• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charakterizace molekulárních mechanismů reiniciace translace v kvasinkách. / Characterization of the molecular mechanism of translation reinitiation in yeast.

Pondělíčková, Vanda January 2014 (has links)
Translation initiation is a multi-step process culminating in formation of the elongation- competent 80S ribosome. It requires accurate assembly of small and large ribosomal subunits, mRNA, initiation Met-tRNAi Met and at least 12 eukaryotic initiation factors (eIFs). This phase of protein synthesis is also one of the key points of regulation of gene expression. One of the main aims of our laboratory is a complex characterization of the multiprotein eIF3 complex that has been implicated in most of the steps of translation initiation. For example, we revealed and described its novel role in translation reinitiation (REI), a gene-specific translational control mechanism that among others governs expression of an important yeast transcriptional activator GCN4. Here I present a detailed characterization of the multi-functional N-terminal domain of Tif32 (subunit eIF3a). We demonstrated that the Tif32-NTD functionally interacts with the 5' sequences of short upstream ORF (uORF1) in the GCN4 mRNA leader and thus allows efficient reinitiation downstream of this critical reinitiation-permissive uORF. Four REI- promoting elements (RPEs) were identified in the 5' sequences of uORF1, two of which were shown to work in the Tif32-NTD-dependent manner. The structure of the 5' sequences was determined...
2

Sequence-selective DNA Binding by Basic Region/Leucine Zipper Proteins at Noncognate Gene Regulatory Sequences

Chan, I-San 20 August 2012 (has links)
This thesis explores how basic region/leucine zipper (bZIP) transcription factors target gene regulatory sequences. The GCN4 bZIP binds to more than one target site [CRE (TGACGTCA) and cognate AP-1 (TGACTCA)] and exhibits flexibility in -helical structure. These observations suggest that the GCN4 bZIP can establish sequence-selective DNA binding at noncognate target sites. Studies on such noncognate but sequence-selective binding can provide insights into how bZIP proteins search for and localize to their cognate target sites. This thesis investigates DNA binding by the GCN4 bZIP and its structural and functional mimic, the wild-type (wt) bZIP, at noncognate gene regulatory sequences C/EBP (TTGCGCAA), E-box (CACGTG), HRE (GCACGTAG), XRE1 (TTGCGTGA), and related DNA sequences. These DNA-binding activities are sequence-selective, as confirmed by DNase I footprinting and electrophoretic mobility shift assay (EMSA). Full- and half-site DNA-binding affinities, determined by EMSA titrations, decrease from cognate to noncognate binding. At noncognate target sites, the bZIP proteins form a dimer of -helices, as indicated by circular dichroism (CD) spectroscopy and EMSA. These results demonstrate that the bZIP proteins can establish noncognate but sequence-selective DNA binding, and suggest such DNA binding potentially contributes to structure preorganization and rapid translocation of the bZIP proteins when they search for their cognate target sites, to which they then bind with high affinity. This thesis also indicates a highly dynamic DNA-binding model for the bZIP proteins to establish strong and sequence-selective DNA binding. The C/EBP site includes two 5H-LR (TTGCG) half-sites, each of which comprises two 4-bp subsites. The in vitro and in silico results together demonstrate that the basic region at 5H-LR recognizes the 4-bp subsites alternately as distinct units, which requires it to translocate between the subsites, potentially by sliding or hopping. Taken as a whole, this thesis provides further insights into how bZIP transcription factors accomplish sequence-selective DNA binding.
3

Sequence-selective DNA Binding by Basic Region/Leucine Zipper Proteins at Noncognate Gene Regulatory Sequences

Chan, I-San 20 August 2012 (has links)
This thesis explores how basic region/leucine zipper (bZIP) transcription factors target gene regulatory sequences. The GCN4 bZIP binds to more than one target site [CRE (TGACGTCA) and cognate AP-1 (TGACTCA)] and exhibits flexibility in -helical structure. These observations suggest that the GCN4 bZIP can establish sequence-selective DNA binding at noncognate target sites. Studies on such noncognate but sequence-selective binding can provide insights into how bZIP proteins search for and localize to their cognate target sites. This thesis investigates DNA binding by the GCN4 bZIP and its structural and functional mimic, the wild-type (wt) bZIP, at noncognate gene regulatory sequences C/EBP (TTGCGCAA), E-box (CACGTG), HRE (GCACGTAG), XRE1 (TTGCGTGA), and related DNA sequences. These DNA-binding activities are sequence-selective, as confirmed by DNase I footprinting and electrophoretic mobility shift assay (EMSA). Full- and half-site DNA-binding affinities, determined by EMSA titrations, decrease from cognate to noncognate binding. At noncognate target sites, the bZIP proteins form a dimer of -helices, as indicated by circular dichroism (CD) spectroscopy and EMSA. These results demonstrate that the bZIP proteins can establish noncognate but sequence-selective DNA binding, and suggest such DNA binding potentially contributes to structure preorganization and rapid translocation of the bZIP proteins when they search for their cognate target sites, to which they then bind with high affinity. This thesis also indicates a highly dynamic DNA-binding model for the bZIP proteins to establish strong and sequence-selective DNA binding. The C/EBP site includes two 5H-LR (TTGCG) half-sites, each of which comprises two 4-bp subsites. The in vitro and in silico results together demonstrate that the basic region at 5H-LR recognizes the 4-bp subsites alternately as distinct units, which requires it to translocate between the subsites, potentially by sliding or hopping. Taken as a whole, this thesis provides further insights into how bZIP transcription factors accomplish sequence-selective DNA binding.
4

Integration of general amino acid control and TOR regulatory pathways in yeast

Staschke, Kirk A. January 2010 (has links)
Thesis (Ph.D.)--Indiana University, 2010. / Title from screen (viewed on July 21, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Ronald C. Wek, Howard J. Edenberg, Peter J. Roach, Martin Bard. Includes vitae. Includes bibliographical references (leaves 125-132).
5

Integration of general amino acid control and TOR regulatory pathways in yeast

Staschke, Kirk Alan 21 July 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Two important nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC through Gcn2p phosphorylation of the translation initiation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that the GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. While Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p activates genes required for assimilation of secondary nitrogen sources, such as -amino-butyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.
6

Role of Gcn4p in nutrient-controlled gene expression in Saccharomyces cerevisiae / Die Rolle von Gcn4p in der nährstoffkontrollierten Genexpression in Saccharomyces cerevisiae

Grundmann, Olav 27 July 2001 (has links)
No description available.
7

Regulation of gene expression and adhesion in <i>Saccharomyces cerevisiae</i> / Regulation der Genexpression und Adhäsion in <i>Saccharomyces cerevisiae</i>

Kleinschmidt, Malte 03 November 2005 (has links)
No description available.
8

Structure-based Design and Characterization of Genetically Encoded PhotoactivableE DNA-binding Proteins Based on S. cervisiae GCN4 and Hr. halophila PYP

Morgan, Stacy-Anne 31 August 2010 (has links)
Halorhodospira halophila photoactive yellow protein (PYP) is a promising candidate to act as a photoswitching domain in engineered proteins due to the structural changes that occur during its photocycle. Absorption of a photon of wavelength 446 nm triggers trans to cis isomerization of its 4-hydroxycinnamic acid chromophore leading to large structural perturbations in the protein, particularly in the N-terminus. In the dark, a slower cis to trans reisomerization of the chromophore restores the protein’s native fold. The fusion of proteins to PYP’s N-terminus may therefore enable photomodulation of the activity of the attached protein. To test this hypothesis, this thesis descibes genetically encoded photoswitchable DNA-binding proteins that were developed by fusing the prototypical leucine-zipper type DNA-binding protein GCN4 bZIP to the N-terminus of PYP. Five different fusion constructs of full length or truncated GCN4 bZIP and full length PYP as well as fusion constructs of full length GCN4 bZIP and N-terminally truncated PYP mutants were designed in a structure-based approach to determine if the dimerization and DNA binding activities could be controlled by the PYP photocycle. Extensive biophysical characterization of the fusion constructs in the dark and under blue light irradiation using electronic absorption, circular dichroism and fluorescence spectroscopic techniques were performed. As all the fusion proteins could complete photocycles, the DNA binding abilities of the dark and light-adapted states of the proteins were characterized using spectroscopic techniques as well as by the electrophoretic mobility shift assay. All the fusion constructs maintained DNA-binding abilities, however they each differed in their affinities and the extent to which they were activated by blue light irradiation. The reasons for these differences in DNA-binding abilities and photoactivation are explored. Using the results from the characterization of these constructs, proposals are also made to develop more robust genetically encoded photoactivatable DNA-binding proteins of the same type.
9

Structure-based Design and Characterization of Genetically Encoded PhotoactivableE DNA-binding Proteins Based on S. cervisiae GCN4 and Hr. halophila PYP

Morgan, Stacy-Anne 31 August 2010 (has links)
Halorhodospira halophila photoactive yellow protein (PYP) is a promising candidate to act as a photoswitching domain in engineered proteins due to the structural changes that occur during its photocycle. Absorption of a photon of wavelength 446 nm triggers trans to cis isomerization of its 4-hydroxycinnamic acid chromophore leading to large structural perturbations in the protein, particularly in the N-terminus. In the dark, a slower cis to trans reisomerization of the chromophore restores the protein’s native fold. The fusion of proteins to PYP’s N-terminus may therefore enable photomodulation of the activity of the attached protein. To test this hypothesis, this thesis descibes genetically encoded photoswitchable DNA-binding proteins that were developed by fusing the prototypical leucine-zipper type DNA-binding protein GCN4 bZIP to the N-terminus of PYP. Five different fusion constructs of full length or truncated GCN4 bZIP and full length PYP as well as fusion constructs of full length GCN4 bZIP and N-terminally truncated PYP mutants were designed in a structure-based approach to determine if the dimerization and DNA binding activities could be controlled by the PYP photocycle. Extensive biophysical characterization of the fusion constructs in the dark and under blue light irradiation using electronic absorption, circular dichroism and fluorescence spectroscopic techniques were performed. As all the fusion proteins could complete photocycles, the DNA binding abilities of the dark and light-adapted states of the proteins were characterized using spectroscopic techniques as well as by the electrophoretic mobility shift assay. All the fusion constructs maintained DNA-binding abilities, however they each differed in their affinities and the extent to which they were activated by blue light irradiation. The reasons for these differences in DNA-binding abilities and photoactivation are explored. Using the results from the characterization of these constructs, proposals are also made to develop more robust genetically encoded photoactivatable DNA-binding proteins of the same type.
10

Energy landscaping : on the relationship between functionality and sequence mutations for multifunctional biomolecules

Röder, Konstantin January 2018 (has links)
The process of protein and RNA folding has been understood in general terms through the principle of minimal frustration, and is usually thought of as being guided by a folding funnel on the energy landscape, which is based around the native structure. However, more recently, various biomolecules have been associated with multifunnel energy landscapes, where each funnel exhibits a distinct structural ensemble and function. This work explores how the principle of minimal frustration may be extended to multifunnel energy landscapes that are associated with multifunctional biomolecules. To achieve this aim, the computational potential energy landscape framework is employed to analyse four example systems. Additionally, this study analyses mutants for all four systems, where the mutations are chosen to change properties of the systems without destabilising the native sequence ensemble entirely. The first system considered is a two-state coiled-coil. It is shown how mutations fundamentally change the energy landscape from the minimal frustrated organisation necessary to fulfil biological function. These changes can introduce alternative pathways for folding, as well as new structural ensembles. Similar effects are observed for ubiquitin. In addition, the landscape exploration allows us to calculate a number of experimentally determined properties for this protein, which exhibit excellent agreement, and we characterise folding at an atomistic level of detail. Next we consider the hormones oxytocin and vasopressin, which are themselves mutants of each other, along with a number of other mutants for both molecules. Again, the frustration in the landscape increases due to mutations, and a greater variety in the resulting structural ensembles is observed, leading to changes in binding affinities. Finally, the HP1 loop of RNA 7SK is analysed, revealing that the principles established for the energy landscapes of proteins extend to nucleic acids. Overall, the results indicate that sequences have evolved to exhibit the minimum number of funnels on the energy landscape to support multiple functions, extending the principle of minimal frustration to multifunnel energy landscapes.

Page generated in 0.0476 seconds