• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 18
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 25
  • 24
  • 23
  • 18
  • 17
  • 15
  • 14
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

MEA and GDE manufacture for electrolytic membrane characterisation / Henry Howell Hoek

Hoek, Henry Howell January 2013 (has links)
In recent years an emphasis has been placed on the development of alternative and clean energy sources to reduce the global use of fossil fuels. One of these alternatives entails the use of H2 as an energy carrier, which can be obtained amongst others using thermochemical processes, for example the hybrid sulphur process (HyS). The HyS process is based on the thermal decomposition of sulphuric acid into water, sulphur dioxide and oxygen. The subsequent chemical conversion of the sulphur dioxide saturated water back to sulphuric acid and hydrogen is achieved in an electrolyser using a platinum coated proton exchange membrane. This depolarised electrolysis requires a theoretical voltage of only 0.158 V compared to water electrolysis requiring approximately 1.23 V. One of the steps in the development of this technology at the North-West University, entailed the establishment of the platinum coating technology which entailed two steps; firstly using newly obtained equipment to manufacture the membrane electro catalyst assemblies (MEA’s) and gas diffusion electrodes (GDE’s) and secondly to test these MEA’s and GDE’s using sulphur dioxide depolarized electrolysis by comparing the manufactured MEA’s and GDE’s to commercially available MEA’s and GDE’s. Different MEA’s and GDE’s were manufactured using both a screen printing (for the microporous layer deposition) and a spraying technique. The catalyst loadings were varied as well as the type and thickness of the proton exchange membranes used. The proton exchange membranes that were included in this study were Nafion 117®, sPSU-PBIOO and SfS-PBIOO membranes whereas the gas diffusion layer consisted of carbon paper with varying thicknesses (EC-TP01-030 – 0.11 mm and EC-TP01-060 – 0.19mm). MEA and GDE were prepared by first preparing an ink that was used both for MEA and GDE spraying. The MEA’s were prepared by spraying various catalyst coatings onto the proton exchange membranes containing 0.3, 0.6 and 0.9 mg/cm2 platinum respectively. The GDE’s were first coated by a micro porous carbon layer using the screen printing technique in order to attain a suitable surface for catalyst deposition. Using the spraying technique GDE’s containing 0.3, 0.6, 0.9 mg/cm2 platinum were prepared. After SEM analysis, the MEA’s and GDE’s performance was measured using SO2 depolarized electrolysis. From the electrolysis experiments, the voltage vs. current density generated during operation, the hydrogen production, the sulphuric acid generation and the hydrogen production efficiency was obtained. From the results it became clear that while the catalyst loading had little effect on performance there were a number of factors that did have a significant influence. These included the type of proton exchange membrane, the membrane thickness and whether the catalyst coating was applied to the proton exchange membrane (MEA) or to the gas diffusion layer (GDE). During SO2 depolarized electrolysis VI curves were generated which gave an indication of the performance of the GDE’s and MEA’s. The best preforming GDE was GDE-3 (0.46V @ 320 mA/cm2), which included a GDE EC-TP01-060, while the best preforming MEA’s were NAF-4 (0.69V @ 320mA/cm2) consisting of a Nafion117 based MEA and PBI-1 (0.43V @ 320mA/cm2) made from a sPSU-PBIOO blended membrane. During hydrogen production it became clear that the GDE’s produced the most hydrogen (best was GDE-02 a in house manufactured GDE yielding 67.3 mL/min @ 0.8V), followed by the Nafion® MEA’s (best was NAF-4 a commercial MEA yielding 57.61 mL/min @ 0.74V) and the PBI based MEA’s. , (best was PBI-2 with 67.11 mL/min @ 0.88V). Due to the small amounts of acid produced and the SO2 crossover, a significant error margin was observed when measuring the amount of sulphuric acid produced. Nonetheless, a direct correlation could still be seen between the acid and the hydrogen production as had been expected from literature. The highest sulphuric acid concentrations produced using the tested GDE’s and MEA’s from this study were the in-house manufactured GDE-01 (3.572mol/L @ 0.8V), the commercial NAF-4 (4.456mol/L @ 0.64V) and the in-house manufactured PBI-2 (3.344mol/L @ 0.8V). The overall efficiency of the GDE’s were similar, ranging from less than 10% at low voltages (± 0.6V) increasing to approximately 60% at ± 0.8V. For the MEA’s larger variation was observed with NAF-4 reaching efficiencies of nearly 80% at 0.7V. In terms of consistency of performance it was shown that the Nafion MEA’s preformed most consistently followed by the GDE’s and lastly the PBI based MEA’s which for the PBI based membranes can probably be ascribed to the significant difference in thickness of the thin PBI vs. the Nafion based membranes. In summary the study has shown the results between the commercially obtained and the in-house manufactured GDE’s and MEA’s were comparable confirming the suitability of the coating techniques evaluated in this study. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
12

MEA and GDE manufacture for electrolytic membrane characterisation / Henry Howell Hoek

Hoek, Henry Howell January 2013 (has links)
In recent years an emphasis has been placed on the development of alternative and clean energy sources to reduce the global use of fossil fuels. One of these alternatives entails the use of H2 as an energy carrier, which can be obtained amongst others using thermochemical processes, for example the hybrid sulphur process (HyS). The HyS process is based on the thermal decomposition of sulphuric acid into water, sulphur dioxide and oxygen. The subsequent chemical conversion of the sulphur dioxide saturated water back to sulphuric acid and hydrogen is achieved in an electrolyser using a platinum coated proton exchange membrane. This depolarised electrolysis requires a theoretical voltage of only 0.158 V compared to water electrolysis requiring approximately 1.23 V. One of the steps in the development of this technology at the North-West University, entailed the establishment of the platinum coating technology which entailed two steps; firstly using newly obtained equipment to manufacture the membrane electro catalyst assemblies (MEA’s) and gas diffusion electrodes (GDE’s) and secondly to test these MEA’s and GDE’s using sulphur dioxide depolarized electrolysis by comparing the manufactured MEA’s and GDE’s to commercially available MEA’s and GDE’s. Different MEA’s and GDE’s were manufactured using both a screen printing (for the microporous layer deposition) and a spraying technique. The catalyst loadings were varied as well as the type and thickness of the proton exchange membranes used. The proton exchange membranes that were included in this study were Nafion 117®, sPSU-PBIOO and SfS-PBIOO membranes whereas the gas diffusion layer consisted of carbon paper with varying thicknesses (EC-TP01-030 – 0.11 mm and EC-TP01-060 – 0.19mm). MEA and GDE were prepared by first preparing an ink that was used both for MEA and GDE spraying. The MEA’s were prepared by spraying various catalyst coatings onto the proton exchange membranes containing 0.3, 0.6 and 0.9 mg/cm2 platinum respectively. The GDE’s were first coated by a micro porous carbon layer using the screen printing technique in order to attain a suitable surface for catalyst deposition. Using the spraying technique GDE’s containing 0.3, 0.6, 0.9 mg/cm2 platinum were prepared. After SEM analysis, the MEA’s and GDE’s performance was measured using SO2 depolarized electrolysis. From the electrolysis experiments, the voltage vs. current density generated during operation, the hydrogen production, the sulphuric acid generation and the hydrogen production efficiency was obtained. From the results it became clear that while the catalyst loading had little effect on performance there were a number of factors that did have a significant influence. These included the type of proton exchange membrane, the membrane thickness and whether the catalyst coating was applied to the proton exchange membrane (MEA) or to the gas diffusion layer (GDE). During SO2 depolarized electrolysis VI curves were generated which gave an indication of the performance of the GDE’s and MEA’s. The best preforming GDE was GDE-3 (0.46V @ 320 mA/cm2), which included a GDE EC-TP01-060, while the best preforming MEA’s were NAF-4 (0.69V @ 320mA/cm2) consisting of a Nafion117 based MEA and PBI-1 (0.43V @ 320mA/cm2) made from a sPSU-PBIOO blended membrane. During hydrogen production it became clear that the GDE’s produced the most hydrogen (best was GDE-02 a in house manufactured GDE yielding 67.3 mL/min @ 0.8V), followed by the Nafion® MEA’s (best was NAF-4 a commercial MEA yielding 57.61 mL/min @ 0.74V) and the PBI based MEA’s. , (best was PBI-2 with 67.11 mL/min @ 0.88V). Due to the small amounts of acid produced and the SO2 crossover, a significant error margin was observed when measuring the amount of sulphuric acid produced. Nonetheless, a direct correlation could still be seen between the acid and the hydrogen production as had been expected from literature. The highest sulphuric acid concentrations produced using the tested GDE’s and MEA’s from this study were the in-house manufactured GDE-01 (3.572mol/L @ 0.8V), the commercial NAF-4 (4.456mol/L @ 0.64V) and the in-house manufactured PBI-2 (3.344mol/L @ 0.8V). The overall efficiency of the GDE’s were similar, ranging from less than 10% at low voltages (± 0.6V) increasing to approximately 60% at ± 0.8V. For the MEA’s larger variation was observed with NAF-4 reaching efficiencies of nearly 80% at 0.7V. In terms of consistency of performance it was shown that the Nafion MEA’s preformed most consistently followed by the GDE’s and lastly the PBI based MEA’s which for the PBI based membranes can probably be ascribed to the significant difference in thickness of the thin PBI vs. the Nafion based membranes. In summary the study has shown the results between the commercially obtained and the in-house manufactured GDE’s and MEA’s were comparable confirming the suitability of the coating techniques evaluated in this study. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
13

Numerical investigation of the structure effects on water transportation in PEMFC gas diffusion layers using X-ray tomography based Lattice Boltzmann method

Jinuntuya, Fontip January 2015 (has links)
The excessive presence of liquid water in a gas diffusion layer (GDL) hinders the access of reactant gases to the active sites of the catalyst layer leading to decreased performance of a polymer electrolyte membrane fuel cell (PEMFC). Therefore, GDLs are usually treated with a hydrophobic agent to render their fibres more hydrophobic in order to facilitate gas transport and water removal. Numerous studies have been conducted to investigate water transport in PEMFCs in recent years; however, the behaviour of liquid water in a GDL at a pore-level is poorly understood. Macroscopic models fail to incorporate the influence of the structural morphology of GDLs on liquid water transport behaviour. Experimental methods are not conducive towards a good understanding at a microscopic level because of the diminutive size of the GDLs porous structure. Alternatively, the Lattice Boltzmann (LB) method has gathered interest as it is found to be particularly useful in fluid flow simulations in porous media due to its capability to incorporate the complex boundaries of actual GDL structures. To date, most studies on fluid transport in GDLs integrated artificial structures generated by stochastic simulation techniques to the LB models. The stochastic-based model, however, does not represent closely the microscopic features of the actual GDL as manufactured. In addition, comparison of liquid water transport behaviour in different GDL structures using the LB method is rare since only a single GDL material has been utilised in most of those studies. This thesis aims to develop our understanding of liquid water transport behaviour in GDLs with morphologically different structures under varying wettability conditions based on the LB method and the X-ray computed tomography (XCT) technique. GDLs with paper and felt structures were reconstructed into 3D digital volumetric models via the XCT process. The digital models were then incorporated into a LB solver to model water saturation distribution through the GDL domains. The GDL wettability was also altered so that the effect on liquid water behaviour in the GDL could be examined. This project is divided into three main sections. In the sensitivity analysis, the effect of image resolution on gas permeability through the X-ray reconstructed GDL was carried out using a single-phase LB model. It was found that the resolution variation could significantly affect the resulting gas permeability in both principal and off-principal directions, as well as computational time. An optimum resolution, however, exists at 2.72 μm/pixel, which consumed 400 times less computational time with less than 8% difference in the resulting permeability compared to the base resolution. This study also served as a guideline for selecting a resolution for generating the XCT images of the GDLs which were utilised in the following studies. In the structure analysis, the structures of the paper and felt GDLs were generated using the XCT and the key properties of each GDL, including thickness, porosity, permeability and tortuosity, were characterised. The thickness and the through-plane porosity distributions of each GDL were examined based on the tomography images. The resulting local through-plane porosity distributions were then used to calculate through-plane permeability and tortuosity distributions using an analytical model available in the literature. This study revealed the heterogeneity of the GDLs and how the heterogeneous nature of the GDL structures affects others properties of the GDLs. In this study, the absolute through-plane permeability and tortuosity of the X-ray-reconstructed GDL samples were also characterised using the single-phase LB model. The results from the two models were then compared and validated against data in the literature. In the water transport analysis, the two-phase LB model was employed to examine the effects of GDL structures on the behaviour of liquid water in the GDLs, including invasion patterns, saturation distribution and breakthrough behaviour under varying GDL wettability conditions. It was found that wettability was responsible for invasion patterns and water saturation levels whilst the GDL structure was mostly responsible for breakthrough occurrence and saturation distribution. It was observed that water travelled with stable displacement saturating all pores in hydrophilic GDLs, while it travelled with capillary fingering causing decreased saturation in hydrophobic GDLs, about 50% in the highly hydrophobic cases. The GDL structure was found to play a key role in breakthrough behaviour in the hydrophilic GDL as it was seen that the through-plane fibres in the felt structure and the through-plane binders in the paper structure encouraged water removal from the GDL in the thickness direction. Conversely, the GDL structure was found to have negligible influence on breakthrough in the hydrophobic GDL. Each GDL structure, however, contributed to a distinct difference in water distribution in the GDL with hydrophobic wettability. The work presented in this thesis contributes to the understanding of liquid water transport behaviour in the GDLs under the combined effects of the GDL structures and wettability conditions, which is essential for the development of effective PEMFC water management and the design of future GDL materials.
14

Flow injection systems for process analytical chemistry

Lukkari, Ingrid January 1995 (has links)
Flow injection systems have great potential for sample handling and analysis in process analytical chemistry. The flexibility and versatility of flow injection manifolds can he utilized in specific applications of sample conditioning and analysis. An overview of various flow injection methods, including flow reversals, double injection, and sequential injection is given, as well as different clean-up methods, such as gas diffusion, solid phase extraction, dialysis, and solvent extraction. Calibration techniques, such as single standard and multivariate calibration are also discussed. In addition, different aspects of process analytical chemistry, in particular sampling and sample handling, are discussed. The papers in this thesis describe a number of flow systems, where gradient-, gas diffusion-, and solid phase extraction- methodologies are applied, all of which have potential use in process analytical chemistry. Paper I is focused on multicomponent analysis of mixtures of organic acids by mathematically extracting information from complex spectra. The selectivity is improved by generating pH-gradients in the flow system. In paper II, the methodology of sensor injection is described and electrochemical and spectroscopic sensors are implemented in a sequential injection system. The method is illustrated by using pH sensors and a glucose electrode. Ammonia and ammonium ions are determined on-line to a bioprocess by gas diffusion in paper III. The benefit of frequent re-calibrations and in-line cleaning sequences are demonstrated. Finally a method for on-line determination of o-diphenols in the kraft process has been developed (paper IV). The o-diphenols are isolated from black liquor samples by solid phase extraction and thereafter transferred to a high performance liquid chromatography system for separation and quantification. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1996, Härtill 4 uppsatser</p> / digitalisering@umu
15

Mechanical Behavior Analysis of a Carbon-Carbon Composite for Use in a Polymer Electrolyte Fuel Cell

Flynn, Dara S 02 March 2004 (has links)
While there is a substantial amount of information regarding the electrochemical behavior of fuel cells and there components little to no information is available regarding the mechanical properties of fuel cell materials in stack setups. This set of experiments was set up to test mechanical properties of gas diffusion layer and bipolar plate materials in a one cell setup. Samples were clamped to specified pressures and deformation properties were observed and measured. Measurements were taken of impingements of the gas diffusion layers into the gas flow channels. A limit for compression of cell configurations was found to be approximately 300psi. Upon reaching the compression limit bipolar plates collapse and materials between plates show signs of breakage. Under compression diffusion media showed impingement into the gas flow channels as well as substantial compression of the three layer stack.
16

Etude expérimentale de la diffusion du CO2 et des cinétiques de carbonatation de matériaux cimentaires à faible dosage en clinker / Experimental study of CO2 diffusion and carbonation kinetics of cementitious materials with low clinker content

Namoulniara, Diatto Kevin 11 September 2015 (has links)
Une solution pour réduire l’impact environnemental du béton est de substituer une partie du ciment par des additions minérales, comme le laitier de hauts fourneaux. Néanmoins, cette substitution ne doit pas réduire les performances du matériau vis-à-vis de la carbonatation, l’un des principaux phénomènes de vieillissement des structures en béton armé. La carbonatation est une réaction chimique entre la matrice cimentaire et le dioxyde de carbone présent dans l’air. Cette réaction, en plus de former du carbonate de calcium, diminue le pH de la solution interstitielle rendant ainsi les armatures vulnérables à la corrosion. Les essais accélérés de carbonatation montrent, en laboratoire, une grande disparité de comportements entre matériaux cimentaires très faiblement poreux à hautes performances mécaniques et matériaux plus poreux en usage dans les ouvrages courants. L’objectif de cette thèse est de mieux comprendre le phénomène de carbonatation des matériaux cimentaires, notamment ceux contenant du laitier de hauts-fourneaux. Nous avons procédé en découplant les phénomènes impliqués dans la carbonatation que sont la diffusion gazeuse, les réactions chimiques et les transferts hydriques (séchage). La première partie de ces travaux de thèse a nécessité le développement et la validation d’un dispositif de mesure expérimental du coefficient de diffusion du CO2. Ce dernier a permis une étude paramétrique sur pâtes mettant en évidence l’influence de la composition et de la carbonatation sur la diffusion. La seconde partie a porté sur l’étude des cinétiques de carbonatation de pâtes en fonction du degré de saturation, après une mise à l’équilibre hydrique sur une longue période. Ces cinétiques ont été étudiées, sur échantillons de faibles dimensions, au moyen d’un suivi des évolutions pondérales et d’analyses thermogravimétriques, pour l’identification des hydrates résiduels et des carbonates formés. Nous avons ainsi mis en évidence des différences de comportement des hydrates et des liants vis-à-vis de la carbonatation impliquant la microstructure du matériau. / One solution for reducing the environmental impact of concrete is to substitute a part of cement by mineral additions, such as granulated blast furnace slag. However, this substitution should not reduce the performances of concrete with respect to carbonation, one of the main ageing phenomena of reinforced concrete structures. Carbonation is a chemical reaction between the cement matrix and the carbon dioxide from the atmosphere. In addition to the formation of calcium carbonate, this reaction results in a pH reduction of the pore solution and a risk of corrosion. Laboratory accelerated tests show a wide disparity between the carbonation resistance of high mechanical performances concretes with low porosity and the resistance of more porous and more usual ones. The objective of this thesis is to better understand the phenomenon of carbonation of cementitious materials, including those containing blast furnace slags. This work was carried out by decoupling the phenomena involved in carbonation that are gaseous diffusion, chemical reactions and water transfers. First, an experimental device for measuring the CO2 diffusion coefficient was developed. After validation, the latter was used in a parametric study carried out on cement pastes showing the influence of composition and carbonation on the diffusion coefficient. The second part of the thesis work focused on studying the kinetics of carbonation of pastes with respect to the degree of water saturation. Prior to carbonation, the studied pastes were conserved during a long period at various RH to achieve hydric equilibrium. The carbonation kinetics of small size samples of pastes was studied by means of monitoring of weight changes and thermogravimetric analyzes for identification of residual hydrates and formed carbonates. We have thus shown differences in behavior of hydrates and binders during carbonation involving the material microstructure.
17

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar 05 December 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
18

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar 05 December 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
19

Effect of Bolts Assembly on the Deformation and Pressure Distribution of Flow-Channel Plates in Micro-PEMFC

Chen, Li-chong 03 August 2010 (has links)
In general, a PEMFC was assembled by using a number of locked bolts. But this assembly will cause concentrated loads existed on the upper and lower portions of the end plates, so that the pressure distributed non-uniformly at the internal structures in the PEMFC and thus causing uneven distributed deformations of flow-channel plates. This phenomenon may lead to the leak of reaction gas, and causing not only the decrease of the efficiency of PEMFC, but also the increase of the dangerous. If the fuel cell size getting smaller, the influence may be more severely. The main aim of this study is to simulate the response of a micro-PEMFC numerically by utilizing a 3-D FEM model while the micro-PEMFC was assembled by three pairs of bolts along the upper and lower portions, respectively, of the end plates. The effects of different bolts locking sequences on the deformation and pressure distributions at flow-channel plates and on the porosity of gas diffusion layers in the micro-PEMFC were investigated. The simulated results showed that if one locked the middle bolt either on the upper or lower portion first, then the obtained uniformities of warpage, deformation, von Mises stress and porosity were superior than the corresponding obtained results if one locked either one of the four corner bolts first. Also, among the three pairs of bolts used for assembling the cell, the first locking bolt of the first pair of locking bolts and the first locking bolt of the rest of two pairs of locking bolts were suggested on the reverse portions of the end plates.
20

Performance Analysis of a Micro-PEM Fuel Cell with Different Flowfields and Hydrophobic/ Hydrophilic Gas Diffusion Layers

Tsai, I-Chang 29 August 2012 (has links)
This research mainly investigated how the hydrophilic and hydrophobic properties of gas diffusion layer, and the different open ratio of the flowfield may affect the performance of the micro proton exchange membrane fuel cell (£gPEMFC). The flow plate used in this experiment was made through deep UV lithography manufacturing processes and micro-electroforming manufacturing processes. Four different open ratios, 52.8 %, 50.8 %, 75.2 % and 75.75 %, of the flowfield were designed for the flow plate composed of serpentine-parallel and serpentine geometrical micro configurations. Acrylic (PMMA: Polymethylmethacrylate) was used to make the terminal plate placed on both sides of the micro proton exchange membrane fuel cell. By varying values of the hydrophilic and hydrophobic properties of the anode gas diffusion layer, the effects of these two parameters on the polarization curve and power density of the cell were explored. All results obtained in the experiment are presented by P-I curve and V-I curve. The experiment results show that, with 1: 5 flow ratio of anode to cathode, a design with the gas diffusion layer made of the material with hydrophobic factor 20 wt.% and with open ratio of 50.8 % for anode flow channel as well as open ratio of 75.75 % for cathode flow channel may have the best performance.

Page generated in 0.144 seconds