• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 18
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 25
  • 24
  • 23
  • 18
  • 17
  • 15
  • 14
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effect of Bolts Locking Sequence on the Deformation of Flow-Channel Plates in Micro-PEMFC

Li, Shih-Chun 22 July 2008 (has links)
The design and method of cell assembly plays an important role in the performance of PEM fuel cell. The cell assembly will affect the contact behavior between the bipolar plates, flow-channel plates, gas diffusion layers (GDLs) and membrane electrode assembly (MEA). From the past studies, it was noted that the flow-channel plates in the cell will be deformed while the cell was assembled by locking with bolts. This phenomenon may lead to leakage of fuels, high contact resistance and malfunctioning of the cells. The main aim of this research is to study the variation of the deformation mode of the flow-channel plat in a micro-PEM fuel cell assembly subjected to different bolts locking sequences. The commercial FEM package, ANSYS, was adopted to model the three-dimensional single micro-PEMFC FEM model and the numerical simulation analyses were performed. The effect of the bolts locking sequence on the deformations of flow-channel plate in the micro-PEMFC was presented. A most properly bolts locking sequence was proposed also.
22

Design of a gas diffusion layer for a polymer electrolyte membrane fuel cell with a graduated resistance to flow

Caston, Terry Brett 29 April 2010 (has links)
Due to escalating energy costs and limited fossil fuel resources, much attention has been given to polymer electrolyte membrane (PEM) fuel cells. Gas diffusion layers (GDLs) play a vital role in a fuel cell such as (1) water removal, (2) cooling, (3) structural backing, (4) electrical conduction and (5) transporting gases towards the active catalyst sites where the reactions take place. The power density of a PEM fuel cell in part is dependent upon how uniform the gases are distributed to the active sites. To this end, research is being conducted to understand the mechanisms that influence gas distribution across the fuel cell. Emerging PEM fuel cell designs have shown that higher power density can be achieved; however this requires significant changes to existing components, particularly the GDL. For instance, some emerging concepts require higher through-plane gas permeability than in-plane gas permeability (i.e., anisotropic resistance) which is contrary to conventional GDLs (e.g., carbon paper and carbon cloth), to obtain a uniform gas distribution across the active sites. This is the foundation on which this thesis is centered. A numerical study is conducted in order to investigate the effect of the gas permeability profile on the expected current density in the catalyst layer. An experimental study is done to characterize the effects of the weave structure on gas permeability in woven GDLs. Numerical simulations are developed using Fluent version 6.3.26 and COMSOL Multiphysics version 3.5 to create an anisotropic resistance profile in the unconventional GDL, while maintaining similar performance to conventional GDL designs. The effects of (1) changing the permeability profile in the in-plane and through-plane direction, (2) changing the thickness of the unconventional GDL and (3) changing the gas stoichiometry on the current density and pressure drop through the unconventional GDL are investigated. It is found that the permeability profile and thickness of the unconventional GDL have a minimal effect on the average current density and current density distribution. As a tradeoff, an unconventional GDL with a lower permeability will exhibit a higher pressure drop. Once the fuel cell has a sufficient amount of oxygen to sustain reactions, the gas stoichiometry has a minimal effect on increases in performance. Woven GDL samples with varying tightness and weave patterns are made on a hand loom, and their in-plane and through-plane permeability are measured using in-house test equipment. The porosity of the samples is measured using mercury intrusion porosimetry. It is found that the in-plane permeability is higher than the through-plane permeability for all weave patterns tested, except for the twill weave with 8 tows/cm in the warp direction and 4 tows/cm in the weft direction, which exhibited a through-plane permeability which was 20% higher than the in-plane permeability. It is also concluded that the permeability of twill woven fabrics is higher than the permeability of plain woven fabrics, and that the percentage of macropores, ranging in size from 50-400 µm, is a driving force in determining the through-plane permeability of a woven GDL. From these studies, it was found that the graduated permeability profile in the unconventional GDL had a minimal effect on gas flow. However, a graduated permeability may have an impact on liquid water transport. In addition, it was found that graduating the catalyst loading, thereby employing a non-uniform catalyst loading has a greater effect on creating a uniform current density than graduating the permeability profile.
23

Virtual modeling of a manufacturing process to construct complex composite materials of tailored properties

Didari, Sima 08 June 2015 (has links)
Fibrous porous media are widely used in various industries such as biomedical engineering, textiles, paper, and alternative energy. Often these porous materials are formed into composite materials, using subsequent manufacturing steps, to improve their properties. There is a strong correlation between system performance and the transport and mechanical properties of the porous media, in raw or composite form. However, these properties depend on the final pore structure of the material. Thus, the ability to manufacture fibrous porous media, in raw or composite forms, with an engineered structure with predictable properties is highly desirable for the optimization of the overall performance of a relevant system. To date, the characterization of the porous media has been primarily based on reverse design methods i.e., extracting the data from existing materials with image processing techniques. The objective of this research is to develop a methodology to enable the virtual generation of complex composite porous media with tailored properties, from the implementation of a fibrous medium in the design space to the simulated coating of this media representative of the manufacturing space. To meet this objective a modified periodic surface model is proposed, which is utilized to parametrically generate a fibrous domain. The suggested modeling approach allows for a high-degree of control over the fiber profile, matrix properties, and fiber-binder composition. Using the domain generated with the suggested geometrical modeling approach, numerical simulations are executed to simulate transport properties such as permeability, diffusivity and tortuosity, as well as, to directly coat the microstructure, thereby forming a complex composite material. To understand the interplay between the xxiii fiber matrix and the transport properties, the morphology of the virtual microstructure is characterized based on the pore size, chord length and shortest path length distributions inside the porous domain. In order to ensure the desired properties of the microstructure, the fluid penetration, at the micro scale, is analyzed during the direct coating process. This work presents a framework for feasible and effective generation of complex porous media in the virtual space, which can be directly manufactured.
24

Liquid water transport in fuel cell gas diffusion layers

Bazylak, Aimy Ming Jii 26 April 2008 (has links)
Liquid water management has a major impact on the performance and durability of the polymer electrolyte membrane fuel cell (PEMFC). The gas diffusion layer (GDL) of a PEMFC provides pathways for mass, heat, and electronic transport to and from the catalyst layers and bipolar plates. When the GDL becomes flooded with liquid water, the PEMFC undergoes mass transport losses that can lead to decreased performance and durability. The work presented in this thesis includes contributions that provide insight into liquid water transport behaviour in and on the surface of the GDL, as well as insight into how future GDLs could be designed to enhance water management. The effects of compression on liquid water transport in the GDL and on the microstructure of the GDL are presented. It was found that compressed regions of the GDL provided preferential locations for water breakthrough, while scanning electron microscopy (SEM) imaging revealed irreversible damage to the GDL due to compression at typical fuel cell assembly pressures. The dynamic behaviour of droplet emergence and detachment in a simulated gas flow channel are also presented. It was found that on an initially dry and hydrophobic GDL, small droplets emerged and detached quickly from the GDL surface. However, over time, this water transport regime transitioned into that of slug formation and channel flooding. It was observed that after being exposed to a saturated environment, the GDL surface became increasingly prone to droplet pinning, which ultimately hindered droplet detachment and encouraged slug formation. A pore network model featuring invasion percolation with trapping was employed to evaluate the breakthrough pattern predictions of designed porous media. These designed pore networks consisted of randomized porous media with applied diagonal and radial gradients. Experimental microfluidic pore networks provided validation for the designed networks. Diagonal biasing provided a means of directing water transport in the pore network, while radially biased networks provided the additional feature of reducing the overall network saturation. Since directed water transport and reduced saturation are both beneficial for the PEMFC GDL, it was proposed that biasing of this nature could be applied to improved GDL designs. Lastly, recommendations for future extensions of this research are proposed at the end of this thesis.
25

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar 05 December 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
26

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar January 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
27

Characterizing Interactions of Ionic Liquid Based Electrolytes with Electrospun Gas Diffusion Electrode Frameworks by 1H PFG NMR

Merz, Steffen, Jakes, Peter, Tempel, Hermann, Weinrich, Henning, Kungl, Hans, Eichel, Rüdiger-A., Granwehr, Josef 11 September 2018 (has links)
Pulsed field gradient (PFG) 1H NMR was used to characterize the mobility of ionic liquid cations in porous gas diffusion electrode (GDE) frameworks for metal–air electrochemical systems. The carbon GDE frameworks were produced by electrospinning. It was found that the motion of ionic liquids in the highly porous hosts is more complex than what is commonly exhibited by conventional fluids, which makes a multimodal investigation essential for an adequate description of mobility and wetting of GDEs. Observed NMR diffraction-like patterns cannot be linked to the tortuosity limit but may serve as a proxy for structural features in the fibrous material. While the observed data were interpreted using standard theoretical models, alternative explanations and causes for artifacts are discussed.
28

Development of Dual Gas Diffusion-Type Biofuel Cells on the Basis of Electrochemical Understanding of Enzyme-Modified Electrodes / 酵素機能電極の電気化学的理解に基づいた両極ガス拡散型バイオ燃料電池の開発

Song, Qingsheng 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20425号 / 農博第2210号 / 新制||農||1047(附属図書館) / 学位論文||H29||N5046(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 加納 健司, 教授 宮川 恒, 教授 三芳 秀人 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
29

Fundamental Studies on Local Reactions in Bifunctional Air Electrodes / 二機能性空気極における局所反応に関する基礎的研究

Ikezawa, Atsunori 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21121号 / 工博第4485号 / 新制||工||1697(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 阿部 竜, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
30

Hydrophobic, Carbon Free Gas Diffusion Electrode for Alkaline Applications

Bekisch, Artur, Skadell, Karl, Poppitz, David, Schulz, Matthias, Weidl, Roland, Stelter, Michael 27 April 2023 (has links)
In this work we present a carbon free gas diffusion electrode (GDE) design. It is a first step towards improvement of technologies like alkaline fuel cells, some alkaline electrolyzes and metal-air-batteries by circumventing carbon degradation. A nickel-mesh was made hydrophobic and subsequently electrochemically coated with MnOx as electrocatalyst. By this, a carbon free GDE was prepared. The contact angle, specific surface area (BET), pore size distribution, crystal phase (XRD) and electrochemical properties were determined. The deposition scan rate (rscan) during dynamic MnOx deposition altered the macro surface structure, pore size distribution and deposited mass. High catalyst masses with high specific surface area were achieved by lower rscan, but hydrophobicity was decreased. Impedance spectroscopy showed that higher MnOx mass will increase the ohmic resistance, because of the low conductivity of oxides, such as MnOx. The diffusion of dissolved oxygen is the major contributor to the total resistance. However, the polarization resistance was reduced by increased specific surface area of MnOx. It was concluded that the ORR and OER are limited by diffusion in this design but nevertheless showed reasonable activity for ±10 mA cm−2 corresponding to ∼8 Ω cm−2 while references exhibited ∼3.5 Ω cm−2 .

Page generated in 0.0779 seconds