• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 21
  • 19
  • 14
  • 8
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 241
  • 241
  • 82
  • 73
  • 65
  • 45
  • 33
  • 28
  • 27
  • 26
  • 26
  • 24
  • 22
  • 22
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Energética e mecanismos de processos iônicos em fase gasosa / Energetics and mechanisms of gas-phase ionic processes

Tatiana Giroldo 02 July 2007 (has links)
O estudo da reatividade de íons em fase gasosa é bem diversificado e têm sido extensivamente explorado com técnicas de espectrometria de massas. Essa tese apresenta resultados experimentais e teóricos em três áreas distintas da química de íons em fase gasosa. Os processos iônicos foram experimentalmente estudados em um espectrômetro de massa por transformada de Fourier (FTMS ou FT-ICR), método de alta resolução que possibilita um acompanhamento temporal de reações de íons em -fase gasosa. Em vários momentos são apresentados resultados de cálculos teóricos, necessários para a elucidação do mecanismo das reações observadas e das estruturas de espécies envolvidas. Um dos assuntos estudados se refere à obtenção de dados termoquímicos a partir da dissociação de íons induzida por radiação infravermelha. O método desenvolvido anteriormente no laboratório, que utiliza como fonte de radiação um filamento aquecido, foi comparado com a dissociação induzida por laser de CO2.Os resultados indicam que o primeiro método é capaz de diferenciar íons através das suas energias de dissociação enquanto que o segundo mostrou ser pouco sensível às variações de energias de dissociação para os íons estudados (derivados de acetofenona e alguns alquilbenzenos). Um outro tema abordado é a reação de substituição nucleofílica aromática em fase gasosa. As reações de nucleófilos como F-, OH- e alguns alcóxidos com nitrobenzeno e halobenzenos foram detalhadas. O mecanismo da reação e a atuação de complexos íon-molécula foram caracterizados. Foi possível estabelecer que reações de substituição nucleofílica aromática podem ser muito rápidas em fase gasosa mesmo na ausência de grupos ativadores no anel aromático. Reações SNAr podem ocorrer em fase gasosa em competição com abstração de próton, ou como reação secundária do produto desprotonado através da formação de um complexo íon-molécula de tempo de vida suficiente para sofrer rearranjos. O último assunto apresentado é a reação de íons de caráter eletrofílico, CF3+,CCl3+ e CClF2<SUP+, com acetofenona e derivados. Vários caminhos de reação foram observados experimentalmente, o que proporcionou um amplo estudo para a elucidação das estruturas e dos mecanismos das reações. Os resultados obtidos com substratos deuterados e os resultados de cálculos teóricos indicam que os diferentes produtos de reação observados são devidos a um ataque inicial do eletrófilo no oxigênio carbonílico da acetofenona. / The study of ionic reactivity in the gas-phase has been widely explored with mass spectrometry techniques. This thesis reports experimental and theoretical results in three different areas of gas-phase ion chemistry. The ionic processes were experimentally studied by Fourier transform mass spectrometry (FTMS or FT-ICR), a high resolution method that allows for the observation of ion/molecule reactions. For almost all cases, extensive theoretical calculations were necessary to clarify the mechanisms of the observed reactions and to establish the structures of the ions. The first part of the thesis deals with the possibility of deriving termochemical data from ion dissociation processes induced by infrared radiation. The method previously developed in our laboratory, which uses a heated tungsten wire as the infrared source, was compared with the dissociation induced by a CO2 laser. The results show that the former method can readily differentiate ions by their dissociation energy while the second one proved to be insensitive for the ions studied in this thesis (acetophenones derivatives and some alkylbenzenes). The second part deals with gas-phase nucleophilic aromatic displacement reactions. Reactions of gas-phase nucleophiles such as F-, OH- and some alcoxides with nitrobenzene and halobenzenes were extensively studied. The reaction mechanism and the role of ion-molecule complexes were established. Nucleophilic aromatic displacement can be very fast in the gas-phase even in the absence of activating groups in the ring. Gas-phase Sn Ar reactions may occur in competition with proton abstraction, or may N result from a secundary reaction following proton abstraction through a ion-molecule complex with life time enough to suffer rearrangements. The last part of the thesis deals with the reaction of eletrophilc ions, such as CFSUB>3+ , CCl3+ e CClF2+ , with acetophenone and substituted 3 3 2 acetophenones. Several reaction paths were experimentally observed, wich motivated a thorough investigation of these reactions to establish the structures of the ions and the mechanisms of the reactions. The combination of experimental results obtained with deuterated substrates and theoretical calculations suggest that all the different products observed result from initial attack of the eletrophilic ion on the carbonyl oxygen atom of acetophenone.
212

Spectroscopie optique et infrarouge de biomolécules et systèmes molécule-métal / Optical and infrared spectroscopy on biomolecules and metal-molecule complex in the gas phase

Bellina, Bruno 31 October 2012 (has links)
Les différents travaux présentés dans ce mémoire de thèse regroupent des études de spectroscopie en phase gazeuse de biomolécules et de systèmes molécule-agrégats métalliques. Le couplage de la spectroscopie de masse avec la spectroscopie laser UV/Visible et IR permet de réaliser de la spectroscopie d’action sur des ions et des complexes ioniques sélectionnés en masse et isolés dans un piège ionique. Les mesures renseignent sur les caractéristiques intrinsèques du système étudié permettant d’obtenir ses propriétés vibrationnels et électroniques. La principale partie de ce travail est axée sur l’étude des protéines et des processus chimiques mis en jeu dans leurs sous-parties essentielles, les acides aminés. Nous avons ainsi pu obtenir le spectre d’absorption optique en phase gazeuse de protéines entières. L’étude des systèmes radicalaires et notamment les propriétés du tryptophane radicalaire ont permis d’établir des signatures spectroscopiques pour diagnostiquer ces états réactifs. Les différents sites de complexation d’un cation métallique dans une séquence peptidique modèle ont permis d’illustrer la complémentarité des informations obtenues en regroupant les techniques de spectroscopie infrarouge et UV/Visible avec la mobilité ionique. Des approches ont été réalisées sur la synthèse de systèmes modèles en phase gazeuse et l’étude des précurseurs observés lors de la synthèse de nanoparticules en solution. Nous avons notamment pu synthétiser par collision en piège ionique et isoler un agrégat d’argent Ag42+ stabilisé. Le rôle des ligands dans les propriétés optiques des nanoparticules stabilisées par des molécules de type thiols a ainsi également été étudié / The Different works presented in this thesis include studies of gas phase spectroscopy of biomolecules and metal-molecule complex. Coupling mass spectrometry and laser spectroscopy in the UV/Visible and IR range allows for action spectroscopy of mass-selected and isolated ions in ion trap. Measures provide information on intrinsic characteristics of the system and informs on vibrational and electronic properties. The main part of this work focuses on the study of proteins and chemical processes involved in their subparts, amino acids. We were able to obtain optical absorption spectrum of entire proteins in the gas phase. The studies of radical systems incuding tryptophan radical properties have established spectroscopic signatures of these reactive states. Different sites of a metal cation, silver, in a model peptide sequence were used to illustrate the complementarity of infrared spectroscopy and UV/Visible with ion mobility to get information resolve preferential metal binding site. Others approaches have been done on the synthesis of model systems in the gas phase concerning the study of precursors observed during the synthesis of nanoparticles. In particular, we could synthesize collision in ion trap and isolate an Ag42+ stabilized cluster. The role of ligands on the optical properties of nanoparticles stabilized by thiol-type molecules has also been studied
213

Modeling Material Microstructure and Fatigue Life of Metal Components Produced by Laser Melting Additive Process

Chun-Yu Ou (8791262) 12 October 2021 (has links)
<p>There has been a long-standing need in the marketplace for the economic production of small lots of components that have complex geometry. A potential solution is additive manufacturing (AM). AM is a manufacturing process that adds material bottom-up. It has the distinct advantages of low preparation cost and high geometric creation capability. Components fabricated via AM are now being selectively used for less-demanding applications in motor vehicles, consumer products, medical products, aerospace devices, and even some military projects.</p><p><br></p> <p>For engineering applications, high value-added components require consistency in the fatigue properties. However, components fabricated by AM have large variation in the fatigue properties compared to those by conventional manufacturing processes. To alleviate unpredictable catastrophic failures of components, it is essential to study and predict fatigue life. Previous study reported that fatigue crack initiation process accounts for a large portion of fatigue life, especially for low loading amplitude and high cycle fatigue. However, this major portion of fatigue life prediction is mostly ignored by main stream researchers working on fatigue modeling. For industrial applications, engineers often specify a lower stress condition to obtain a higher safety factor. Under these circumstances, fatigue crack initiation becomes even more important, so it is essential to further study of crack initiation.</p><p><br></p> <p>The objective of this research is to develop a fatigue crack initiation model for metal components produced by AM. To improve life prediction accuracy, the model must incorporate the effect of different microstructures, which are typically produced by AM due to a large number of repetitive cycles of re-heating and re-cooling processes. To fulfill this objective, the tasks are separated into three studies: (1) developing a temperature model to simulate temperature history, (2) modeling the component’s microstructure for the potential crack initiation zone, and (3) developing a fatigue crack initiation model for life estimation. A summary of each task is provided in the following.</p> <p>First, the role of temperature model is to understand the mechanism that leads to the variation of microstructures. The existing temperature models are computationally expensive to obtain an accurate prediction of the temperature history due to repetitive heating and cooling. The main reason is that these models considered entire boundary conditions of all the material points. In this section, we proposed and employed the concept of effective computation zone, which can save the computational time significantly for AM process. </p><p><br></p> <p>Second, it is critical to include the effect of microstructure in the fatigue life model since the microstructure variation at different locations within the real AM component is large. The grain size variation is modeled by using representative volume element, which is defined as a volume of heterogeneous material that is sufficiently large to be statistically representative of the real component’s microstructure. Regarding phase transformation, a continuous cooling transformation (CCT) diagram is a useful tool that can be used with a thermal model for microstructure design and manufacturing process control. However, traditional CCT diagrams are developed based on slow and monotonic cooling processes such as furnace cooling and air cooling, which are greatly different from the repetitive heating and cooling processes in AM. In this study, a new general methodology is presented to create CCT diagrams for materials fabricated by AM. We showed that the effect of the segmented duration within the critical temperature range, which induced precipitate formation, could be cumulative. </p><p><br></p> <p>Third, the existing fatigue crack initiation life model has poor accuracy. One of the reasons for the poor accuracy is the coefficients change due to the variation in microstructure is not accounted for. In this section, a semi-empirical fatigue crack initiation model is presented. The important coefficients include maximum persistent slipband width, energy efficiency coefficient, resolved shear stress and plastic slip rate per cycle. These coefficients are modeled and determined as a function of microstructure, which can improve the accuracy of life estimation.</p><p><br></p> <p>The contribution of this study is to provide a new engineering tool for designing the melting AM process based on scientific research. With this tool, the fundamental mechanism contributing to a large variation of the fatigue life of the metal components made by AM process can be understood, attributed, predicted and improved. The seemly ‘stochastic’ nature of fatigue life of the AM components can be changed to be more deterministic and predictable. This approach represents a major advance in fatigue research on AM materials. The model developed is considered as a tool for research, design, and control for laser-based AM process applications. </p>
214

Heterogen katalysierte Gasphasen-Epoxidation von Propen an FeOx/SiO2-Katalysatoren

Duma, Viorel 11 May 2001 (has links)
Im Rahmen der vorliegenden Arbeit wurde eine neuartige Methode und die entsprechenden Katalysatoren für die heterogen katalysierte Gasphasen-Epoxidation von Propen entwickelt und optimiert. Das Propen wurde an FeOx/SiO2-Katalysatoren mit N2O als Oxidationsmittel epoxidiert. Die Katalysatoren wurden mittels XRD, TEM, XPS, Physi- und Chemisorption, TPR/TPO, TPD und IR untersucht und charakterisiert. Der Einfluß der Reaktionsbedingungen auf die Oxidationsergebnisse wurde bestimmt und Untersuchungen zum Reaktionsablauf durchgeführt. Es wurden Selektivitäten zu Propenoxid von 40-70%, bei Propenumsätzen von 3-12%, erreicht. Die maximalen erzielten PO-Ausbeuten betrugen über 5%, und sind damit den berichteten Ergebnisse aus der Literatur überlegen.
215

In situ Charakterisierung der Phasenbildung — Konzept und Anwendung der Analyse von Festkörper-Gas-Reaktionen durch Gesamtdruckmessungen

Schöneich, Michael 25 February 2013 (has links)
In der vorliegenden Arbeit wird das Konzept einer druckbasierten Analyse von Fest-Gas-Gleichgewichten hinsichtlich theoretischer wie experimenteller Zusammenhänge untersucht. Hierfür erfolgt eine gezielte Nutzung der Beziehungen von theoretischen und experimentell zugänglichen physikalischen Parametern, um so die Grundlage für eine spätere Anwendung im Kontext der Syntheseplanung zu ermöglichen. Im Speziellen handelt es sich im vorgestellten Konzept um die aus festkörperanalytischer Sicht häufig vernachlässigte Beziehung zwischen dem Dampfdruck von Festkörpern und dem chemischen Potenzial. Neben der theoretischen Erarbeitung des Analysekonzeptes befasst sich die vorgestellte Arbeit zusätzlich mit dessen experimenteller Umsetzung anhand der Entwicklung bzw. Optimierung der Analyseverfahren der Hochtemperatur-Gasphasenwaage sowie des automatisierten Membrannullmanometers. Abgeschlossen wird die Arbeit zudem durch die anschauliche Vorstellung der praktischen Anwendung des Konzeptes hinsichtlich unterschiedlicher Fragestellungen (Theorie vs. Experiment: Quecksilber/Phosphor/Iod, Analyse der Phasenbildung: Arsen/Phosphor, rationale Syntheseplanung: IrPTe, Syntheseoptimierung: Bi13P3I7, Kinetik: FeAs).
216

Identification of Sources of Air Pollution Using Novel Analytical Techniques and Instruments

Bhardwaj, Nitish 31 March 2022 (has links)
This dissertation is a collection of studies that investigates the issue of air pollution in the field of environmental chemistry. My thesis consists of research works done to measure the concentration of particulate matter (PM) and gas-phase species in ambient air. High concentrations of PM is a significant problem in Utah and in other regions of the world. Particles having an aerodynamic diameter of 2.5 micrometers and smaller play a crucial role in air pollution and pose serious health risks when inhaled. PM is composed of both organic and inorganic components. The organic fraction in PM ranges from 10-90% of the total particle mass. Several methods have been employed to measure the organic fraction of PM, but these techniques require extensive laboratory analysis, expensive bench top equipment, and do a poor job of capturing diurnal variations of the concentrations of ambient organic compounds. The Hansen Lab has developed a new instrument called the Organic Aerosol Monitor (OAM) which is based on gas chromatography followed by mass spectrometry detection platform for measuring the carbonaceous component of PM2.5 on an hourly averaged basis. Organic marker data collected in 2016 using the OAM was used in a Positive Matrix Factorization (PMF) analysis to identify the sources of PM in West Valley City, Utah. Additionally, data was collected in Richfield and Vernal, UT in 2017 - 2018 to quantitatively monitor the composition of organic markers of PM2.5. Some previously unidentified organic compounds in PM were successfully identified during this study, including terpenes, polycyclic aromatic hydrocarbons (PAHs), diethyl phthalate, some herbicides, and pesticides. Gas-phase species play a significant role in driving the formation of air pollutants in Earth's atmosphere. Traditional gas detection methods do not provide high temporally and spatially resolved data; therefore, it becomes important to detect and measure gas-phase species both qualitatively and quantitatively to better understand the sources of air pollution. An incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) combines a broadband incoherent light source, a stable optical cavity formed by two highly reflective mirrors and a charged-coupled device (CCD) detector to quantitatively measure the gas-phase compounds present in the atmosphere. The concentrations of formaldehyde (HCHO) were measured using IBBCEAS to investigate the sources of this hydrocarbon in Bountiful, Utah during 2019. Another important species is OH radical. It is one of the most predominant oxidizing species present in the atmosphere. It is found in low concentrations, 0.1 ppt. Detecting concentrations this low is challenging. A new IBBCEAS instrument has been designed and elements of this instrument were tested by measuring the OH overtones in a variety of short chained alcohols. A set of experiments were conducted to measure the absorption cross-sections for the 5th and 6th OH vibrational overtones in a series of short chained alcohols by IBBCEAS. Because OH radical's lowest energy electronic state occurs in the same wavelength region (i.e., 308 nm) that SO2 absorbs (300-310 nm), a study was conducted in which the concentrations of SO2 were measured using an IBBCEAS and compared with a commercially available SO2 monitor.
217

Thermochemical differences in lysine and lysine-homolog containing oligopeptides: Determination of basicity and gas-phase structure through mass spectrometry, infrared spectroscopy, and computational chemistry

Batoon, Patrick Henry M. 01 January 2016 (has links)
The data presented in this thesis is a comprehensive study on the nature of peptide structure and how subtle and systematic changes in sequence and sidechain affect the basicity, ion stability, and conformation of a peptide. The peptides characterized were acetylated polyalanine di-, tri-, and tetra- peptides containing a proton-accepting probe: lysine and or the non-proteinogenic lysine-homologs: ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid. Peptides were studied in isomeric pairs for which the basic amino acid was placed closest to the N-terminus or the C-terminus of each peptide family (A n Probe vs. ProbeA n ). Using a variety of mass spectrometry based techniques and infrared multiphoton dissociation ion spectroscopy, the isomeric families of polyalanine peptides were characterized. Quantum chemical techniques were employed in parallel to provide theoretical predictions of three-dimensional structure, physical properties (dipole moment, polarizability, and accessible surface area), thermochemical values, and vibrational IR spectra, to gain further understanding of the peptides studied and to push the limits of current theoretical models. Overall it was found that the AnProbe peptide was more basic than their ProbeAn isomer. For the dipeptide systems, the greater basicity of AProbe peptides was due to efficiently charge-solvated ions which formed more compact structures compared to their ProbeA counterpart. For the tri- and tetra- peptide systems, greater basicity of the A 2,3 Probe peptides was likely due to formation of α or 3 10 helix-like structures in the protonated forms., introducing the macrodipolar effect, which cooperatively encouraged helical formation while stabilizing the charged site. On the other hand, ProbeA 2,3 peptides formed charge-solvated coils which do not exhibit any kind of dipole effect, resulting in lower basicity than their A2,3Probe counterpart.
218

Establishment of gas-phase thermochemical values of various small organic compounds and oligopeptides

Buen, Zachary 01 January 2016 (has links) (PDF)
The thesis describes utilizing mass spectrometry and computational methods to study two groups of molecular systems: small organic molecules and oligopeptides. The gas-phase acidities were measured and the structures of the molecular species were calculated. The small molecules investigated included methylparaben, ibuprofen, and triclosan, all known to have some biological activity. The gas-phase acidity measurements made for these small molecules had the solvent and collisional gas pressures adjusted in order to observe their potential influences. The results obtained provide insight into the ion chemistry of these molecules and how the energetics may change the observed behavior of the ion as well as the resulting thermochemical properties measured. The oligopeptides studied were a family of tri-peptides in which a cysteine probe was placed within an alanine backbone. The cysteine probe was either in the L- or D- configuration in order to detect any fundamental differences among the diastereotopic peptides. Compared to the L-cysteine isomers, the D-cysteine peptides appear to display a change in gas-phase behavior and their respective dissociation profiles. These changes may have an implication of altering the biochemical properties when chirality changes in biological systems.
219

Molecular Spectroscopy Experiment to Measure Temperature-Dependent Radiative Lifetime of the SODIUM MOLECULE 6sΣ𝑔(𝑣 = 9, 𝐽 = 31) State

Kashem, Md Shakil Bin 17 July 2023 (has links)
No description available.
220

Laser Spectroscopy Studying Organic and Inorganic Intermediates in The Atmospheric Oxidation Process

Chen, Ming-Wei 20 October 2011 (has links)
No description available.

Page generated in 0.0296 seconds