11 |
Les matrices doublement stochastiques : une étude géométriqueBouthat, Ludovick 13 December 2023 (has links)
Le célèbre théorème de Birkhoff affirme que l'espace Dₙ des matrices doublement stochastiques d'ordre n est un polytope convexe dont les matrices de permutation constituent les points extrémaux. De cette structure particulière émerge une structure géométrique intéressante que nous explorons en détail dans ce mémoire. Plus précisément, nous explorons quelques propriétés géométriques de Dₙ, vu comme un espace métrique muni de deux différents types de normes, à savoir les p-normes de Schatten et les normes d'opérateurs induites par les normes vectorielles ℓᵖ. En particulier, nous étudions la norme des matrices doublement stochastiques ainsi que le rayon de Tchebychev, les centres de Tchebychev et le diamètre de Dₙ. Ce faisant, de nouvelles connexions avec le célèbre problème d'affectation sont établies. Nous utilisons également les propriétés géométriques de Dₙ établies dans ce mémoire pour améliorer un résultat de Štefan Schwarz sur la convergence de produits infinis de matrices doublement stochastiques. / The celebrated Birkhoff theorem states that the space of n × n doubly stochastic matrices Dₙ is a convex polytope whose extreme points are the permutation matrices. From this particular structure emerges an interesting geometric structure that we explore in detail in this dissertation. Specifically, we explore some geometric properties of Dₙ, seen as a metric space equipped with two different type of norms, which are the Schatten p-norms and the operator norms induced by the ℓᵖ vector norms. In particular, we study the norm of the doubly stochastic matrices along with the Chebyshev radius, the Chebyshev centers and the diameter of Dₙ. In doing so, new connections with the well-known assignment problem are made. We also use the geometric properties of Dₙ established in this dissertation to improve a result of Štefan Schwarz about the convergence of infinite product of doubly stochastic matrices.
|
12 |
Sur les triangulations des structures CR-sphériquesGenzmer, Juliette 25 June 2010 (has links) (PDF)
Thurston montre comment munir le complémentaire du noeud de huit dans S³ d'une structure hyperbolique réelle complète en identifiant cet espace au recollement de deux tétraèdres. Falbel prolonge cette méthode dans le cadre CR-sphérique. Il obtient ainsi une géométrisation CR branchée pour le complémentaire du noeud. Cette approche passe par la résolution d'équations polynomiales dont les inconnues sont des invariants caractérisant les tétraèdres. La résolution de ces équations nous a permis de construire des représentations de groupes fondamentaux à valeur dans PU(2,1) pour des variétés non compactes. Dans le cas réel, la rigidité des structures hyperboliques complètes est assurée par le théorème de Mostow, tandis qu'il existe des représentations de variétés CR-sphériques compactes admettant des déformations. Le calcul du rang des équations précédemment évoquées permet de conclure à la rigidité d'une structure CR-sphérique triangulée dès qu'elle existe. Pour les représentations que nous avons construites, le rang des équations est systématiquement maximal. Dans le cas général, nous donnons des minorations du rang. Dans une partie indépendante, nous étudions le corps de trace de sous-groupes de SU(n,1). Nous établissons que pour un groupe G dans SU(2,1) Zariski dense qui contient une transformation parabolique, quitte à conjuguer G, son corps de trace est exactement le corps engendré par les coefficients de ses matrices.
|
13 |
Modélisation dans l'espace : obstacles du passage du 2D au 3DFurtuna, Carmen Daniela January 2008 (has links) (PDF)
Notre recherche vise l'enseignement de la géométrie au secondaire, en particulier le passage de la géométrie plane (2D) à la géométrie de l'espace (3D). À cet effet nous avons fait une courte analyse du programme d'étude visant l'enseignement de la géométrie de l'espace. Le cadre théorique développé par Houdement et Kuzniak (2005, 2006, 2007) nous a permis de réaliser l'analyse du programme d'étude. Nous avons constaté un manque de continuité à cet égard dans l'enseignement de la géométrie. Le référentiel théorique de la géométrie plane est construit dans l'esprit de la géométrie euclidienne du type GII - 2D, alors que le référentiel théorique de la géométrie de l'espace, qui est une géométrie du type GI - 3D, n'est pas un référentiel organisé selon un modèle mathématique. Nous avons constaté que l'espace de travail de la géométrie plane est un espace du type ETG -GII -2D, alors que pour la géométrie de l'espace, l'espace de travail correspond à un ETG -GI -3D, construit sans égard à un éventuel ETG - GII -3D. À partir de ces constats, nous nous sommes surtout intéressés à l'articulation 2D - 3D. Nous avons construit une séquence qui s'intéresse spécifiquement au passage de la géométrie plane à la géométrie de l'espace. Un autre cadre théorique, plus flexible, s'avérait nécessaire dans l'analyse de la situation-problème proposée à tous les élèves du secondaire. Brousseau et Galvez (1985) ont développé une théorie qui montre la pertinence de l'étude entre un sujet et trois types d'espaces: micro, méso et macro. Ensuite, Berthelot et Salin (2000) développent cette théorie en adaptant aux trois types d'espace les concepts élémentaires de la géométrie qui correspondent en grand partie aux conceptions des élèves dans leur pratique de la géométrie. L'analyse de la situation-problème nous a permis de remarquer que le passage du micro-espace, l'espace de la feuille de papier, au méso-espace, l'espace qui nous entoure, n'est pas fait de façon spontanée. Un ancrage dans l'espace de la feuille de papier, l'espace micro, ne permet pas une bonne articulation avec l'espace méso. Nous remarquons l'importance de développer dans la conscience de l'élève la connaissance « espace » pour développer un vrai sens spatial. Nous allons donc conclure par l'importance de choisir un espace de travail pour la géométrie de l'espace qui soit en continuité avec la géométrie plane: ETG -GII - 2D passant par un ETG - GI - 3D construit de façon à mener plus naturellement et logiquement vers un ETG - GII - 3D. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Enseignement de mathématiques, Secondaire, Géométrie, Espace de travail.
|
14 |
Analyse du développement de la notion de preuve dans une collection du secondaireTanguay, Denis January 2002 (has links) (PDF)
En élaborant le présent mémoire, nous avons cherché à mieux comprendre comment se développe la notion de preuve dans le cheminement d'apprentissage d'un élève du secondaire. Dans cette optique, nous avons d'abord fait le point sur notre propre expérience d'enseignement et sur nos réflexions personnelles, suscitées entre autres par deux expérimentations conduites par nous dans le cadre du cours d'Initiation à la recherche en didactique des mathématiques.
Nous avons ensuite cherché à retracer quels objectifs des programmes du MEQ se rapportent à l'apprentissage de la preuve, et que suggèrent ces programmes pour que ces objectifs soient atteints. Nous avons pu constater que cet apprentissage y passe avant tout par l'étude de la géométrie. La lecture de deux articles de R. Thom et R. Bkouche nous a permis de mieux cerner les liens privilégiés entre géométrie et apprentissage de la preuve. Ceux-ci sont profonds, incontournables, entre autres parce que les concepts et raisonnements géométriques occupent une position charnière entre le « sensible » et le « formel ».
Nous avons alors arrêté l'objet précis de notre étude : l'apprentissage de la preuve, tel que véhiculé par les problèmes de géométrie synthétique, dans une collection du secondaire. Dans le but d'élaborer une grille d'analyse, nous avons dégagé la notion de « schéma de bipolarisation » des réflexions sur la preuve d'É. Barbin, de G. Hanna, G. Brousseau, N. Balacheff et N. Rouche. À partir des schémas de bipolarisation suggérés par leurs travaux, nous avons édifié notre propre typologie des preuves et par suite, notre grille d'analyse des problèmes. Après une classification des problèmes de la collection à l'étude selon cette grille, nous avons interprété et analysé cette classification, pour conclure sur les aspects de l'apprentissage de la preuve que nous évaluons comme mal « gérés » dans la collection : transition non suffisamment graduelle du sensible au formel (très peu de problèmes qui sollicitent une validation hybride, niveau de formalisation trop longtemps stationnaire, rôle ambigu de la géométrie des transformations dans le processus de formalisation, etc.), prépondérance des applications directes et des déductions locales sur les séquences déductives, intérêt et mode de présentation des résultats qui ne favorisent pas une « attitude de preuve », etc.
|
15 |
Cobordismes Lagrangiens des noeuds LegendriensChantraine, Baptiste January 2009 (has links) (PDF)
Nous proposons et commençons ici l'étude des cobordismes lagrangiens reliant deux noeuds legendriens dans la symplectisation d'une variété de contact (M,ξ). En étudiant l'homomorphisme naturel du groupe des contactomorphismes de (M, ξ) vers les symplectomorphsimes de sa symplectisation, nous démontrons que l'existence d'un tel cobordisme ne dépend que de la classe d'isotopie des noeuds legendriens en question. Nous étudions ensuite le comportement des invariants classiques sous la relation de cobordisme lagrangien. A l'aide de l'inégalité de Bennequin et de ses généralisations, nous étudions les liens existants entre cette relation et la topologie des noeuds, notamment nous obtenons un critère pour calculer le 4-genre d'un noeud dans certaines situations. Nous en concluons notamment une nouvelle preuve de la conjecture locale de Thom. Parmi les applications nous donnons le lien entre les cobordismes lagrangiens et les cobordismes symplectiques via les chirurgies legendriennes. Nous démontrons aussi l'existence d'un homomorphisme induit en homologie de contact incluant cette relation dans le tableau global de la théorie symplectique des champs. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie de contact et symplectique, Lagrangien, Legendrien, Conjecture locale de Thom, Homologie de contact.
|
16 |
Extracting cell complexes from 4-dimensional digital images / Généralisation à dimension 4 des méthodes pour manipuler des images numériques binairesPacheco-Martínez, Ana María 10 July 2012 (has links)
Une image numérique peut être définie comme un ensemble de n-xels sur une grille constituée de n-cubes. La segmentation consiste à calculer une partition d'une image en régions. Les n-xels ayant des caractéristiques similaires (couleur, intensité, etc.) sont regroupés. Schématiquement, à chaque n-xel est attribuée une étiquette, et chaque région de l'image est constituée de n-xels de même étiquette. Les méthodes "de type" Marching cubes et Kenmochi et al. construisent des complexes représentant la topologie de la région d'intérêt d'une image numérique binaire de dimension 3. Dans la première méthode, l'algorithme construit un complexe simplicial, dont 0-cellules sont des points des arêtes de la grille duale. Dans la deuxième méthode, les auteurs construisent un complexe cellulaire sur une grille duale, c.a.d les 0-cellules du complexe sont des sommets de la grille duale. Afin de construire le complexe, Kenmochi et al. calculent (à rotations près) les différentes configurations de sommets blancs et noirs d'un cube, puis, ils construisent les enveloppes convexes des points noirs de ces configurations. Ces enveloppes convexes définissent les cellules du complexe, à rotations près. Le travail développé dans cette thèse étend la méthode de Kenmochi et al. en dimension 4. L'objectif est de construire un complexe cellulaire à partir d'une image numérique binaire définie sur une grille duale. Nous calculons d'abord les différentes configurations de sommets blancs et noirs d'un 4-cube (à isométries près), puis, nous construisons des enveloppes convexes définies par ces configurations. Ces enveloppes convexes sont construites par déformation du 4-cube d'origine, et nous distinguon / A digital image can be defined as a set of n-xels on a grid made up by n-cubes. Segmentation consists in computing a partition of an image into regions. The n-xels having similar characteristics (color, intensity, etc.) are regrouped. Schematically, each n-xel is assigned a label, and each region of the image is made up by n-xels with the same label. The methods "type" Marching cubes and Kenmochi et al. construct complexes representing the topology of the region of interest of a 3-dimensional binary digital image. In the first method, the algorithm constructs a simplicial complex, whose 0-cells are points of the edges of the dual grid. Inthe second one, the authors construct a cell complex on a dual grid, i.e. the 0-cells of the complex are vertices of the dual grid. In order to construct the complex, Kenmochi et al. compute (up to rotations) the different configurations of white and black vertices of a cube, and then, they construct the convex hulls of the black points of these configurations. These convex hulls define the cells of the complex, up to rotations. The work developed in this thesis extends Kenmochi et al. method todimension 4. The goal is to construct a cell complex from a binary digital image defined on a dual grid. First, we compute the different configurations of white and black vertices of a 4-cube, up to isometries, and then, we construct the convex hulls defined by these configurations. These convex hulls are constructed by deforming the original 4-cube, and we distinguishseveral basic construction operations (deformation, degeneracy of cells, etc.). Finally, we construct the cell complex corresponding to the dual image by assembling the cells so o / Una imagen digital puede ser definida como un conjunto de n–xeles en un mallado constituido de n–cubos. Los n–xeles pueden ser identificados con: (1) los n–cubos del mallado, o con (2) los puntos centrales de estos n–cubos. En el primer caso, trabajamos con un mallado primal, mientras que en el segundo, trabajamos con un mallado dual construido a partir del mallado primal. La segmentación consiste en calcular una partición de una imagen en regiones. Los n–xeles que tienen características similares (color, intensidad, etc.) son reagrupados. Esquemáticamente, a cada n–xel se le asocia una etiqueta, y cada región de la imagen está constituida de n–xeles con la misma etiqueta. En particular, si las únicas etiquetas permitidas para los n–xeles son “blanca” y “negra”, la segmentación se dice binaria: los n–xeles negros forman el primer plano (foreground) o región de interés en cuestión de análisis de la imagen, y los n–xeles blancos forman el fondo (background). Ciertos modelos, como los Grafos de Adyacencia de Regiones (RAGs), los Grafos Duales (DGs) y la carta topológica, han sido propuestos para representar las particiones en regiones, y en particular para representar la topología de estas regiones, es decir las relaciones de incidencia y/o adyacencia entre las diferentes regiones. El RAG [27] es un precursor de este tipo de modelos, y ha sido una fuente de inspiración de los DGs [18] y de la carta topológica [9, 10]. Un RAG representa una imagen primal etiquetada por un grafo: los vértices del grafo corresponden a regiones de la imagen, y las aristas del grafo representan las relaciones de adyacencia entre la regiones. Los DGs son un modelo que permite resolver ciertos inconvenientes de los RAGs para representar imágenes de dimensión 2. La carta topológica es una extensión de los modelos anteriores definida para manipular imágenes primales de dimensión 2 y 3, representando no solamente las relaciones topológicas, sino también las relaciones geométricas.
|
17 |
Randomisation, sphères et déplacements de robotsDevillers, Olivier 23 November 1993 (has links) (PDF)
Ce mémoire d'habilitation présente 14 articles différents, structurés en trois parties : algorithmes randomisés, algorithmes sur les sphères et placements de robots.<br /><br />Les algorithmes randomisés ont été un des sujets ``chauds'' de ces dernières années et nous proposons ici des travaux ayant trait à des algorithmes dynamiques ou semi-dynamiques : tout d'abord un schéma général d'algorithmes semi-dynamiques avec des applications aux diagrammes de Voronoï, aux diagrammes de Voronoï d'ordre k aux arrangements, et ensuite deux algorithmes dynamiques (permettant d'insérer et de supprimer des données) pour la triangulation de Delaunay et le calcul d'un arrangement de segments. D'autres résultats concernent des algorithmes statiques, notamment le calcul du squelette d'un polygone simple en temps O(n log* n).<br /><br />La deuxième partie explore différentes modélisations des sphères. On peut en déduire notamment un algorithme en O(tk log n) pour la triangulation de Delaunay de n points appartenant à k plans en 3 dimensions, si t désigne la taille du résultat; dans la cas de deux plans cet algorithme atteint une complexité optimale de O(t+n log n). Nous proposons également un algorithme de complexité O(n^ ceil(d/2) +n log n) pour le calcul de l'enveloppe convexe de n sphères en dimension d, et un algorithme optimal (quadratique) pour le calcul de la surface de Connolly.<br /><br />La dernière partie traite de problèmes spécifiques à la planification de trajectoires, un premier chapitre concerne le cas de plusieurs robots polygonaux en translation dans le plan: certaines configurations appellées double-contacts peuvent jouer un rôle particulier dans certains cas. Ensuite deux résultats à propos de robots à pattes : l'analyse d'un cas simple que nous avons baptisé robot araignée, et l'étude de la stabilité d'un robot un peu plus complexe.
|
18 |
Courbes rationnelles et applications à quelques problèmes de géométrie algébrique complexeDruel, Stéphane 26 September 2008 (has links) (PDF)
Les courbes sur une variété sont apparues ces vingt dernières années comme un outil très efficace pour étudier les propriétés géométriques de la variété. On donne, dans ce texte de synthèse, quelques exemples de problèmes abordés de ce point de vue.
|
19 |
Des notions sur la géométrie hyperbolique complexeJari, Tarik January 2008 (has links) (PDF)
Le texte est reparti comme suit : Dans le premier chapitre, nous rappelons le lemme de Schwarz-Pick, le théorème d'uniformisation, le théorème d'Ascoli et de Weierstrass et de Hurwitz, le domaine d'homolorphie, variété taut. Dans le deuxiéme chapitre, nous énoncerons la définition et des propriétés sur l'hyperbolicité au sens de Kobayashi sur une variété complexe, ainsi que les théorèmes de prolongements du type grand théorème de Picard dû à Kwak et Kiernan, et nous établissons que si la courbure sectionelle d'une variété hermitienne est bornée par une constante négative alors la variété est hyperbolique au sens de Kobayashi. Enfin, nous traiterons la description de la métrique et la relation avec le volume. Dans le troisième chapitre, nous étudions le concept d'hyperbolicité au sens de Brody sur une variété complexe et ses applications. Dans le quatrième chapitre je discute la propriété de Landeau-Shottky et la fonction de Bloch.
|
20 |
Origines algébrique et géométrique des nombres complexes et leur extension aux quaternions : fondements de la géométriePoitras, Luc 08 1900 (has links) (PDF)
La première partie de ce mémoire relève les principaux problèmes de nature algébrique et géométrique qu'ont dû résoudre les mathématiciens avant d'accepter l'existence des nombres complexes; l'une des conséquences de cet exercice est de proposer l'esquisse d'une approche plus adéquate à l'enseignement des nombres complexes au collégial. La deuxième partie présente l'approche géométrique des quaternions, tel que formulée par leur inventeur (Hamilton), puis démontre leurs principales propriétés géométriques dans le contexte de l'algèbre linéaire. Dans la troisième partie, l'axiomatisation de l'intuition géométrique est abordée dans le contexte des fondements proposés par Hilbert en regard des géométries non euclidiennes.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : Histoire des nombres complexes, quaternions, fondements de la géométrie.
|
Page generated in 0.0329 seconds