Spelling suggestions: "subject:"gaussien"" "subject:"gaussian""
41 |
Applications du formalisme des faisceaux gaussiens à la modélisation de l'interaction d'une onde électromagnétique avec un objet 3D complexeHillairet, Julien 06 December 2007 (has links) (PDF)
Depuis plusieurs années, des travaux ont été menés avec succès par le laboratoire LAME de l'UPS et le DEMR de l'ONERA sur le formalisme des faisceaux gaussiens pour modéliser l'interaction d'une onde électromagnétique avec un ensemble antenne-radôme. Ce formalisme est basé sur l'utilisation de faisceaux élémentaires gaussiens et a pour principal avantage l'obtention d'une expression analytique des champs électromagnétiques. Toutefois, ce modèle devait être complété par la description du champ électromagnétique rayonné par des discontinuités éclairées par un faisceau gaussien et par le traitement des surfaces de fortes courbures. \\ <br /><br /><br />Pour traiter le cas de la diffraction, l'utilisation de la méthode spectrale de la diffraction permet d'exprimer sous forme intégrale le champ diffracté par un objet canonique, par exemple un demi-plan conducteur, lorsqu'il est éclairé par un faisceau gaussien. L'approximation de l'optique physique permet d'obtenir une expression approchée analytique des champs rayonnés en 3D par des surfaces conductrices finies rectangulaires éclairées par un faisceau gaussien. Pour les surfaces de forte courbure et éclairées sous forte incidence, les faisceaux gaussiens conformes permettent de calculer analytiquement les champs lointains rayonnés. Afin de pouvoir traiter les interactions électromagnétiques (réflexions et transmissions) entre un faisceau gaussien conforme et une paroi diélectrique, le spectre d'ondes planes d'un faisceau gaussien conforme a été formulé. <br /><br /><br />Ces techniques ont été implémentées et validées sur différents cas tests canoniques. Les résultats théoriques ont été confrontés à des mesures en chambre anéchoïque ainsi qu'à plusieurs méthodes numériques. Les résultats obtenus montrent que les faisceaux gaussiens permettent de décrire une grande variété de problèmes électromagnétiques, des interactions antennes-radômes à la propagation sur de longues distances en présentant un bon compromis entre précision et temps de calcul.
|
42 |
Intrication de champs quantiques mesoscopiques pour les communications quantiquesBlandino, Rémi 25 March 2013 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de l'information quantique avec des variables continues, en utilisant des états quantiques du champ électromagnétique. En combinant les outils propres aux variables discrètes, o'u la lumière est décrite en termes de photons, avec les outils des variables continues, où la lumière est décrite en termes de quadratures, nous pouvons étudier théoriquement et produire expérimentalement des états non-classiques, ainsi que des protocoles élémentaires d'information quantique. Ainsi, nous avons produit expérimentalement un état "chat de Schrödinger", superposition quantique de deux états lumineux quasi-classiques, sur lequel nous avons appliqué une porte quantique introduisant une phase dans la superposition. Nous avons ensuite analysé la qualité de cette porte en utilisant un modèle simple de notre expérience. Nous nous sommes ensuite intéressés aux corrélations quantiques, mesurées par la discorde quantique, pour une classe d'états particulièrement importants en information quantique. Nous avons quantifié la précision de nos mesures en les comparant aux bornes de Cramér-Rao classique et quantique. Enfin, nous avons étudié théoriquement l'utilisation d'un amplificateur quantique non-déterministe en cryptographie quantique. Cet amplificateur possède la propriété de pouvoir amplifier des états quantiques sans en amplifier le bruit quantique associé. Ainsi, nous avons montré qu'il permet une amélioration de la distance maximale de transmission d'une clé secrète, ainsi qu'une amélioration de la résistance au bruit introduit par le canal quantique.
|
43 |
Asymptotic study of covariance operator of fractional processes : analytic approach with applications / Études asymptotiques de l’opérateur de covariance pour les processus fractionnaires : approche analytique avec applicationsMarushkevych, Dmytro 22 May 2019 (has links)
Les problèmes aux valeurs et fonctions propres surviennent fréquemment dans la théorie et dans les applications des processus stochastiques. Cependant quelques-uns seulement admettent une solution explicite; la résolution est alors généralement obtenue par la théorie généralisée de Sturm-Liouville pour les opérateurs différentiels. Les problèmes plus généraux ne peuvent pas être résolus sous une forme fermée et le sujet de cette thèse est l'analyse spectrale asymptotique des processus gaussiens fractionnaires et ses applications. Dans la première partie, nous développons une méthodologie pour l'analyse spectrale des opérateurs de covariance de type fractionnaire, correspondant à une famille importante de processus, incluant le processus fractionnaire d'Ornstein-Uhlenbeck, le mouvement brownien fractionnaire intégré et le mouvement brownien fractionnaire mixte. Nous obtenons des approximations asymptotiques du second ordre pour les valeurs propres et les fonctions propres. Au chapitre 2, nous considérons le problème aux valeurs et fonctions propres pour l'opérateur de covariance des ponts gaussiens. Nous montrons comment l'asymptotique spectrale d'un pont peut être dérivée de celle de son processus de base, en prenant comme exemple le cas du pont brownien fractionnaire. Dans la dernière partie, nous considérons trois applications représentatives de la théorie développée: le problème de filtrage des signaux gaussiens fractionnaires dans le bruit blanc, le problème de grande déviation pour le processus d'Ornstein-Uhlenbeck gouverné par un mouvement brownien fractionnaire mixte et probabilités des petites boules pour les processus gaussiens fractionnaires. / Eigenproblems frequently arise in theory and applications of stochastic processes, but only a few have explicit solutions. Those which do are usually solved by reduction to the generalized Sturm-Liouville theory for differential operators.The more general eigenproblems are not solvable in closed form and the subject of this thesis is the asymptotic spectral analysis of the fractional Gaussian processes and its applications.In the first part, we develop methodology for the spectral analysis of the fractional type covariance operators, corresponding to an important family of processes that includes the fractional Ornstein-Uhlenbeck process, the integrated fractional Brownian motion and the mixed fractional Brownian motion. We obtain accurate second order asymptotic approximations for both the eigenvalues and the eigenfunctions. In Chapter 2 we consider the covariance eigenproblem for Gaussian bridges. We show how the spectral asymptotics of a bridge can bederived from that of its base process, considering, as an example, the case of the fractional Brownian bridge. In the final part we consider three representative applications of the developed theory: filtering problem of fractional Gaussian signals in white noise, large deviation properties of the maximum likelihood drift parameter estimator for the Ornstein-Uhlenbeck process driven by mixed fractional Brownian motion and small ball probabilities for the fractional Gaussian processes.
|
44 |
Sur l’évaluation statistique des risques pour les processus spatiaux / On statistical risk assessment for spatial processesAhmed, Manaf 29 June 2017 (has links)
La modélisation probabiliste des événements climatiques et environnementaux doit prendre en compte leur nature spatiale. Cette thèse porte sur l’étude de mesures de risque pour des processus spatiaux. Dans une première partie, nous introduisons des mesures de risque à même de prendre en compte la structure de dépendance des processus spatiaux sous-jacents pour traiter de données environnementales. Une deuxième partie est consacrée à l’estimation des paramètres de processus de type max-mélange. La première partie de la thèse est dédiée aux mesures de risque. Nous étendons les travaux réalisés dans [44] d’une part à des processus gaussiens, d’autre part à d’autres processus max-stables et à des processus max-mélange, d’autres structures de dépendance sont ainsi considérées. Les mesures de risque considérées sont basées sur la moyenne L(A,D) de pertes ou de dommages D sur une région d’intérêt A. Nous considérons alors l’espérance et la variance de ces dommages normalisés. Dans un premier temps, nous nous intéressons aux propriétés axiomatiques des mesures de risque, à leur calcul et à leur comportement asymptotique (lorsque la taille de la région A tend vers l’infini). Nous calculons les mesures de risque dans différents cas. Pour un processus gaussien, X, on considère la fonction d’excès : D+ X,u = (X−u)+ où u est un seuil fixé. Pour des processus max-stables et max-mélange X, on considère la fonction puissance : DνX = Xν. Dans certains cas, des formules semi-explicites pour les mesures de risque correspondantes sont données. Une étude sur simulations permet de tester le comportement des mesures de risque par rapport aux nombreux paramètres en jeu et aux différentes formes de noyau de corrélation. Nous évaluons aussi la performance calculatoire des différentes méthodes proposées. Celle-ci est satisfaisante. Enfin, nous avons utilisé une étude précédente sur des données de pollution dans le Piémont italien, celle-ci peuvent être considérées comme gaussiennes. Nous étudions la mesure de risque associée au seuil légal de pollution donnée par la directive européenne 2008/50/EC. Dans une deuxième partie, nous proposons une procédure d’estimation des paramètres d’un processus max-mélange, alternative à la méthode d’estimation par maximum de vraisemblance composite. Cette méthode plus classique d’estimation par maximum de vraisemblance composite est surtout performante pour estimer les paramètres de la partie max-stable du mélange (et moins performante pour estimer les paramètres de la partie asymptotiquement indépendante). Nous proposons une méthode de moindres carrés basée sur le F-madogramme : minimisation de l’écart quadratique entre le F-madogramme théorique et le F-madogramme empirique. Cette méthode est évaluée par simulation et comparée à la méthode par maximum de vraisemblance composite. Les simulations indiquent que la méthode par moindres carrés du F-madogramme est plus performante pour estimer les paramètres de la partie asymptotiquement indépendante / When dealing with environmental or climatic changes, a natural spatial dependence aspect appears. This thesis is dedicated to the study of risk measures in this spatial context. In the first part (Chapters 3 and 4), we study risk measures, which include the natural spatial dependence structure in order to assess the risks due to extreme environmental events and in the last part (Chapter 5), we propose estimation procedures for underlying processes, such as isotropic and stationary max-mixture processes. In the first part dedicated to risk measures, we extended the work in [44] in order to obtain spatial risk measures for various spatial processes and different dependence structures. We based these risk measures on the mean losses over a region A of interest. Risk measures are then defined as the expectation E[L(A,D)] and variance Var(L(A,D)) of the normalized loss. In the study of these measures, we focused on the axiomatic properties of asymptotic behavior (as the size of the region interest goes to infinity) and on computational aspects. We calculated two risk measures: risk measure for the gaussian process based on the damage function called access damage D+ X,u and risk measure for extreme processes based on the power damage function DνX . In simulation study and for each risk measure provided, we emphasized the theoretical results of asymptotic behavior by various parameters of a model and different Kernels for the correlation function. We also evaluated the performance of these risk measures. The results were encouraging. Finally, we implemented the risk measure corresponding to gaussian on the real data of pollution in Piemonte, Italy. We assessed the risks associated with this pollution when an excess of it was over the legal level determined by the European directive 2008/50/EC. With respect to estimation, we proposed a semi-parametric estimation procedure in order to estimate the parameters of a max-mixture model and also of a max-stable model ( inverse max-stable model) as an alternative to composite likelihood. A good estimation by the proposed estimator required the dependence measure to detect all dependence structures in the model, especially when dealing with the max-mixture model. We overcame this challenge by using the F-madogram. The semi-parametric estimation was then based on a quasi least square method, by minimizing the square difference between the theoretical F-madogram and an empirical one. We evaluated the performance of this estimator through a simulation study. It was shown that on a mean, the estimation is performed well, although in some cases, it encountered some difficulties
|
45 |
Prévision à court terme des flux de voyageurs : une approche par les réseaux bayésiens / Short-term passenger flow forecasting : a Bayesian network approachRoos, Jérémy 28 September 2018 (has links)
Dans ces travaux de thèse, nous proposons un modèle de prévision à court terme des flux de voyageurs basé sur les réseaux bayésiens. Ce modèle est destiné à répondre à des besoins opérationnels divers liés à l'information voyageurs, la régulation des flux ou encore la planification de l'offre de transport. Conçu pour s'adapter à tout type de configuration spatiale, il permet de combiner des sources de données hétérogènes (validations des titres de transport, comptages à bord des trains et offre de transport) et fournit une représentation intuitive des relations de causalité spatio-temporelles entre les flux. Sa capacité à gérer les données manquantes lui permet de réaliser des prédictions en temps réel même en cas de défaillances techniques ou d'absences de systèmes de collecte / In this thesis, we propose a Bayesian network model for short-term passenger flow forecasting. This model is intended to cater for various operational needs related to passenger information, passenger flow regulation or operation planning. As well as adapting to any spatial configuration, it is designed to combine heterogeneous data sources (ticket validation, on-board counts and transport service) and provides an intuitive representation of the causal spatio-temporal relationships between flows. Its ability to deal with missing data allows to make real-time predictions even in case of technical failures or absences of collection systems
|
46 |
Detection of Freezing of Gait in Parkinson's disease / Détection du rique de chute chez les malades atteints de ParkinsonSaad, Ali 15 December 2016 (has links)
Le risque de chute provoqué par le phénomène épisodique de ‘Freeze of Gait’ (FoG) est un symptôme commun de la maladie de Parkinson. Cette étude concerne la détection et le diagnostic des épisodes de FoG à l'aide d'un prototype multi-capteurs. La première contribution est l'introduction de nouveaux capteurs (télémètres et goniomètres) dans le dispositif de mesure pour la détection des épisodes de FoG. Nous montrons que l'information supplémentaire obtenue avec ces capteurs améliore les performances de la détection. La seconde contribution met œuvre un algorithme de détection basé sur des réseaux de neurones gaussiens. Les performance de cet algorithme sont discutées et comparées à l'état de l'art. La troisième contribution est développement d'une approche de modélisation probabiliste basée sur les réseaux bayésiens pour diagnostiquer le changement du comportement de marche des patients avant, pendant et après un épisode de FoG. La dernière contribution est l'utilisation de réseaux bayésiens arborescents pour construire un modèle global qui lie plusieurs symptômes de la maladie de Parkinson : les épisodes de FoG, la déformation de l'écriture et de la parole. Pour tester et valider cette étude, des données cliniques ont été obtenues pour des patients atteints de Parkinson. Les performances en détection, classification et diagnostic sont soigneusement étudiées et évaluées. / Freezing of Gait (FoG) is an episodic phenomenon that is a common symptom of Parkinson's disease (PD). This research is headed toward implementing a detection, diagnosis and correction system that prevents FoG episodes using a multi-sensor device. This particular study aims to detect/diagnose FoG using different machine learning approaches. In this study we validate the choice of integrating multiple sensors to detect FoG with better performance. Our first level of contribution is introducing new types of sensors for the detection of FoG (telemeter and goniometer). An advantage in our work is that due to the inconsistency of FoG events, the extracted features from all sensors are combined using the Principal Component Analysis technique. The second level of contribution is implementing a new detection algorithm in the field of FoG detection, which is the Gaussian Neural Network algorithm. The third level of contribution is developing a probabilistic modeling approach based on Bayesian Belief Networks that is able to diagnosis the behavioral walking change of patients before, during and after a freezing event. Our final level of contribution is utilizing tree-structured Bayesian Networks to build a global model that links and diagnoses multiple Parkinson's disease symptoms such as FoG, handwriting, and speech. To achieve our goals, clinical data are acquired from patients diagnosed with PD. The acquired data are subjected to effective time and frequency feature extraction then introduced to the different detection/diagnosis approaches. The used detection methods are able to detect 100% of the present appearances of FoG episodes. The classification performances of our approaches are studied thoroughly and the accuracy of all methodologies is considered carefully and evaluated
|
47 |
Intelligence artificielle et prévision de l'impact de l'activité solaire sur l'environnement magnétique terrestre / Artifical intelligence and forecast of the impact of the solar activity on the Earth's magnetic fieldGruet, Marina 28 September 2018 (has links)
Dans cette thèse, nous présentons des modèles appartenant au domaine de l’intelligence artificielle afin de prédire l’indice magnétique global am à partir des paramètres du vent solaire. Ceci est fait dans l’optique de fournir des modèles opérationnels basés sur les données enregistrées par le satellite ACE situé au point de Lagrange L1. L’indice am ne possède pas à l’heure actuelle de modèles de prédiction. Pour prédire cet indice, nous avons fait appel à des modèles non-linéaires que sont les réseaux de neurones, permettant de modéliser le comportement complexe et non-linéaire de la magnétosphère terrestre. Nous avons dans un premier temps travaillé sur le développement et l’optimisation des modèles de réseaux classiques comme le perceptron multi-couche. Ces modèles ont fait leurs preuves en météorologie spatiale pour prédire aussi bien des indices magnétiques spécifiques à des systèmes de courant comme l’indice Dst, caractéristique du courant annulaire, que des indices globaux comme l’indice Kp. Nous avons en particulier étudié un réseau temporel appelé Time Delay Neural Network (TDNN) et évalué sa capacité à prédire l’indice magnétique am à une heure, uniquement à partir des paramètres du vent solaire. Nous avons analysé la sensibilité des performances des réseaux de neurones en considérant d’une part les données fournies par la base OMNI au niveau de l’onde de choc, et d’autre part des données obtenues par le satellite ACE en L1. Après avoir étudié la capacité de ces réseaux à prédire am, nous avons développé un réseau de neurones encore jamais utilisé en météorologie spatiale, le réseau Long Short Term Mermory ou LSTM. Ce réseau possède une mémoire à court et à long terme, et comme le TDNN, fournit des prédictions de l’indice am uniquement à partir des paramètres du vent solaire. Nous l’avons optimisé afin de modéliser au mieux le comportement de la magnétosphère et avons ainsi obtenu de meilleures performances de prédiction de l'indice am par rapport à celles obtenues avec le TDNN. Nous avons souhaité continuer le développement et l’optimisation du LSTM en travaillant sur l’utilisation de fonctions de couplage en entrée de ce réseau de neurones, et sur le développement de réseaux multisorties pour prédire les indices magnétiques am sectoriels ou aσ, spécifiques à chaque secteur Temps Magnétique Local. Enfin, nous avons développé une nouvelle technique combinant réseau LSTM et processus gaussiens, afin de fournir une prédiction probabiliste jusqu’à six heures des indices magnétiques Dst et am. Cette méthode a été dans un premier temps développée pour l’indice magnétique Dst afin de pouvoir comparer les performances du modèle hybride à des modèles de référence, puis appliquée à l’indice magnétique am. / In this thesis, we present models which belongs to the field of artificial intelligence to predict the geomagnetic index am based on solar wind parameters. This is done in terms to provide operational models based on data recorded by the ACE satellite located at the Lagrangian point L1. Currently, there is no model providing predictions of the geomagnetic index am. To predict this index, we have relied on nonlinear models called neural networks, allowing to model the complex and nonlinear dynamic of the Earth’s magnetosphere. First, we have worked on the development and the optimisation of basics neural networks like the multilayer perceptron. These models have proven in space weather to predict geomagnetic index specific to current systems like the Dst index, characteristic of the ring current, as well as the global geomagnetic index Kp. In particular, we have studied a temporal network, called the Time Delay Neural Network (TDNN) and we assessed its ability to predict the geomagnetic index am within one hour, base only on solar wind parameters. We have analysed the sensitivity of neural network performance when considering on one hand data from the OMNI database at the bow shock, and on the other hand data from the ACE satellite at the L1 point. After studying the ability of neural networks to predict the geomagnetic index am, we have developped a neural network which has never been used before in Space Weather, the Long Short Term Memory or LSTM. Like the TDNN, this network provides am prediction based only on solar wind parameters. We have optimised this network to model at best the magnetosphere behaviour and obtained better performance than the one obtained with the TDNN. We continued the development and the optimisation of the LSTM network by using coupling functions as neural network features, and by developing multioutput networks to predict the sectorial am also called aσ, specific to each Magnetical Local Time sector. Finally, we developped a brand new technique combining the LSTM network and gaussian process, to provide probabilistic predictions up to six hours ahead of geomagnetic index Dst and am. This method has been first developped to predict Dst to be able to compare the performance of this model with reference models, and then applied to the geomagnetic index am.
|
48 |
Estimation de modèles de mélange probabilistes: une proposition pour un fonctionnement réparti et décentraliseNikseresht, Afshin 22 October 2008 (has links) (PDF)
Cette th`ese traite de l'estimation statistique distribu ́e, avec la motivation de, et l'application `a l'indexation multim ́edia par le contenu. Les algorithmes et les donn ́ees de divers contributeurs coop ́ereront vers un apprentissage statistique collectif. La contribution est un arrangement pour estimer une densit ́e de probabilit ́e multivariable, dans le cas ou` cette densit ́e prend la forme d'un mod`ele de m ́elange gaussien. Dans ce cadre, l'agr ́egation des mod`eles probabilistes de m ́elanges gaussiens de la mˆeme classe, mais estim ́es `a plusieurs nœuds sur diff ́erents ensembles de donn ́ees, est une n ́ecessit ́e typique `a laquelle nous nous int ́eressons dans cette th`ese. Les approches propo- s ́ees pour la fusion de m ́elanges gaussiens exigent uniquement le calcul mod ́er ́e `a chaque nœud et peu de donn ́ees de transit entre les nœuds. Ces deux propri ́et ́es sont obtenues en agr ́egeant des mod`eles via leurs (peu) param`etres plutˆot que par les donn ́ees multim ́edia. Dans la premi`ere approche, en supposant que les m ́elanges sont estim ́es ind ́ependamment, nous propageons leurs param`etres de fa ̧con d ́ecentralis ́ee (gossip), dans un r ́eseau, et agr ́egeons les mod`eles `a partir des nœuds reli ́es entre eux, pour am ́eliorer l'estimation. Les mod`eles de m ́elange sont en fait concat ́en ́es puis r ́eduits `a un nombre appropri ́e de composants gaussiens. Une modification de la divergence de Kullback conduit `a un processus it ́eratif pour estimer ce mod`ele agr ́eg ́e. Afin d'ap- porter une am ́elioration, l'agr ́egation est r ́ealis ́ee par la mod ́elisation bay ́esienne du probl`eme de groupement de composant de mod`ele de m ́elange gaussien et est r ́esolue en utilisant la m ́ethode variationnelle, appliqu ́ee au niveau de composant. Cela permet de d ́eterminer, par un processus simple, peu couˆteux et pr ́ecis, les attributions des composants qui devraient ˆetre agr ́eg ́es et le nombre de composants dans le m ́elange apr`es l'agr ́egation. Comme seulement les param`etres du mod`ele sont ́echang ́es sur le r ́eseau, le calcul et la charge du r ́eseau restent tr`es mod ́er ́es.
|
49 |
Exploiter l'approche hiérarchique bayésienne pour la modélisation statistique de structures spatiales: application en écologie des populationsAncelet, Sophie 01 July 2008 (has links) (PDF)
Dans la plupart des questions écologiques, les phénomènes aléatoires d'intérêt sont spatialement structurés et issus de l'effet combiné de multiples variables aléatoires, observées ou non, et inter-agissant à diverses échelles. En pratique, dès lors que les données de terrain ne peuvent être directement traitées avec des structures spatiales standards, les observations sont généralement considérées indépendantes. Par ailleurs, les modèles utilisés sont souvent basés sur des hypothèses simplificatrices trop fortes par rapport à la complexité des phénomènes étudiés. Dans ce travail, la démarche de modélisation hiérarchique est combinée à certains outils de la statistique spatiale afin de construire des structures aléatoires fonctionnelles "sur-mesure" permettant de représenter des phénomènes spatiaux complexes en écologie des populations. L'inférence de ces différents modèles est menée dans le cadre bayésien avec des algorithmes MCMC. Dans un premier temps, un modèle hiérarchique spatial (Geneclust) est développé pour identifier des populations génétiquement homogènes quand la diversité génétique varie continûment dans l'espace. Un champ de Markov caché, qui modélise la structure spatiale de la diversité génétique, est couplé à un modèle bivarié d'occurrence de génotypes permettant de tenir compte de l'existence d'unions consanguines chez certaines populations naturelles. Dans un deuxième temps, un processus de Poisson composé particulier,appelé loi des fuites, est présenté sous l'angle de vue hiérarchique pour décrire le processus d'échantillonnage d'organismes vivants. Il permet de traiter le délicat problème de données continues présentant une forte proportion de zéros et issues d'échantillonnages à efforts variables. Ce modèle est également couplé à différents modèles sur grille (spatiaux, régionalisés) afin d'introduire des dépendances spatiales entre unités géographiques voisines puis, à un champ géostatistique bivarié construit par convolution sur grille discrète afin de modéliser la répartition spatiale conjointe de deux espèces. Les capacités d'ajustement et de prédiction des différents modèles hiérarchiques proposés sont comparées aux modèles traditionnellement utilisés à partir de simulations et de jeux de données réelles (ours bruns de Suède, invertébrés épibenthiques du Golfe-du-Saint-Laurent (Canada)).
|
50 |
Extrema de processus stochastiques. Propriétés asymptotiques de tests d'hypothèsesMercadier, Cécile 01 July 2005 (has links) (PDF)
Cette thèse se divise en deux parties.<br />La première partie s'inscrit dans la lignée des résultats composant la théorie des valeurs extrêmes. Ces analyses se destinent au calcul de probabilité des événements rares. Le premier travail donne l'ordre asymptotique du maximum d'un processus gaussien, non-stationnaire à variance constante. Le second travail caractérise la loi du maximum en temps fini, et donc pour des niveaux de tous ordres. La procédure d'estimation a d'ailleurs donné naissance à une boîte à outils Matlab appelée MAGP. La seconde partie regroupe deux applications statistiques. D'une part, la distribution et la puissance du test, basé sur le maximum de vraisemblance, sont étudiées pour des modèles de mélange. D'autre part, la construction d'un test de sphéricité est envisagée à l'aide des valeurs propres extrêmes des matrices de covariance.
|
Page generated in 0.0601 seconds