Spelling suggestions: "subject:"géométrie d'arakaki"" "subject:"géométrie d'arakawa""
1 |
Hauteurs pour les sous-schémas et exemples d'utilisation de méthodes arakeloviennes en théorie de l'approximation diophantienneRandriambololona, Hugues 08 January 2002 (has links) (PDF)
Dans cette thèse on définit et étudie un certain nombre de notions dans le cadre de la géométrie d'Arakelov qui, d'une part, possèdent un intérêt intrinsèque et, d'autre part, sont susceptibles d'applications à la théorie de l'approximation diophantienne.<br /><br />La plus grande partie du texte est consacrée à l'élaboration d'une théorie des hauteurs pour les sous-schémas et à la preuve de «formules de Hilbert-Samuel» pour ces hauteurs. Pour deux classes importantes de sous-schémas (les sous-schémas intègres et les sous-schémas «lisses avec multiplicités») on montre que la hauteur du sous-schéma relativement à une grande puissance d'un fibré en droites positif est asymptotiquement déterminée par la hauteur du cycle associé. La démonstration repose essentiellement sur le «théorème de Hilbert-Samuel arithmétique» de Gillet et Soulé, auquel elle se ramène par l'utilisation de techniques de géométrie analytique hermitienne. On fait ensuite une analyse plus fine du développement asymptotique des hauteurs de certains sous-schémas particuliers. Notamment, dans le cas de la dimension relative zéro, on exprime le terme constant du développement asymptotique en fonction de la ramification du sous-schéma, ce qui résout une question de Michel Laurent sur les hauteurs des matrices d'interpolation.<br /><br />Enfin, dans une partie indépendante, on expose diverses applications de méthodes arakeloviennes à des problèmes d'approximation diophantienne. En particulier on donne une nouvelle démonstration d'un critère classique d'indépendance algébrique dont l'originalité est qu'elle n'utilise plus de théorie de l'élimination mais uniquement des techniques de théorie de l'intersection arithmétique.
|
2 |
Applications de la théorie géométrique des invariants à la géométrie diophantienneMaculan, Marco 07 December 2012 (has links) (PDF)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta.
|
3 |
Positivité en géométrie algébrique et en géométrie d'Arakelov :<br />application à l'algébrisation et à l'étude asymptotique des polygones de<br />Harder-NarasimhanChen, Huayi 01 December 2006 (has links) (PDF)
Le but de cette thèse est d'étudier diveres notions de positivité, dans le cadre de la géométrie algébrique et de la géométrie d'Arakelov, pour un fibré vectoriel sur une variété algébrique projective, et de développer des applications à l'étude de l'algébricité des sous-schémas formels des variété algébriques et du comportement asymptotique des polygones de Harder-Narasimhan.<br /><br />Dans la première partie de la thèse, on propose une condition appelée P3 d'un fibré vectoriel sur une varété algébrique projective de dimension au moins 1. On vérifie que cette condition est plus faible que l'amplitude du fibré vectoriel et dans le cadre de la géométrie algébrique complexe, plus faible que la 1-positivité. On montre que si la condition P3 est vérifiée pour le fibré normal du schéma de définition dans un sous-schéma formel, alors on a l'algébricité du sous-schéma formel considéré. Enfin, on donne une application de ce critère à la comparaison de l'équivalence dans un voisinage étale et celle dans un voisinage formel de deux couples de schémas. Une analogue de la condition P3 dans le cadre de la géométrie d'Araklov est aussi étudiée.<br /><br />Dans la deuxième partie de la thèse, on propose un nouveau point de vu de la filtration de Harder-Narasimhan d'un fibré vectoriel (resp. fibré vectoriel hermitien) sur une courbe projective lisse (resp. le spectre de un anneau des entiers algébriques). On en profite de ramener l'étude de la filtration (ou le polygone) de Harder-Narasimhan à celui de la mesure (borélienne sur R) associée. En combinant cette interprétation avec un argument combinatoire, on démontre que, sous des conditions techniques très faibles, les polygones de Harder-Narasimhan (normalisés) associés à une algèbre graduée de type fini en fibrés vectoriels (hermitiens) convergent uniformément vers une courbe concave sur [0,1], où la démonstration de la partie arithmétique utilise une nouvelle estimation de la pente maximale du produit tensoriel de plusieurs fibrés vectoriels hermitiens développée dans cette thèse.
|
4 |
Le théorème de concentration et la formule des points fixes de Lefschetz en géométrie d'ArakelovTang, Shun 18 February 2011 (has links) (PDF)
Dans les années quatre-vingts dix du siècle dernier, R. W. Thomason a démontréun théorème de concentration pour la K-théorie équivariante algébrique sur lesschémas munis d'une action d'un groupe algébrique G diagonalisable. Comme d'habitude,un tel théorème entraîne une formule des points fixes de type Lefschetz qui permetde calculer la caractéristique d'Euler-Poincaré équivariante d'un G-faisceau cohérent surun G-schéma propre en termes d'une caractéristique sur le sous-schéma des points fixes.Le but de cette thèse est de généraliser les résultats de R.W. Thomason dans le contextede la géométrie d'Arakelov. Dans ce travail, nous considérons les schémas arithmétiquesau sens de Gillet-Soulé et nous tout d'abord démontrons un analogue arithmétiquedu théorème de concentration pour les schémas arithmétiques munis d'une action duschéma en groupe diagonalisable associé à Z/nZ. La démonstration résulte du théorèmede concentration algébrique joint à des arguments analytiques. Dans le dernier chapitre,nous formulons et démontrons deux types de formules de Lefschetz arithmétiques. Cesdeux formules donnent une réponse positive à deux conjectures énoncées par K. Köhler,V. Maillot et D. Rössler.
|
5 |
Construction d'une version Arakelov d'un groupe faible de cobordisme arithmétique / Construction of an Arakelov version of a weak arithmetic cobordism groupRodriguez, Aurélien 16 January 2015 (has links)
Dans cette thèse nous construisons un groupe faible de cobordisme arithmétique dans le contexte de la géométrie d'Arakelov. Nous introduisons des versions faibles des groupes de K-théorie arithmétique et de Chow arithmétique, et en dégageons une notion de théorie homologique orientée de type arithmétique. Nous construisons alors un groupe universel parmi ces théories homologiques et prouvons ses principales propriétés structurelles. / In this thesis we construct a weak group of arithmetic cobordism in the context of Arakelov geometry. We introduce weak versions of arithmetic K-theory and arithmetic Chow groups, that give rise to the notion of oriented homological theory of arithmetic type. We then build a universal such homological theory, and prove its main structural features.
|
6 |
Applications de la théorie géométrique des invariants à la géométrie diophantienne / Applications of geometric invariant theory to diophantine geometryMaculan, Marco 07 December 2012 (has links)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta. / Geometric invariant theory is a central subject in nowadays' algebraic geometry : developed by Mumford in the early sixties, it enhanced the knowledge of projective varieties through the construction of moduli spaces. During the last twenty years, interactions between geometric invariant theory and arithmetic geometric --- more precisely, height theory and Arakelov geometry --- have been exploited by several authors (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). In this thesis we firstly study in a systematic way how geometric invariant theory fits in the framework of Arakelov geometry; then we show that these results give a new geometric approach to questions in diophantine approximation, proving Roth's Theorem and its recent generalizations by Lang, Wirsing and Vojta.
|
7 |
Mesure d'indépendance linéaire de logarithmes dans un groupe algébrique commutatifGaudron, Eric 08 December 2001 (has links) (PDF)
Cette thèse s'inscrit dans la lignée des travaux relatifs à la théorie des formes linéaires de logarithmes. Elle comporte deux parties ainsi que trois annexes. Dans la première partie, nous nous intéressons au cas général d'un groupe algébrique commutatif quelconque, défini sur la clôture algébrique de Q. Étant donné un tel groupe G, un hyperplan W de l'espace tangent à l'origine de G et $u$ un point complexe de cet espace tangent, dont l'image par l'exponentielle du groupe de Lie complexe G(C) est algébrique, nous obtenons une minoration de la distance de u à W, qui améliore les résultats connus auparavant et qui, en particulier, est optimale en la hauteur de l'hyperplan W. La démonstration repose sur la méthode de Baker ainsi que sur un nouvel argument de nature arithmétique (procédé de changement de variables de Chudnovsky) qui nous permet d'évaluer précisément les normes ultramétriques des nombres algébriques construits au cours de la preuve. Dans la seconde partie, nous étudions plus en détail le < non-homogène>> (dans lequel le groupe G est le produit direct du groupe $\mathbb{G}_{\mathrm{a}}$ et d'une variété abélienne) et nous établissons une nouvelle mesure, comparable à celle donnée dans la première partie mais totalement explicite en les invariants liés à la variété abélienne. La particularité de cette seconde partie est de mettre en oeuvre, pour la première fois dans ce contexte, la méthode des pentes de J.-B. Bost et certains résultats de géométrie d'Arakelov qui lui sont attachés.
|
8 |
Height of cycles in toric varieties / Hauteur de cycles de variétés toriquesGualdi, Roberto 20 September 2018 (has links)
Nous étudions dans cette thése la relation entre certaines hauteurs d'Arakelov de cycles de variétés toriques et les caractéristiques arithmétiques des polynômes de Laurent qui les définissent. Pour cela, nous associons _a un polynôme de Laurent des fonctions concaves que nous appelons fonctions de Ronkin et fonctions supérieures. Nous donnons des bornes supérieures pour la hauteur d'une intersection compléte faisant intervenir les fonctions supérieures associées. Dans le cas d'une hypersurface, nous montrons une formule liant sa hauteur _a la fonction de Ronkin de son polynôme de Laurent. Nous proposons une égalité analogue pour des hauteurs moyennes appropriées en codimension supérieure et nous indiquons une stratégie pour la preuve d'un cas particulier. Dans ces travaux, nous utilisons des notions de géométrie convexe telles que les polytopes, les mesures de Monge-Ampére réelles et la dualité de Legendre- Fenchel de fonctions concaves. Nous les présentons dans un cadre algébrique adapté et nous développons l'étude des intégrales mixtes. / We investigate in this work the relation between suitable Arakelov heights of a cycle in a toric variety and the arithmetic features of its defining Laurent polynomials. To this purpose, we associate to a Laurent polynomial certain concave functions which we call Ronkin functions and upper functions. We give upper bounds for the height of a complete intersection in terms of the associated upper functions. For a hypersurfaces, we prove a formula relating its height to the Ronkin function of the associated Laurent polynomial. We conjecture an analogous equality for a suitable average height in higher codimensions and indicate a strategy for the proof of a particular case. In all the treatment, we deal with convex geometrical objects such as polytopes, real Monge-Ampère measures and Legendre-Fenchel duality of concave functions. We suggest an algebraic framework for such a study and deepen the understanding of mixed integrals.
|
9 |
Bornes polynomiales et explicites pour les invariants arakeloviens d'une courbe de BelyiJavan Peykar, Ariyan 11 June 2013 (has links) (PDF)
On borne explicitement la hauteur de Faltings d'une courbe sur le corps de nombres algèbriques en son degré de Belyi. Des résultats similaires sont démontré pour trois autres invariants arakeloviennes : le discriminant, l'invariant delta et l'auto-intersection de omega. Nos résultats nous permettent de borner explicitement les invariantes arakeloviennes des courbes modulaires, des courbes de Fermat et des courbes de Hurwitz. En plus, comme application, on montre que l'algorithme de Couveignes-Edixhoven-Bruin est polynomial sous l'hypothèse de Riemann pour les fonctions zeta des corps de nombres. Ceci était connu uniquement pour certains sous-groupes de congruence. Finalement, on utilise nos résultats pour démontrer une conjecture de Edixhoven, de Jong et Schepers sur la hauteur de Faltings d'un revêtement ramifié de la droite projective sur l'anneau des entiers.
|
10 |
Explicit polynomial bounds for Arakelov invariants of Belyi curves / Bornes polynomiales et explicites pour les invariants arakeloviens d'une courbe de BelyiJavan Peykar, Ariyan 11 June 2013 (has links)
On borne explicitement la hauteur de Faltings d'une courbe sur le corps de nombres algèbriques en son degré de Belyi. Des résultats similaires sont démontré pour trois autres invariants arakeloviennes : le discriminant, l'invariant delta et l'auto-intersection de omega. Nos résultats nous permettent de borner explicitement les invariantes arakeloviennes des courbes modulaires, des courbes de Fermat et des courbes de Hurwitz. En plus, comme application, on montre que l'algorithme de Couveignes-Edixhoven-Bruin est polynomial sous l’hypothèse de Riemann pour les fonctions zeta des corps de nombres. Ceci était connu uniquement pour certains sous-groupes de congruence. Finalement, on utilise nos résultats pour démontrer une conjecture de Edixhoven, de Jong et Schepers sur la hauteur de Faltings d'un revêtement ramifié de la droite projective sur l'anneau des entiers. / We explicitly bound the Faltings height of a curve over the field of algebraic numbers in terms of the Belyi degree. Similar bounds are proven for three other Arakelov invariants: the discriminant, Faltings' delta invariant and the self-intersection of the dualizing sheaf. Our results allow us to explicitly bound these Arakelov invariants for modular curves, Hurwitz curves and Fermat curves. Moreover, as an application, we show that the Couveignes-Edixhoven-Bruin algorithmtime under the Riemann hypothesis for zeta-functions of number fields. This was known before only for certain congruence subgroups. Finally, we utilize our results to prove a conjecture of Edixhoven, de Jong and Schepers on the Faltings height of a branched cover of the projective line over the ring of integers.
|
Page generated in 0.0591 seconds