• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 19
  • 18
  • 16
  • 14
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 46
  • 26
  • 25
  • 24
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Combinatorial Considerations on Two Models from Statistical Mechanics

Thapper, Johan January 2007 (has links)
Interactions between combinatorics and statistical mechanics have provided many fruitful insights in both fields. A compelling example is Kuperberg’s solution to the alternating sign matrix conjecture, and its following generalisations. In this thesis we investigate two models from statistical mechanics which have received attention in recent years. The first is the fully packed loop model. A conjecture from 2001 by Razumov and Stroganov opened the field for a large ongoing investigation of the O(1) loop model and its connections to a refinement of the fully packed loop model. We apply a combinatorial bijection originally found by de Gier to an older conjecture made by Propp. The second model is the hard particle model. Recent discoveries by Fendley et al. and results by Jonsson suggests that the hard square model with cylindrical boundary conditions possess some beautiful combinatorial properties. We apply both topological and purely combinatorial methods to related independence complexes to try and gain a better understanding of this model.
112

Ab Initio Simulations of Transition Metal Alloys: Towards the Multiscale Modeling

Pourovskii, Leonid January 2003 (has links)
The present thesis concerns applications of first principles electronic structure calculations in conjunction with methods of statistical mechanics for simulations of transition metal alloys both in the bulk and at surfaces. A fully relativistic generalization of the exact muffin-tin orbitals (EMTO) method has been developed. The method accurately takes into account spin-orbit coupling and allows one to calculate orbital polarization and magneto-crystalline anisotropy in magnetic systems as well as increasing the range of applicability of the EMTO method to heavy elements. A new direct-exchange Monte Carlo (DEMC) method has been proposed, which is capable to tackling effectively statistical simulations of surface segregations in disordered and ordered alloys. The applications of relativistic methods include calculations of spin and orbital magnetization in iron-cobalt disordered and partially ordered alloys, as well as computation of the core-level shifts (CLS) in transition metal alloys. It has been found, that relativistic corrections are important for CLS calculations in 5-d metal alloys. Properties of a Ni monolayer deposited on a Cu surface have been studied. The monolayer is found to be unstable in the top layer, and its magnetization depends greatly on the surface orientation. Two distinct energy levels have been found to exist Co/Cu/Ni trilayers deposited on the (100) Cu surface, which correspond to a completely paramagnetic trilayer and the case when only Ni is paramagnetic. Vacancy ordering in substoichometric titanium carbides TiCx have been simulated. Existence of three ordered phases in the range of carbon concentration x=0.5 ÷1.0 has been revealed and a theoretical phase diagram has been proposed. Surface segregations have been calculated in disordered Ni50Pt50 and Ni50Pd50 as well as in ordered NiPt alloys. Segregation reversal has been observed in the Ni50Pt50 alloy with Pt segregation at the (111) surface and Ni segregation at the (110). In the ordered NiPt alloys segregation behaviour is found to be affected greatly by small deviations from the exact stoichiometric composition in bulk. Surface magnetization in PdV and MoV bcc alloys have been studied. It has been found, that in PdV alloys surface segregations suppress magnetic order at the surface, while in MoV alloys magnetization is substantially enhanced due to the segregation.
113

A Fully Integrated Fractional-N Frequency Synthesizer for Wireless Communications

Son, Han-Woong 12 April 2004 (has links)
A fully integrated, fast-locking fractional-N frequency synthesizer is proposed and demonstrated in this work. In this design, to eliminate the need for large, inaccurate capacitors and resistors in a loop filter, an analog continuous-time loop filter whose performance is sensitive to process and temperature variations and aging has been replaced with a programmable digital Finite Impulse Response (FIR) filter. In addition, using the adaptive loop gain control proportional to the frequency difference, the frequency-locking time has been reduced. Also, the phase noise and spurs have been reduced by a Multi-stAge noise SHaping (MASH) controlled Fractional Frequency Detector (FFD) that generates a digital output corresponding directly to the frequency difference. The proposed frequency synthesizer provides many benefits in terms of high integration ability, technological robustness, fast locking time, low noise level, and multimode flexibility. To prove performance of the proposed frequency synthesizer, the frequency synthesizers analysis, design, and simulation have been carried out at both the system and the circuit levels. Then, the performance was also verified after fabrication and packaging.
114

Health Status Under Impact of Globalization in OECD countries--A Study for Cardiovascular Disease

Tsai, Shu-Hui 07 September 2011 (has links)
Non-communicable disease (NCD) (particular by cardiovascular disease, CVD) is the leading cause of death in most countries including OECD countries. WHO (World Health Organization, 2002) has emphasized the trend of disease patterns shifting from communicable diseases towards to non-communicable diseases globally. However, globalization drives economic activities vigorously and alternates work conditions, such as prolonger or irregular working time, changing patterns of job. And then, more sweating, stress and occupational safety of labors after globalization were noted by many worldwide scholars. ¡§Karoshi¡¨ (death from overwork) is a controversial issue of occupational matters in these years all over the world. According to past empirical literatures, CVD was also the major medical cause of death from overwork. Hence, we collect panel data of CVD mortality, working hours of labor and KOF index of globalization covering 19 OECD countries from a period of 1980 to 2007, and measure by panel cointegration analysis and fully modified OLS (FMOLS) to estimate the reciprocal relationship among these variables. The evidence findings show significant influence on CVD mortality if increasing working hours of labor, especially at age groups of 15 to 24 year. While significant effect on CVD mortality through by globalization was found at age group 25 to 54 year and elders, particular in social globalization.
115

Combinatorial Considerations on Two Models from Statistical Mechanics

Thapper, Johan January 2007 (has links)
<p>Interactions between combinatorics and statistical mechanics have provided many fruitful insights in both fields. A compelling example is Kuperberg’s solution to the alternating sign matrix conjecture, and its following generalisations. In this thesis we investigate two models from statistical mechanics which have received attention in recent years.</p><p>The first is the fully packed loop model. A conjecture from 2001 by Razumov and Stroganov opened the field for a large ongoing investigation of the O(1) loop model and its connections to a refinement of the fully packed loop model. We apply a combinatorial bijection originally found by de Gier to an older conjecture made by Propp.</p><p>The second model is the hard particle model. Recent discoveries by Fendley et al. and results by Jonsson suggests that the hard square model with cylindrical boundary conditions possess some beautiful combinatorial properties. We apply both topological and purely combinatorial methods to related independence complexes to try and gain a better understanding of this model.</p>
116

Numerical Simulations of Heat Transfer Processes in a Dehumidifying Wavy Fin and a Confined Liquid Jet Impingement on Various Surfaces

Elsheikh, Mutasim Mohamed Sarour 01 January 2011 (has links)
This thesis consists of two different research problems. In the first one, the heat transfer characteristic of wavy fin assembly with dehumidification is carried out. In general, fin tube heat exchangers are employed in a wide variety of engineering applications, such as cooling coils for air conditioning, air pre-heaters in power plants and for heat dissipation from engine coolants in automobile radiators. In these heat exchangers, a heat transfer fluid such as water, oil, or refrigerant, flows through a parallel tube bank, while a second heat transfer fluid, such as air, is directed across the tubes. Since the principal resistance is much greater on the air side than on the tube side, enhanced surfaces in the form of wavy fins are used in air-cooled heat exchangers to improve the overall heat transfer performance. In heating, ventilation, and air conditioning systems (HVAC), the air stream is cooled and dehumidified as it passes through the cooling coils, circulating the refrigerant. Heat and mass transfer take place when the coil surface temperature in most cooling coils is below the dew point temperature of the air being cooled. This thesis presents a simplified analysis of combined heat and mass transfer in wavy-finned cooling coils by considering condensing water film resistance for a fully wet fin in dehumidifier coil operation during air condition. The effects of variation of the cold fluid temperature (-5˚C - 5˚C), air side temperature (25˚C - 35˚C), and relative humidity (50% - 70%) on the dimensionless temperature distribution and the augmentation factor are investigated and compared with those under dry conditions. In addition, comparison of the wavy fin with straight radial or rectangular fin under the same conditions were investigated and the results show that the wavy fin has better heat dissipation because of the greater area. The results demonstrate that the overall fin efficiency is dependent on the relative humidity of the surrounding air and the total surface area of the fin. In addition, the findings of the present work are in good agreement with experimental data. The second problem investigated is the heat transfer analysis of confined liquid jet impingement on various surfaces. The objective of this computational study is to characterize the convective heat transfer of a confined liquid jet impinging on a curved surface of a solid body, while the body is being supplied with a uniform heat flux at its opposite flat surface. Both convex and concave configurations of the curved surface are investigated. The confinement plate has the same shape as the curved surface. Calculations were done for various solid materials, namely copper, aluminum, Constantan, and silicon; at two-dimensional jet. For this research, Reynolds numbers ranging from 750 to 2000 for various nozzle widths channel spacing, radii of curvature, and base thicknesses of the solid body, were used. Results are presented in terms of dimensionless solid-fluid interface temperature, heat transfer coefficient, and local and average Nusselt numbers. The increments of Reynolds numbers increase local Nusselt numbers over the entire solid-fluid interface. Decreasing the nozzle width, channel spacing, plate thickness or curved surface radius of curvature all enhanced the local Nusselt number. Results show that a convex surface is more effective compared to a flat or concave surface. Numerical simulation results are validated by comparing them with experimental data for flat and concave surfaces.
117

Regularity for solutions of nonlocal fully nonlinear parabolic equations and free boundaries on two dimensional cones

Chang Lara, Hector Andres 22 October 2013 (has links)
On the first part, we consider nonlinear operators I depending on a family of nonlocal linear operators [mathematical equations]. We study the solutions of the Dirichlet initial and boundary value problems [mathematical equations]. We do not assume even symmetry for the kernels. The odd part bring some sort of nonlocal drift term, which in principle competes against the regularization of the solution. Existence and uniqueness is established for viscosity solutions. Several Hölder estimates are established for u and its derivatives under special assumptions. Moreover, the estimates remain uniform as the order of the equation approaches the second order case. This allows to consider our results as an extension of the classical theory of second order fully nonlinear equations. On the second part, we study two phase problems posed over a two dimensional cone generated by a smooth curve [mathematical symbol] on the unit sphere. We show that when [mathematical equation] the free boundary avoids the vertex of the cone. When [mathematical equation]we provide examples of minimizers such that the vertex belongs to the free boundary. / text
118

A numerical study of a highway embankment on degrading permafrost

Gholamzadehabolfazl, Arash 04 December 2015 (has links)
In this research, two comprehensive numerical models were developed using ABAQUS/CAE Finite Element (FE) software: 1) geothermal model, and 2) coupled thermo-hydro-mechanical model. In the first model, a purely heat transfer analysis was performed to reproduce the conditions at the site and investigate the subsurface thermal regime beneath the road embankment. The existence of a frozen section (frost bulb) underneath the embankment and its size and location were investigated by the model. The second model concentrated on the mechanical behaviour of the road embankment. Temperature-dependent thermal and mechanical properties were used for all the materials. Model parameters were calibrated using the results of the triaxial and oedometer tests which have been conducted by previous researchers. A fully-coupled and a sequentially-coupled analysis were conducted. The results of the two analyses were compared to each other and to the field measurements. / February 2016
119

Selective laser sintering and post-processing of fully ferrous components

Vallabhajosyula, Phani Charana Devi 08 June 2011 (has links)
Indirect additive processing of ferrous metals offers the potential to freeform fabricate parts with good surface finish and minimal dimensional variation from the computer solid model. The approach described here is to mix a ferrous powder with a transient binder followed by selective laser sintering (SLS) in a commercial polymer machine to create a “green” part. This part is post-processed to burn off the transient binder and to infiltrate the porous structure with a lower melting point metal/alloy. Commercially available SLSed ferrous components contain copper-based infiltrant in a ferrous preform. The choice of copper alloy infiltrant has led to inferior mechanical properties of these components limiting their use in many non-injection-molding structural applications, particularly at elevated temperature. In the present work, an attempt has been made to replace the copper-based infiltrant considering cast iron as a potential infiltrant because of its fluidity, hardness and stability at comparatively high temperature. A critical consideration is loss of part structural integrity by over-melting after infiltration as chemical diffusion of alloying elements, principally carbon, occurs resulting in a decrease in the melting temperature of tool steel preform. A predictive model was developed which defines the degree of success for infiltration based on final part geometry and depending on the relative density of the preform and infiltration temperature. The processing regime is defined as a function of controllable process parameters. An experimental program was undertaken using commercially available LaserForm[superscript tm] A6 tool steel that was infiltrated with ASTM A532 white cast iron. Guided by Ashby densification maps, pre-sintering of the A6 tool steel SLS part was performed to increase the part initial relative density prior to infiltration. The final infiltrated parts were analyzed for geometry, microstructure and hardness. The model may be extended to other ferrous powder and infiltrant compositions in an effort to optimize the properties and utility of the final infiltrated part. / text
120

A general global approximation method for the solution of boundary value problems

Mokhtarzadeh, M. R. January 1998 (has links)
A general global approximation scheme is developed and its generality is demonstrated by the derivation of classical Lagrange and Hermite interpolation and finite difference and finite element approximations as its special cases. It is also shown that previously reported general approximation techniques which use the idea of moving least square are also special cases of the present method. The combination of the developed general global approximation technique with the weighted residual methods provides a very powerful scheme for the solution of the boundary value problems formulated in terms of differential equations. Although this application is the main purpose of the this project, nevertheless, the power and flexibility of the developed approximation allows it to be used in many other areas. In this study the following applications of the described approximation are developed: 1- data fitting (including curve and surface fitting) 2- plane mapping (both in cases where a conformal mapping exists and for non-conformal mapping) 3- solution of eigenvalue problems with particular application to spectral expansions used in the modal representation of shallow water equations 4- solution of ordinary differential equations (including Sturm-Liouville equations, non-homogeneous equations with non-smooth right hand sides and 4th order equations) 5- elliptic partial differential equations (including Poisson equations with non-smooth right hand sides) A computer program which can handle the above applications is developed. This program utilises symbolic, numerical and graphical and the programming language provided by the Mathematica package.

Page generated in 0.0349 seconds