution of the amorphous phase is less investigated. In this work, the influence of the processing parameters on the deformation behavior of injection molded semicrystalline thermoplastic parts, viz., syndiotactic Polystyrene (sPS) and Polybutylene terepthalate (PBT), has been monitored through creep. The resulting internal structures due to processing have been determined and the deformation behavior has been analyzed. It has been observed that only the rate of cooling shows a remarkable effect on the long-term viscoelastic behavior of an injection molded semicrystalline thermoplastic part as it influences not only the crystalline, but also the free volume fraction, whereas the different states of frozen-in orientations and pressure-induced densification have only a negligible effect. Besides, physical aging also plays an important role in the deformation behavior of the injection moldings which was manifested with the decrease in the tendency to creep. Therefore, it was suggested that the cooling rate during injection molding and the aging time can significantly affect the long-term deformation behavior of the injection molded semicrystalline thermoplastics. The results also showed that when no significant effect is observed in terms of short-term mechanical properties by changing the processing conditions, but while considering the long-term behavior they show a significant effect.
|
36 |
Membrane facilitated separation of NF3 and CF4 / David Jacobus Branken.Branken, David Jacobus January 2013 (has links)
Nitrogen trifluoride (NF3) is frequently used as a source of fluorine in the electronics device manufacturing industry as a dry etchant during plasma assisted etching of silicon wafers, or during the plasma cleaning of chemical vapor deposition chambers. As a result of the electrochemical synthesis procedures in which carbon anodes are used in a fluorine-rich environment, NF3 product streams are frequently contaminated with ppm-amounts of carbon tetrafluoride (CF4). The electronics manufacturing industry, however, requires NF3 of exceptional purity, i.e. so-called VLSI-grade (very large scale integration) NF3, with CF4 concentrations of 20 ppm and below. Due to the close chemical and physical similarities of the two compounds, the removal of CF4 from NF3 has proven to be rather difficult, and current NF3 purification technologies are relatively inefficient. Although membrane gas separation has proven to be competitive in terms of operating costs and energy efficiency, its use for the purification of NF3 seems to have remained unexplored to date.
In this study, the use of high free volume glassy perfluoropolymers of Teflon AF2400, Teflon AF1600, and Hyflon AD60 was therefore investigated. To be able to measure the pure and mixed gas permeabilities and selectivities of the solution-cast membranes towards NF3 and CF4, a custom built experimental setup was used, in which a newly developed gas chromatographic (GC) analysis method was implemented. Using divinylbenzene-styrene co-polymer stationary phases in the form of Super Q, a reliable quantification of mixtures of NF3 and CF4 were achieved without requiring additional fluorocarbon liquid stationary phases, as is commonly used in NF3 production environments. Furthermore, by implementing a dual-channel configuration it was possible to quantify a wide range of NF3 and CF4 concentrations. Using the newly developed technique, NF3 and CF4 concentrations of ca. 1 mol% and upwards could be quantified using a Thermal Conductivity Detector (TCD) on one channel, and NF3 and CF4 concentrations of between ca. 40 vppm and 4000 vppm could be measured using a Pulsed Discharge Helium Ionisation Detector (PDHID) on the second channel of the GC method.
The glassy perfluoropolymer membranes of Teflon AF2400, Teflon AF1600, and Hyflon AD60 were prepared by a solution casting method, and it was found that annealing at sufficiently high temperatures (170 – 200 °C) ensured optimum permeability selectivity. In contrast, thermal analysis of the solution-cast Hyflon AD60 membranes that were heated to only 95 °C confirmed that the polymer matrix was significantly swollen due to a residual amount of the casting solvent. Consequently, considerably reduced selectivity and increased permeability of both NF3 and CF4 were observed for such solvent-swollen Hyflon AD60 membranes in comparison with the non-swollen membranes that were annealed at 170 °C. Nonetheless, the measured He/N2 permeability and permeability selectivity of all the membranes studied compared favourably with literature values, and selectively permeated NF3 rather than CF4 wherein the pure and mixed gas permeability selectivity displayed a clear dependence on the fractional free volume (FFV) of the polymer matrices. Thus, in accordance with the decreasing FFV of the perfluoropolymers in the order Teflon AF2400 > Teflon AF1600 > Hyflon AD60, the NF3 permeability decreased from 227 Barrer for Teflon AF2400, to 29 Barrer for Teflon AF1600, to 1.9 Barrer for Hyflon AD60. In contrast, the NF3/CF4 selectivity, α(NF3/CF4), increased inversely from 4.5 for Teflon AF2400, to 6.0 for Teflon AF1600, to the highest selectivity of 12 which was obtained using Hyflon AD60.
To elucidate the mechanism of separation, the transport properties of NF3 and CF4 in Teflon AF2400 and Teflon AF1600 w.r.t. diffusion and solubility were studied using Molecular Dynamics (MD), Grand Canonical Monte Carlo (GCMC), and statistical thermodynamic techniques. The results indicated that NF3/CF4 diffusion selectivity (DNF3/DCF4) was favoured by the lower free volume of Teflon AF1600, whereas poor correlation was achieved between the GCMC calculated sorption isotherms of CF4 and the experimentally determined isotherms as reported in the literature. Consequently, the non-equilibrium lattice fluid (NELF) model, which more accurately described the sorption isotherms of CF4, was used to evaluate the solubility selectivity. It was found that by adjusting the NELF model interaction parameter, Ψ, favourable NF3/CF4 solubility selectivities (SNF3/SCF4) were predicted. Furthermore, by combining the solubility selectivity values with the diffusion selectivities calculated from the MD results, permeability selectivity predictions that correlated well with the experimentally determined values were obtained. Based on a semi-quantitative technological evaluation, it was concluded that although good NF3/CF4 mixed gas permeability selectivity was obtained with Hyflon AD60, further research into improving the NF3 solubility, and hence permeability will aid in the development of an efficient membrane gas separation process for the purification of NF3. / PhD (Chemistry),North-West University, Potchefstroom Campus, 2013.
|
37 |
Membrane facilitated separation of NF3 and CF4 / David Jacobus Branken.Branken, David Jacobus January 2013 (has links)
Nitrogen trifluoride (NF3) is frequently used as a source of fluorine in the electronics device manufacturing industry as a dry etchant during plasma assisted etching of silicon wafers, or during the plasma cleaning of chemical vapor deposition chambers. As a result of the electrochemical synthesis procedures in which carbon anodes are used in a fluorine-rich environment, NF3 product streams are frequently contaminated with ppm-amounts of carbon tetrafluoride (CF4). The electronics manufacturing industry, however, requires NF3 of exceptional purity, i.e. so-called VLSI-grade (very large scale integration) NF3, with CF4 concentrations of 20 ppm and below. Due to the close chemical and physical similarities of the two compounds, the removal of CF4 from NF3 has proven to be rather difficult, and current NF3 purification technologies are relatively inefficient. Although membrane gas separation has proven to be competitive in terms of operating costs and energy efficiency, its use for the purification of NF3 seems to have remained unexplored to date.
In this study, the use of high free volume glassy perfluoropolymers of Teflon AF2400, Teflon AF1600, and Hyflon AD60 was therefore investigated. To be able to measure the pure and mixed gas permeabilities and selectivities of the solution-cast membranes towards NF3 and CF4, a custom built experimental setup was used, in which a newly developed gas chromatographic (GC) analysis method was implemented. Using divinylbenzene-styrene co-polymer stationary phases in the form of Super Q, a reliable quantification of mixtures of NF3 and CF4 were achieved without requiring additional fluorocarbon liquid stationary phases, as is commonly used in NF3 production environments. Furthermore, by implementing a dual-channel configuration it was possible to quantify a wide range of NF3 and CF4 concentrations. Using the newly developed technique, NF3 and CF4 concentrations of ca. 1 mol% and upwards could be quantified using a Thermal Conductivity Detector (TCD) on one channel, and NF3 and CF4 concentrations of between ca. 40 vppm and 4000 vppm could be measured using a Pulsed Discharge Helium Ionisation Detector (PDHID) on the second channel of the GC method.
The glassy perfluoropolymer membranes of Teflon AF2400, Teflon AF1600, and Hyflon AD60 were prepared by a solution casting method, and it was found that annealing at sufficiently high temperatures (170 – 200 °C) ensured optimum permeability selectivity. In contrast, thermal analysis of the solution-cast Hyflon AD60 membranes that were heated to only 95 °C confirmed that the polymer matrix was significantly swollen due to a residual amount of the casting solvent. Consequently, considerably reduced selectivity and increased permeability of both NF3 and CF4 were observed for such solvent-swollen Hyflon AD60 membranes in comparison with the non-swollen membranes that were annealed at 170 °C. Nonetheless, the measured He/N2 permeability and permeability selectivity of all the membranes studied compared favourably with literature values, and selectively permeated NF3 rather than CF4 wherein the pure and mixed gas permeability selectivity displayed a clear dependence on the fractional free volume (FFV) of the polymer matrices. Thus, in accordance with the decreasing FFV of the perfluoropolymers in the order Teflon AF2400 > Teflon AF1600 > Hyflon AD60, the NF3 permeability decreased from 227 Barrer for Teflon AF2400, to 29 Barrer for Teflon AF1600, to 1.9 Barrer for Hyflon AD60. In contrast, the NF3/CF4 selectivity, α(NF3/CF4), increased inversely from 4.5 for Teflon AF2400, to 6.0 for Teflon AF1600, to the highest selectivity of 12 which was obtained using Hyflon AD60.
To elucidate the mechanism of separation, the transport properties of NF3 and CF4 in Teflon AF2400 and Teflon AF1600 w.r.t. diffusion and solubility were studied using Molecular Dynamics (MD), Grand Canonical Monte Carlo (GCMC), and statistical thermodynamic techniques. The results indicated that NF3/CF4 diffusion selectivity (DNF3/DCF4) was favoured by the lower free volume of Teflon AF1600, whereas poor correlation was achieved between the GCMC calculated sorption isotherms of CF4 and the experimentally determined isotherms as reported in the literature. Consequently, the non-equilibrium lattice fluid (NELF) model, which more accurately described the sorption isotherms of CF4, was used to evaluate the solubility selectivity. It was found that by adjusting the NELF model interaction parameter, Ψ, favourable NF3/CF4 solubility selectivities (SNF3/SCF4) were predicted. Furthermore, by combining the solubility selectivity values with the diffusion selectivities calculated from the MD results, permeability selectivity predictions that correlated well with the experimentally determined values were obtained. Based on a semi-quantitative technological evaluation, it was concluded that although good NF3/CF4 mixed gas permeability selectivity was obtained with Hyflon AD60, further research into improving the NF3 solubility, and hence permeability will aid in the development of an efficient membrane gas separation process for the purification of NF3. / PhD (Chemistry),North-West University, Potchefstroom Campus, 2013.
|
38 |
Dependence of physical and mechanical properties on polymer architecture for model polymer networksGuo, Ruilan 27 February 2008 (has links)
Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks.
Monodispersed allyl-terminated PTHF precursors were synthesized through ¡°living¡± cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to ¡°abnormal butterfly patterns¡±, which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on ¦Ë was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE) subjected to uniaxial strain at various temperatures using a combination of MD, hard sphere probe method and Voronoi tessellation. Combined effects of temperature and strain on free volume were studied and mechanism of formation of large and ellipsoidal free volume voids was explored.
|
39 |
Influence of solvent viscosity, polarity and polarizability on the chemiluminescence parameters of inter and intramolecular electron transfer initiated chemiexcitation systems / Influência da viscosidade, polaridade e polarizabilidade do solvente sobre os parâmetros de quimiluminescência de sistemas de quimiexcitação iniciadas por transferência de electron inter e intramolecularesMuhammad Khalid 21 August 2015 (has links)
The cyclic peroxides: diphenoyl peroxide (1), spiro-adamantyl-1,2-dioxetanone (2) and 4-(3-tert-butyldimethylsilyloxyphenyl)-4-methoxyspiro[1.2-dioxetane-3.2\'-adamantane] (3) synthesized, purified and characterized, also their kinetic and chemiluminescence (CL) properties were determined. The influence of solvent polarity on the chemiexcitation parameters of the catalyzed decomposition of 1 and 2, as well as the induced decomposition of 3 were examined in several binary solvent mixtures with different polarity and polarizability parameters, but similar viscosities. For solvents with low polarity, singlet quantum yields for the intermolecular catalyzed decomposition of diphenoyl peroxide (1,) and 1,2-dioxetanone (2) increase in function of medium polarity, showing maximum values in mediums of intermediate polarity, and decreasing in highly polar mixtures. For the induced decomposition of 3, the quantum yield showed to increase with increasing solvent polarity, including high polar solvent systems. In the binary solvent systems studied, the polarizability parameter showed to be contrary to the polarity values, therefore, it might appear that an increase of polarizability leads to a decrease in the singlet quantum yields for catalyzed decomposition of diphenoyl peroxide (1) and the induced decomposition of 3, however an increase in the singlet quantum yields for 1,2-dioxetanone 2. The three CL systems were also studied in binary solvent mixtures with different viscosities but similar polarity and polarizability parameters and singlet quantum yields showed an increase with increasing medium viscosity. Data were analyzed by using the collisional and the free volume models. The highly efficient intramolecular system induced 1,2-dioxetane 3 decomposition showed to be much more sensible to viscosity effects than the inefficient intermolecular systems. This surprising fact indicates that, even showing a significant solvent-cage effect, the induced 1,2-dioxetane should occur by an intramolecular electron back transfer. Moreover, chemiluminescence parameters of these systems were studied in several pure solvents. The obtained singlet quantum yields were correlated with viscosity, polarizability and polarity parameters by using multiple linear regression analysis. / Os peróxidos cíclicos: peróxido de difenoila (1), spiro-adamantil-1,2-dioxetanona (2) e 4-(3-terc-butildimetilsililoxifenil)-4-metoxispiro[1,2-dioxetano-3.2\'-adamantano] (3) foram sintetizados, purificados e caracterizados e as suas propriedades cinéticas e de quimiluminescência (CL) determinadas. A influência da polaridade do solvente sobre os parâmetros de quimi-excitação da decomposição catalisada de 1 e 2, e a decomposição induzida de 3 foi examinada em diversas misturas binárias de solventes com parâmetros de polaridade e polarizabilidade diferente, mas viscosidades semelhantes. Para solventes com baixa polaridade, os rendimentos quânticos singlete para a decomposição catalisada intermolecular do peróxido de difenoila (1) e 1,2-dioxetanona (2) aumentam em função da polaridade do meio, mostrando valores máximos em meios com polaridade intermediária, e diminuim para misturas altamente polares. Para a decomposição induzida de 3, o rendimento quântico mostrou aumentar com o aumento da polaridade do solvente, inclusive para sistemas com alta polaridade. Nos sistemas binários de solventes estudados, os parâmetros de polarizabilidade mostraram-se contrários aos valores de polaridade, portanto, parece que um aumento da polarizability leva a uma diminuição nos rendimentos quânticos singlete para a decomposição catalisada do peróxido de difenoila (1) e a decomposição induzida de 3, no entanto, um aumento nos rendimentos quânticos singlete para a 1,2-dioxetanona 2. Os três sistemas de CL também foram estudados em misturas binárias de solventes com diferentes viscosidades, mas com parâmetros de polaridade e polarizabilidade semelhantes e os rendimentos quânticos singlete mostraram aumentar com o aumento da viscosidade do meio. Os dados foram analisados usando tanto o modelos colisional quando o modelo de volume livre. Surpreendentemente, o sistema altamente eficiente decomposição induzida intramolecular do 1,2-dioxetano 3 mostrou-se muito mais sensível aos efeitos da viscosidade do que os sistemas intermoleculares ineficientes, o que indica claramente que a decomposição induzida do 1,2-dioxetano deve ocorrer por um processo de retro-transferência de elétron intramolecular. Além disso, os parâmetros de quimiluminescência destes sistemas foram estudados em vários solventes puros. Os rendimentos quânticos singlete obtidos foram correlacionados com parâmetros de viscosidade, polarizabilidade e polaridade usando análise de regressão linear múltipla.
|
40 |
Process-induced Long-term Deformation Behavior of Injection Molded Semicrystalline ThermoplasticsBanik, Kaushik 16 August 2006 (has links)
Process-induced Long-term Deformation Behavior of Injection Molded Semicrystalline Thermoplastics
Injection molding is a very complex process because the polymer experiences a complex thermorheological history during molding that influences the molecular orientation, residual stresses, frozen-in free volume and crystallinity inside the part. These generally govern the final part properties. Therefore it is highly desirable to anticipate the effect of process parameters on the resulting microstructure and mechanical properties of the finished part in the long run. In the case of a semicrystalline thermoplastic part, the problem in understanding the deformation behavior arises from its two-phase structure and a tendency exists to concentrate primarily on the effect of the crystalline phase on the deformation behavior, while the contribution of the amorphous phase is less investigated. In this work, the influence of the processing parameters on the deformation behavior of injection molded semicrystalline thermoplastic parts, viz., syndiotactic Polystyrene (sPS) and Polybutylene terepthalate (PBT), has been monitored through creep. The resulting internal structures due to processing have been determined and the deformation behavior has been analyzed. It has been observed that only the rate of cooling shows a remarkable effect on the long-term viscoelastic behavior of an injection molded semicrystalline thermoplastic part as it influences not only the crystalline, but also the free volume fraction, whereas the different states of frozen-in orientations and pressure-induced densification have only a negligible effect. Besides, physical aging also plays an important role in the deformation behavior of the injection moldings which was manifested with the decrease in the tendency to creep. Therefore, it was suggested that the cooling rate during injection molding and the aging time can significantly affect the long-term deformation behavior of the injection molded semicrystalline thermoplastics. The results also showed that when no significant effect is observed in terms of short-term mechanical properties by changing the processing conditions, but while considering the long-term behavior they show a significant effect.
|
Page generated in 0.0569 seconds