• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An optical measurement system to measure free form surfaces

Zou, Lifong January 2002 (has links)
Free form surface measurement and its subsequent analysis is becoming a subject of considerable interest, not only within the engineering field, but also in bioengineering, medical and dental research. In particular, within the field of dental research, the oral structures comprise a variety of complex free form surfaces, which are often recorded by elastomeric impression materials. In this study, an optical triangulation-based, noncontact probe fitted onto a Co-ordinate Measuring Machine was used to acquire three-dimensional co-ordinate data from such complex free form surfaces. When using an optical probe to digitise a complex free form surface represented by impressions, an optimal digitisation strategy is critical to limit the uncertainty of the data acquisition procedure, because the raw data are the basis for later surface measurement and analysis. This study attempted to optimise a method for three dimensional free form surface data acquisition, measurement and analysis. A theoretical and systematic analysis of error distribution was carried out using standard objects and optimal digitisation strategies were proposed in relation to specified models. Two simulation models of two typical human tooth surfaces were extensively analysed and evaluated. Three reference systems were developed for comparative measurements of those surfaces that have fewer geometrical features. An integrated automatic data acquisition procedure was also developed to scan a large number of impressions. Several successful research applications have been carried out using the methodology developed in this study.
2

Variations of Shape in Industrial Geometric Models

Veelo, Bastiaan Niels January 2004 (has links)
<p>This thesis presents an approach to free-form surface manipulations, which conceptually improves an existing CAD system that constructs surfaces by smoothly interpolating a network of intersecting curves. There are no regularity requirements on the network, which already yields superior modelling capabilities compared to systems that are based on industry-standard NURBS surfaces.</p><p>Originally, the shape of such a surface can be modified only locally by manipulating a curve in the network. In this process there is an inherent danger that the curve is being pulled away from intersections that it has with other curves. When this happens, the network is invalidated as a surface representation, and many curves may have to be adjusted to restore network consistency and surface quality. This thesis contributes a method that solves these problems by propagating changes that are made in one curve to curves in its vicinity. How and to what extent curves react to changes is controlled by two parameters that can be varied along the curve that is being manipulated. Any curve may be constrained in one or more degrees of freedom. The integrity of the curve network is implicitly conserved, as well as the geometric continuity of the surface.</p><p>The result is a tool for the modification of curve-interpolating surfaces, which can easily be applied to large areas on models with any level of detail. This allows designers to concentrate on the creative process, rather than on planning chains of actions. They can explore different design variations, optimise shapes further, and generally be more productive.</p> / <p>Dette doktorgradsarbeidet presenterer en fremgangsmåte for formgivning og modifisering av datamaskinbaserte, skulpturerte flater. Metoden forbedrer et eksisterende system for data-assistert konstruksjon (DAK) som bygger dobbeltkrummede flater ved å interpolere et nettverk av skjærende kurver. Nettverket trenger ikke være regelmessig, noe som allerede gir bedre modelleringsmuligheter sammenliknet med systemer som er basert på standard NURBS flater.</p><p>En slik flate kan opprinnelig bare endres lokalt ved å dra i en kurve. I denne prosessen er det fare for at kurven blir dratt fra skjæringspunkter den har med andre kurver. Hvis dette skjer, representerer ikke nettverket en flate lenger, og mange kurver må justeres for å få tilbake integriteten i nettverket og kvaliteten i formen. Denne avhandlingen bidrar med en metode som løser disse problemene ved å spre endringer som blir gjort i en kurve til andre kurver i nærheten. Hvordan og i hvilken utstrekning kurvene reagerer på endringen styres av to parametre som kan varieres langs kurven som blir endret. Enhver kurve kan låses i en eller flere frihetsgrader. Integriteten til nettverket samt glattheten i formen blir bevart automatisk.</p><p>Resultatet er et redskap for modifikasjon av kurve-interpolerende flater som med letthet kan brukes på større områder av modeller med hvilken som helst grad av detalj. Dette gir designere muligheten til å konsentrere seg om det kreative, istedenfor å planlegge handlingsrekker. De kan utforske forskjellige designvariasjoner, optimalisere former ytterligere, og i det hele tatt være mer produktive.</p>
3

Variations of Shape in Industrial Geometric Models

Veelo, Bastiaan Niels January 2004 (has links)
This thesis presents an approach to free-form surface manipulations, which conceptually improves an existing CAD system that constructs surfaces by smoothly interpolating a network of intersecting curves. There are no regularity requirements on the network, which already yields superior modelling capabilities compared to systems that are based on industry-standard NURBS surfaces. Originally, the shape of such a surface can be modified only locally by manipulating a curve in the network. In this process there is an inherent danger that the curve is being pulled away from intersections that it has with other curves. When this happens, the network is invalidated as a surface representation, and many curves may have to be adjusted to restore network consistency and surface quality. This thesis contributes a method that solves these problems by propagating changes that are made in one curve to curves in its vicinity. How and to what extent curves react to changes is controlled by two parameters that can be varied along the curve that is being manipulated. Any curve may be constrained in one or more degrees of freedom. The integrity of the curve network is implicitly conserved, as well as the geometric continuity of the surface. The result is a tool for the modification of curve-interpolating surfaces, which can easily be applied to large areas on models with any level of detail. This allows designers to concentrate on the creative process, rather than on planning chains of actions. They can explore different design variations, optimise shapes further, and generally be more productive. / Dette doktorgradsarbeidet presenterer en fremgangsmåte for formgivning og modifisering av datamaskinbaserte, skulpturerte flater. Metoden forbedrer et eksisterende system for data-assistert konstruksjon (DAK) som bygger dobbeltkrummede flater ved å interpolere et nettverk av skjærende kurver. Nettverket trenger ikke være regelmessig, noe som allerede gir bedre modelleringsmuligheter sammenliknet med systemer som er basert på standard NURBS flater. En slik flate kan opprinnelig bare endres lokalt ved å dra i en kurve. I denne prosessen er det fare for at kurven blir dratt fra skjæringspunkter den har med andre kurver. Hvis dette skjer, representerer ikke nettverket en flate lenger, og mange kurver må justeres for å få tilbake integriteten i nettverket og kvaliteten i formen. Denne avhandlingen bidrar med en metode som løser disse problemene ved å spre endringer som blir gjort i en kurve til andre kurver i nærheten. Hvordan og i hvilken utstrekning kurvene reagerer på endringen styres av to parametre som kan varieres langs kurven som blir endret. Enhver kurve kan låses i en eller flere frihetsgrader. Integriteten til nettverket samt glattheten i formen blir bevart automatisk. Resultatet er et redskap for modifikasjon av kurve-interpolerende flater som med letthet kan brukes på større områder av modeller med hvilken som helst grad av detalj. Dette gir designere muligheten til å konsentrere seg om det kreative, istedenfor å planlegge handlingsrekker. De kan utforske forskjellige designvariasjoner, optimalisere former ytterligere, og i det hele tatt være mer produktive.
4

Toolpath and Cutter Orientation Optimization in 5-Axis CNC Machining of Free-form Surfaces Using Flat-end Mills

Luo, Shan 24 December 2015 (has links)
Planning of optimal toolpath, cutter orientation, and feed rate for 5-axis Computer Numerical Control (CNC) machining of curved surfaces using a flat-end mill is a challenging task, although the approach has a great potential for much improved machining efficiency and surface quality of the finished part. This research combines and introduces several key enabling techniques for curved surface machining using 5-axis milling and a flat end cutter to achieve maximum machining efficiency and best surface quality, and to overcome some of the key drawbacks of 5-axis milling machine and flat end cutter use. First, this work proposes an optimal toolpath generation method by machining the curved surface patch-by-patch, considering surface normal variations using a fuzzy clustering technique. This method allows faster CNC machining with reduced slow angular motion of tool rotational axes and reduces sharp cutter orientation changes. The optimal number of surface patches or surface point clusters is determined by minimizing the two rotation motions and simplifying the toolpaths. Secondly, an optimal tool orientation generation method based on the combination of the surface normal method for convex curved surfaces and Euler-Meusnier Sphere (EMS) method for concave curved surfaces without surface gouge in machining has been introduced to achieve the maximum machining efficiency and surface quality. The surface normal based cutter orientation planning method is used to obtain the closest curvature match and longest cutting edge; and the EMS method is applied to obtain the closest curvature match and to avoid local gouging by matching the largest cutter Euler-Meusnier sphere with the smallest Euler-Meusnier sphere of the machined surface at each cutter contact (CC) point. For surfaces with saddle shapes, selection of one of these two tool orientation determination methods is based on the direction of the CNC toolpath relative to the change of surface curvature. A Non-uniform rational basis spline (NURBS) surface with concave, convex, and saddle features is used to demonstrate these newly introduced methods. Thirdly, the tool based and the Tri-dexel workpiece based methods of chip volume and cutting force predictions for flat-end mills in 5-axis CNC machining have been explored for feed rate optimization to achieve the maximum material removal rate. A new approach called local parallel slice method which extends the Alpha Shape method - only for chip geometry and removal volume prediction has been introduced to predict instant cutting forces for dynamic feed rate optimization. The Tri-dexel workpiece model is created to get undeformed chip geometry, chip volume, and cutting forces by determining the intersections of the tool envelope and continuously updating the workpiece during machining. The comparison of these two approaches is made and several machining experiments are conducted to verify the simulation results. At last, the chip ploughing effects that become a more serious problem in micro-machining due to chip thickness not always being larger than the tool edge radius are also considered. It is a challenging task to avoid ploughing effects in micro-milling. A new model of 3D chip geometry is thus developed to calculate chip thickness and ploughing volume in micro 5-axis flat-end milling by considering the minimum chip thickness effects. The research forms the foundation of optimal toolpath, cutter orientation, cutting forces/volume calculations, and ploughing effects in 5-axis CNC machining of curved surfaces using a flat-end mill for further research and direct manufacturing applications. / Graduate / 0548 / luoshan@uvic.ca
5

Detection and treatment of inconsistent or locally over-constrained configurations during the manipulation of 3D geometric models made of free-form surfaces / Détection et traitement de la configuration de sur-contraintes discontinues ou locale lors de la manipulation de modèle 3D géométrique réalisé par de surface à gauche

Hu, Hao 23 January 2018 (has links)
Trois modules seront développés: Le module de détection a produit une analyse des problématiques figurations con, à savoir un ensemble de domaines où soit quelques nouveaux DDL ou des changements locaux dans les contraintes sont obligatoires. Le module de traitement permettra à la défi nition des mécanismes pour aider la décision sur modi cations. Le module de prédiction dire le degré de déformation en pré-analyser les caractéristiques des configurations de NURBS. / Three modules will be developed: The detection module has produced an analysis of problematic con figurations, i.e. a set of areas where either some new DOFs or some local changes in the constraints are mandatory. The treatment module will enable the defi nition of mechanisms to help the decision on modi cations. The prediction module will tell the degree of deformation by pre-analyzing the features of NURBS configurations.
6

Feature-based Approach for Semantic Interoperability of Shape Models

Gupta, Ravi Kumar January 2012 (has links) (PDF)
Semantic interoperability (SI) of a product model refers to automatic exchange of meaning associated with the product data, among applications/domains throughout the product development cycle. In the product development cycle, several applications (engineering design, industrial design, manufacturing, supply chain, marketing, maintenance etc.) and different engineering domains (mechanical, electrical, electronic etc.) come into play making the ability to exchange product data with semantics very significant. With product development happening in multiple locations with multiple tools/systems, SI between these systems/domains becomes important. The thesis presents a feature-based framework for shape model to address these SI issues when exchanging shape models. Problem of exchanging semantics associated with shape model to support the product lifecycle has been identified and explained. Different types of semantic interoperability issues pertaining to the shape model have been identified and classified. Features in a shape model can be associated with volume addition/subtraction to/from base-solid, deformation/modification of base-sheet/base surface, forming of material of constant thickness. The DIFF model has been extended to represent, classify and extract Free-Form Surface Features (FFSFs) and deformation features in a part model. FFSFs refer to features that modify a free-form surface. Deformation features are created in constant thickness part models, for example, deformation of material (as in sheet-metal parts) or forming of material (as in injection molded parts with constant thickness), also referred to as constant thickness features. Volumetric features covered in the DIFF model have been extended to classify and represent volumetric features based on relative variations of cross-section and PathCurve. Shape feature ontology is described based on unified feature taxonomy with definitions and labels of features as defined in the extended DIFF model. Features definitions are used as intermediate and unambiguous representation for shape features. The feature ontology is used to capture semantics of shape features. The proposed ontology enables reasoning to handle semantic equivalences between feature labels, and is used to map shape features from a source to target applications. Reasoning framework for identification of semantically equivalent feature labels and representations for the feature being exchanged across multiple applications is presented and discussed. This reasoning framework is used to associate multiple construction paths for a feature and associate applicable meanings from the ontology. Interface is provided to select feature label for a target application from the list of labels which are semantically equivalent for the feature being exchanged/mapped. Parameters for the selected feature label can be mapped from the DIFF representation; the feature can then be represented/constructed in the target application using the feature label and mapped parameters. This work shows that product model with feature information (feature labels and representations), as understood by the target application, can be exchanged and maintained in such a way that multiple applications can use the product information as their understandable labels and representations. Finally, the thesis concludes by summarizing the main contributions and outlining the scope for future work.

Page generated in 0.061 seconds