101 |
Tool Degradation Characterization in the Friction Stir Welding of Hard MetalsThompson, Brian Thomas 30 July 2010 (has links)
No description available.
|
102 |
INVESTIGACIÓN DE LAS MODIFICACIONES MICROESTRUCTURALES Y PROPIEDADES MECÁNICAS EN UNA ALEACIÓN DE ALUMINIO AA6082-T6 SOLDADA CON LA TÉCNICA DE FRICCIÓN-AGITACIÓN (FSW)Martínez Díaz, Elkin 05 April 2016 (has links)
[EN] The friction stir welding (FSW) is a joining process that uses a non-consumable tool generates frictional heat (without reaching the melting point) and plastic deformation in the weld line as it rotates and moves the tool, so that a welded joint is obtained in solid state. This technique is capable to join many engineering materials but was initially focused on high strength aluminum alloys (series 2XXX, 6XXX and 7XXX) due to two main approaches: because they are difficult to weld by conventional welding processes fusion for their applications in key sectors such as automotive, aviation, aerospace, shipbuilding and other manufacturing industries due to high strength/weight ratio. FSW parameters as rotational speed, welding speed, weld pitch ratio (WPR), tool profile, among others, are responsible for obtaining sound welds (flawless), of the microstructural changes, of the mechanical and technological properties of welded joints. Therefore, it is important to study the parameters-microstructure-property relationship to maintain the quality of welded joints. In this work we have studied the influence of some FSW processing parameters (rotation speed, welding speed, weld pitch ratio and joint configuration) on the microstructural changes, mechanical and technological properties to a rolling sheet of aluminum alloy AA6082-T6 of 5mm thick. For the four configurations obtained it has been characterized the microstructure with various techniques, such as optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and differential scanning calorimetry (DSC) to identify major phases, dispersoids, second phases, dissolution, precipitation, and re-precipitation of phases, sub-structure, crystallographic texture, etc. in each welding zone and for each configuration. Also it has been obtained mechanical properties through microhardness tests, tensile and fatigue tests, and technological properties through accelerated corrosion tests. The results of the experiments indicate that it can to obtain sound welds, i.e. defect-free with different processing parameters, and they greatly influence in the microstructure and therefore on the mechanical and technological properties. Similarly, it found that it can get better mechanical properties (tensile strength and hardness) with a low weld pitch ratio (WPR [mm/rev]<2, "cold condition") and single-pass butt joint, while the best fatigue properties are obtained for high weld pitch ratio (WPR [mm/rev]>4 "hot condition") and single-pass butt joint. In comparison, the base metal has better mechanical properties and worse corrosion properties than the four configurations studied and in any case the double-pass butt joint never were one revulsive option to single-pass butt joint. / [ES] La soldadura por fricción-agitación (FSW) es proceso de unión que utiliza una herramienta no consumible que genera calor por fricción (sin llegar al punto de fusión) y deformación plástica en la línea de soldeo a medida que rota y avanza la herramienta, con lo que se obtiene una unión soldada en estado sólido. Esta técnica es capaz de unir muchos materiales de ingeniería pero se ha centrado inicialmente en las aleaciones de aluminio de alta resistencia (series 2XXX, 6XXX y 7XXX) debido a dos enfoques principales: porque son difíciles de soldar por procesos de soldadura por fusión convencionales y por sus aplicaciones en sectores claves como automoción, aeronáutico, aeroespacial, construcción naval y otras industrias de fabricación, debido a la alta relación resistencia/peso. Los parámetros de FSW como velocidad de rotación, velocidad de avance, relación de soldeo (WPR), perfil de la herramienta, entre otros, son responsables de la obtención de soldadas sanas (sin defectos), de las transformaciones microestructurales, de las propiedades mecánicas y tecnológicas de las uniones soldadas. Por lo tanto, es importante estudiar la relación parámetros-microestructura-propiedades para mantener la calidad de las juntas soldadas. En este trabajo se ha estudiado la influencia de algunos parámetros de procesado FSW (velocidad de avance, velocidad de rotación, relación de soldeo, configuración de junta) en las modificaciones microestructurales, propiedades mecánicas y tecnológicas para una chapa laminada de aleación de aluminio AA6082-T6 de 5 mm de espesor. Para las cuatro configuraciones obtenidas se han caracterizado a profundidad la microestructura con varias técnicas, tales como, microscopia óptica (MO), microscopía electrónica de barrido (MEB), microscopía electrónica de transmisión (MET), difracción de electrones retrodispersados (EBSD) y calorimetría diferencia de barrido (DSC) para identificar fases, dispersoides, segundas fases, disolución y precipitación de fases, sub-estructura, textura cristalográfica, etc., en cada zona de soldadura y para cada configuración. También se han obtenido las propiedades mecánicas a través de ensayos de microdureza, tracción y fatiga, y propiedades tecnológicas a través de ensayos de corrosión acelerada. Los resultados de la experimentación indican que se pueden obtener cordones sanos, es decir, libres de defectos con diferentes parámetros de procesado, y que éstos influyen en gran medida en la microestructura y por ende en las propiedades mecánicas y tecnológicas. Igualmente, encontramos que se pueden obtener mejores propiedades mecánicas de tracción y dureza para una relación de soldeo (WPR) con bajo aporte térmico y soldadura por una cara, mientras que las mejores propiedades a fatiga se obtienen para la configuración con alto aporte térmico y soldadura por una cara. En comparación, el metal base tiene mejores propiedades mecánicas y bajas propiedades a corrosión con respecto a las cuatro configuraciones estudiadas y, en ningún caso las soldaduras por ambas caras fueron una opción revulsiva de las soldaduras por una cara. / [CA] La soldadura per fricció-agitació (FSW) és un procés d'unió que utilitza una eina noconsumible que genera calor per fricció (sense arribar al punt de fusió) i deformació plàstica en la línia de soldadura a mesura que gira i avança l'eina, amb el que s'obté una unió soldada en estat sòlid. Aquesta tècnica és capaç d'unir molts materials d'enginyeria però s'ha centrat inicialment en els aliatges d'alumini d'alta resistència (sèries 2xxx, 6xxx i 7XXX) a causa de dos enfocaments principals: perquè són difícils de soldar per processos de soldadura per fusió convencionals i per les seves aplicacions en sectors claus com automoció, aeronàutic, aeroespacial, construcció naval i altres indústries de fabricació, degut a l'alta relació resistència/pes. Els paràmetres de FSW com velocitat de rotació, velocitat d'avanç, relació de soldadura (WPR), perfil de l'eina, entre d'altres, són responsables de l'obtenció de soldadures sanes (sense defectes), de les transformacions microestructurals, de les propietats mecàniques i tecnològiques de les unions soldades. Per tant, és important estudiar la relació paràmetres-microestructura-propietats per mantenir la qualitat de les juntes soldades. En aquest treball s'ha estudiat la influència d'alguns paràmetres de processat FSW (velocitat d'avanç, velocitat de rotació, relació de soldadura, configuració de les juntes) en les modificacions microestructurals, propietats mecàniques i tecnològiques per a una xapa laminada d'aliatge d'alumini AA6082- T6 de 5 mm de gruix. Per a les quatre configuracions obtingudes s'han caracteritzat a profunditat la microestructura amb diverses tècniques, com ara, microscòpia òptica (MO), microscòpia electrònica de rastreig (MER), microscòpia electrònica de transmissió (MET), difracció d'electrons retrodispersats (EBSD) i calorimetria diferèncial d'escombrat (DSC) per identificar fases, dispersoides, segones fases, dissolució i precipitació de fases, sub-estructures, textura cristal-logràfica, etc., a cada zona de soldadura i per a cada configuració. També s'han obtingut les propietats mecàniques a través d'assajos de microduresa, tracció i fatiga, i propietats tecnològiques a través d'assaigs de corrosió accelerada. Els resultats de l'experimentació indiquen que es poden obtenir cordons sans, és a dir lliures de defectes, amb diferents paràmetres de processat, i que aquests influeixen en gran mesura en la microestructura i per tant en les propietats mecàniques i tecnològiques. Igualment, trobem que es poden obtindre millors propietats mecàniques de tracció i duresa per una relació de soldadura (WPR) amb baix contingut tèrmic i soldadura per una cara, mentre que les millors propietats a fatiga s'obtenen per a la configuració amb alta aportació tèrmica i soldadura per una cara. En comparació, el metall base té millors propietats mecàniques i baixes propietats a corrosió pel que fa a les quatre configuracions estudiades i, en cap cas les soldadures per ambdues cares van ser una opció revulsiva de les soldadures. / Martínez Díaz, E. (2016). INVESTIGACIÓN DE LAS MODIFICACIONES MICROESTRUCTURALES Y PROPIEDADES MECÁNICAS EN UNA ALEACIÓN DE ALUMINIO AA6082-T6 SOLDADA CON LA TÉCNICA DE FRICCIÓN-AGITACIÓN (FSW) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62161
|
103 |
Micro-Mechanisms Associated with Friction Stir Welding of Aluminum with TitaniumKar, Amlan January 2016 (has links) (PDF)
Out of the known aerospace metal and alloys, Aluminium (Al) and Titanium (Ti) are important due to their unique combination of properties, such as strength, ductility and corrosion resistance etc. For these reasons, welding of these two materials, especially in the butt and lap configuration, has a significant impact for structural applications. However, welding of Al to Ti is a challenge due to wide differences in their physical properties and properties of the brittle intermetallic that are formed. Such problems in Ti-Al weld can be minimized if the temperature of welding is reduced. Therefore, many solid-state welding processes have been introduced for this system in the past few decades. Amongst these processes, Friction Stir Welding (FSW) is among the most appropriate for dissimilar materials in the butt and lap configuration, as this process involves lower temperature of processing. The present thesis is an attempt to address the issues pertaining to the friction stir welding of commercially pure Al and Ti. Though these commercially pure materials are seldom used in actual applications, where alloys such as Ti-6Al-4V and Al 2219 (and their variants) are used, this work is done to get a fundamental understanding of the underlying mechanisms during Friction Stir Welding (FSW).
The study has been extended to the effect of using a thin strip of other metallic materials between Al and Ti. These inserts are likely to play a role in the formation of intermetallic and control the after effects of the formation of these intermetallic. Two metals have been chosen for this purpose, namely Zinc (Zn) and Niobium (Nb).
The thesis has 8 chapters that attempts to systematically understand the process of FSW of cp-Al to cp-Ti. In Chapter 1 of the thesis, the FSW process is introduced with an emphasis on important parameters that control the welding process. In addition, a brief introduction of Al-Ti binary system is also given.
Literature related to conventional solid state welding processes and friction stir welding process is presented in Chapter 2. In this chapter, previous works on the FSW of various materials is reviewed, with more emphasis on welding of aluminium to titanium. At the end of the chapter the scope and motivation of the present investigation has been outlined
Chapter 3 includes the experimental details involved in the present study. In addition to the details of the processes and various characterization techniques used in the present investigation, the basic principles involved in various techniques, names as X-ray tomography, Scanning Electron Microscopy (SEM) with Electron Back-Scattered Diffraction (EBSD), X-Ray Diffraction (XRD) and Electron Probe Micro-Analysis (EPMA) have also been given. Micro-hardness and tensile tests results are also reported in this chapter.
A detailed study on FSW of Al and Ti is presented in chapter 4 of the thesis. The effect of process parameters on the evolution of microstructure and mechanical properties has been reported. A bottom-up approach on experimentally determining the “process window” is presented. The results emphasises on the distribution of titanium fragments and intermetallic particles in the nugget zone and their influence on mechanical properties of the weld. The microstructural evolution in the matrix is also detailed. The most noteworthy observation is substantial grain refinement in the nugget zone due to the presence of fine fragments of titanium and intermetallic. Cross-tensile tests of the samples welded under the optimised conditions fail in the retreating side of the aluminium material and has strength more than the parent material. The last section in this chapter deals with thermal stability of the microstructures.
Chapter 5 deals with the use of Zn as interlayer between Al and Ti. The microstructural evolution and its effect on the mechanical properties have been examined. The investigations clearly show that FSW of Al and Ti with Zn interlayer has superior mechanical properties compared to Al-Ti welds without interlayer. The resulting microstructure has a better thermal stability.
The use of Nb as interlayer has been studied in chapter 6. The microstructural investigation of the nugget zone reveals that Nb interlayer does not readily form solid solution with any of the base materials and Nb gets distributed more heterogeneously compared to Ti itself. This has led to a reduction in the strength of the weld, however, the ductility increases The thermal stability of the microstructure is poor compared to FSW of Al to Ti with Zn interlayer.
In chapter 7, salient features of the different micro-mechanism operating during FSW of the investigated combinations has been discussed in detail.
Finally, the outcome of the thesis has been summarized and scope for future investigation is outlined in chapter 8.
|
104 |
Microstructure Evolution in 304L Stainless Steel Subjected to Hot Torsion at Elevated TemperatureLu, Jian 19 September 2011 (has links) (PDF)
The current study focus on investigating a relationship between processing variables and microstructure evolution mechanism in 304L stainless steel subjected to hot torsion. The Gleeble 3800 with Mobile Torsion Unit (MTU) is utilized in the current study to conduct hot torsion test of 304L stainless steel. Samples are rotated at 1100℃ in the shear strain rate range of 0.02s-1 to 4.70s-1 and the shear strain range of 0.5 to 4. Orientation imaging microscopy (OIM) technique is used to collect and analyze the microstructure. At low strains (≤1) and strain rate (0.02s-1), average grain size remains relatively constant, but the lengths of DSs and LABs increase within grains. These are characteristics of the dynamic recovery (DRV). With increasing strain and strain rate, the lengths of DSs, LABs and HABs increase, accompanied by the decrease of average grain size. Subgrains with HAB segments are observed. These are characteristics of continuous dynamic recrystallization (CDRX). At strain rates greater than or equal to 0.94s-1, the fraction of deformation texture is about 3 times higher than that of rotated cube texture. The average grain size increases relative to that at a strain rate of 0.20s-1, accompanied by the increase of twin length per area. This indicates that grain growth take place after CDRX. Sigma phase is not observed in the current study due to the lack of static recrystallization (SRX) and the higher cooling rate.
|
105 |
Joining Polycrystalline Cubic Boron Nitride and Tungsten Carbide by Partial Transient Liquid Phase BondingCook, Grant O., III 16 December 2010 (has links) (PDF)
Friction stir welding (FSW) of steel is often performed with an insert made of polycrystalline cubic boron nitride (PCBN). Specifically, MS80 is a grade of PCBN made by Smith MegaDiamond that has been optimized for the FSW process. The PCBN insert is attached to a tungsten carbide (WC) shank by a compression fitting. However, FSW tools manufactured by this method inevitably fail by fracture in the PCBN. Permanently bonding PCBN to WC would likely solve the fracturing problem and increase the life of PCBN FSW tools to be economically viable. Partial transient liquid phase (PTLP) bonding, a process used to join ceramics with thin metallic interlayers, was proposed as a method to permanently bond PCBN to WC. PTLP bonding is often performed using three layers of pure elements. On heating, the two thin outer interlayers melt and bond to the ceramics. Concurrently, these liquid layers diffuse into the thicker refractory core until solidification has occurred isothermally. A procedure was developed to reduce the number of possible three-layer PTLP bonding setups to a small set of ideal setups using logical filters. Steps in this filtering method include a database of all existing binary systems, sessile drop testing of 20 elements, and a routine that calculates maximum interlayer thicknesses. Results of sessile drop testing showed that the PCBN grade required for this research could only be bonded with an alloy of Ti, Cu, Mg, and Sb. Two PTLP bond setups were tested using this special coating on the PCBN, but a successful bond could not be achieved. However, a PTLP bond of WC to WC was successful and proved the usefulness of the filtering procedure for determining PTLP bond setups. This filtering procedure is then set forth in generalized terms that can be used to PTLP bond any material. Also, recommendations for future research to bond this grade of PCBN, or some other grade, to WC are presented.
|
106 |
Development and Characterization of Friction Bit Joining: A New Solid State Spot Joining Technology Applied to Dissimilar Al/Steel JointsSiemssen, Brandon Raymond 18 June 2008 (has links) (PDF)
Friction bit joining (FBJ) is a new solid-state spot joining technology developed in cooperation between Brigham Young University of Provo Utah, and MegaStir Technologies of West Bountiful Utah. Although capable of joining several different material combinations, this research focuses on the application of FBJ to joining 5754 aluminum to DP 980 steel, two alloys commonly used in automotive applications. The thicknesses of the materials used were 0.070 inches (1.78 mm) and 0.065 inches (1.65 mm), respectively. The FBJ process employs a consumable 4140 steel bit and is carried out on a purpose built research machine. In the first stage of the weld cycle the bit is used to drill through the aluminum top sheet to be joined. After this, spindle speed is increased so that the bit tip effectively forms a friction weld to the steel bottom sheet. Momentary stoppage of the spindle facilitates weld cooling before the spindle is restarted, shearing the bit tip from the bit shank, and retracted. Incorporated into the bit tip geometry is a flange that securely holds the aluminum in place after joint formation is complete. This research consists of several developmental steps since the technology only recently began to be formally studied. Initial joint strengths observed in lapshear tensile testing averaged only 978.5 pounds (4.35 kN), with a relatively high standard deviation for the data set. Final lapshear tensile test results were improved to an average of 1421.8 pounds (6.32 kN), with a significantly lower, and acceptable, standard deviation for the data set. Similar improvements were realized during the development work in cross tension tensile test results, as average strengths increased from 255.8 pounds (1.14 kN) to 566.3 pounds (2.52 kN). Improvements were also observed in the standard deviation values of cross tension data sets from initial evaluation to the final data set presented in this work.
|
107 |
An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless SteelClark, Tad Dee 30 June 2005 (has links) (PDF)
An effective procedure and parameter window was developed for underwater friction stir welding (UWFSW) 304L stainless steel with a PCBN tool. UWFSW produced statistically significant: increases in yield strengths, decreases in percent elongation. The ultimate tensile strength was found to be significantly higher at certain parameters. Although sigma was identified in the UWFSWs, a significant reduction of sigma was found in UWFSWs compared to ambient FSWs. The degree of sensitization in UWFSWs was evaluated using double loop EPR testing and oxalic acid electro-etched metallography. Results were compared to base metal, ambient FSW, and arc welds. Upper and lower sensitization localization bands were identified in the UWFSWs. Although higher sensitization levels were present in UWFSWs compared to the arc weld, ambient FSW, and heat treated base metals, the UWFSWs were found less susceptible to corrosion than arc welds due to the subsurface location of the sensitization bands. A SCC analysis of UWFSWs relative to base metal and arc weldments was performed. U-bends were exposed to two 3.5% NaCl cyclic immersion experiments at 21 °C and 63 °C for 1000 hours each. A tertiary test was conducted in a 25% NaCl boiling solution. The UWFSW u-bends were no more susceptible to SCC than base metal in the cyclic immersion tests. In the boiling NaCl test, the SCC of the UWFSWs showed significant improvement over the SCC of arc welds. Arc u-bends cracked entirely within the weld bead and HAZ, while SCC in the UWFSWs showed no cracking localization.
|
Page generated in 0.0331 seconds