• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Response of Structures with Added Viscoelastic Dampers

Chang, Tsu-Sheng 09 December 2002 (has links)
Several passive energy dissipation devices have been implemented in practice as the seismic protective systems to mitigate structural damage caused by earthquakes. The solid viscoelastic dampers are among such passive energy dissipation systems. To examine the response reducing effectiveness of these dampers, it is necessary that engineers are able to conduct response analysis of structures installed with added dampers accurately and efficiently. The main objective of this work, therefore, is to develop formulations that can be effectively used with various models of the viscoelastic dampers to calculate the seismic response of a structure-damper system. To incorporate the mechanical effect from VE dampers in the structural dynamic design, it is important to use a proper force-deformation model to correctly describe the frequency dependence of the damper. The fractional derivative model and the general linear model are capable of capturing the frequency dependence of viscoelastic materials accurately. In our research, therefore, we have focused on the development of systematic procedures for calculating the seismic response for these models. For the fractional derivative model, we use the G1 and L1 algorithms to derive various numerical schemes for solving the fractional differential equations for earthquake motions described by acceleration time histories at discrete time points. For linear systems, we also develop a modal superposition method for this model of the damper. This superposition approach can be implemented to obtain the response time history for seismic input defined by the ground acceleration time history. For random ground motion that is described stochastically by the spectral density function, we derive an expression based on random vibration analysis to compute the mean square response of the system. It is noted that the numerical computations involved with the fractional derivative model can be complicated and cumbersome. To alleviate computation difficulty, we explore the use of a general linear model with Kelvin chain analog as a physical representation of the damper properties. The parameters in the model are determined through a curve fitting optimization process. To simplify the analytical work, a self-adjoint system of state equations are formulated by introducing auxiliary displacements for the internal elements in the Kelvin chain. This self-adjoint system can then be solved by using the modal superposition method, which can be extended to develop a response spectrum approach to calculate the seismic design response for the structural system for seismic inputs defined by design ground response spectra. Numerical studies are carried out to demonstrate the applicability of these formulations. Results show that all the proposed approaches provide accurate response values, and the response reduction effects of the viscoelastic dampers can be evaluated to assess their performance using these models and methods. However, the use of a general linear model of the damper is the most efficient. It can capture frequency dependence of the storage and loss moduli as well as the fractional derivative model. The calculation of the response by direct numerical integration of the equations of motion or through the use of the modal superposition approach is significantly simplified, and response spectrum formulation for the calculation of seismic response of design interest can be conveniently formulated. / Ph. D.
2

Statistické srovnání výsledků perkutánních, ureteroskopických a robotických operací pro obstrukci ureteropelvické junkce. / Statistical evaluation of percutan, ureteroscopic a robotic surgeries of ureteropelvic obstruction

Masarovičová, Martina January 2008 (has links)
The aim of this diploma thesis is statistical processing of a sample of patients that have been hospitalized and treated for ureteropelvic junction obstruction at the urological department of ÚNV Prague in last 20 years and to determine the optimal treatment method. Evaluation of surgical techniques from the surgical and economical point of creates a comprehensive image of advantages and disadvantages connected with application of a particular method and enables all participating subjects to decide in case of doubt. In this case the statistical analysis is a proper instrument, leading to find answers, however, it also gives an opportunity for discussion.
3

Explicit Estimators for a Banded Covariance Matrix in a Multivariate Normal Distribution

Karlsson, Emil January 2014 (has links)
The problem of estimating mean and covariances of a multivariate normal distributedrandom vector has been studied in many forms. This thesis focuses on the estimatorsproposed in [15] for a banded covariance structure with m-dependence. It presents theprevious results of the estimator and rewrites the estimator when m = 1, thus makingit easier to analyze. This leads to an adjustment, and a proposition for an unbiasedestimator can be presented. A new and easier proof of consistency is then presented.This theory is later generalized into a general linear model where the correspondingtheorems and propositions are made to establish unbiasedness and consistency. In thelast chapter some simulations with the previous and new estimator verifies that thetheoretical results indeed makes an impact.
4

Pyrosequencing Analysis of irs1 Methylation Levels in Schizophrenia With Tardive Dyskinesia

Li, Yanli, Wang, Kesheng, Zhang, Ping, Huang, Junchao, Liu, Ying, Wang, Zhiren, Lu, Yongke, Tan, Shuping, Yang, Fude, Tan, Yunlong 01 January 2020 (has links)
Tardive dyskinesia (TD) is a serious side effect of certain antipsychotic medications that are used to treat schizophrenia (SCZ) and other mental illnesses. The methylation status of the insulin receptor substrate 1 (IRS1) gene is reportedly associated with SCZ; however, no study, to the best of the authors' knowledge, has focused on the quantitative DNA methylation levels of the IRS1 gene using pyrosequencing in SCZ with or without TD. The present study aimed to quantify DNA methylation levels of 4 CpG sites in the IRS1 gene using a Chinese sample including SCZ patients with TD and without TD (NTD) and healthy controls (HCs). The general linear model (GLM) was used to detect DNA methylation levels among the 3 proposed groups (TD vs. NTD vs. HC). Mean DNA methylation levels of 4 CpG sites demonstrated normal distribution. Pearson's correlation analysis did not reveal any significant correlations between the DNA methylation levels of the 4 CpG sites and the severity of SCZ. GLM revealed significant differences between the 3 groups for CpG site 1 and the average of the 4 CpG sites (P=0.0001 and P=0.0126, respectively). Furthermore, the TD, NTD and TD + NTD groups demonstrated lower methylation levels in CpG site 1 (P=0.0003, P<0.0001 and P<0.0001, respectively) and the average of 4 CpG sites (P=0.0176, P=0.0063 and P=0.003, respectively) compared with the HC group. The results revealed that both NTD and TD patients had significantly decreased DNA methylation levels compared with healthy controls, which indicated a significant association between the DNA methylation levels of the IRS1 gene with SCZ and TD.
5

Variations in Phenotypic Plasticity and Fluctuating Asymmetry of Leaf Morphology of Three Quercus (Oak) Species in Response to Environmental Factors

Kusi, Joseph 01 May 2013 (has links) (PDF)
Leaf morphology of Quercus (oak) species is highly variable and complicated confounded with phenotypic plasticity and fluctuating asymmetry (FA). However, the study of variation is mostly limited to leaf morphology. This study was extended to plasticity and FA variations in Q. alba (white oak), Q. palustris (pin oak), and Q. velutina (black oak). It was hypothesized that light exposure, individual trees, leaf position, and other leaf traits will influence variation in these species. Leaves were sampled from trees of these species and their morphological traits were measured. Absolute asymmetry of leaf width and area were determined and plasticity of each species was calculated. The data were analyzed using nested ANOVA with General Linear Model. Leaf morphology, plasticity and FA varied across the species and light exposure was the main source of variation. Individual trees and several leaf covariate traits also influenced leaf morphological and FA variations in all species.
6

Effective-diffusion for general nonautonomous systems

January 2018 (has links)
abstract: The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained. This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018
7

Vývoj situace juniorů a seniorů v ČR / The development of the situation of juniors and seniors

Siegelová, Klára January 2011 (has links)
The final thesis deals with social situations juniors and seniors in selected countries of the European Union. The thesis monitors changes in social developments primarily in terms of income, education, and especially of unemployment. The selected period is the period from approximately 2005 to 2011, in some cases up to 2013. The aim of this thesis is the statistical analysis of the data set EU-SILC for 2005 and 2010 of Czech Republic, Slovakia, Poland, Germany, France and Spain with focusing on income, education and unemployment among age groups.
8

Particle Size, Surface Charge and Concentration Dependent Ecotoxicity of Three Organo-Coated Silver Nanoparticles: Comparison Between General Linear Model-Predicted and Observed Toxicity

Silva, Thilini, Pokhrel, Lok R., Dubey, Brajesh, Tolaymat, Thabet M., Maier, Kurt J., Liu, Xuefeng 15 January 2014 (has links)
Mechanism underlying nanotoxicity has remained elusive. Hence, efforts to understand whether nanoparticle properties might explain its toxicity are ongoing. Considering three different types of organo-coated silver nanoparticles (AgNPs): citrate-coated AgNP, polyvinylpyrrolidone-coated AgNP, and branched polyethyleneimine-coated AgNP, with different surface charge scenarios and core particle sizes, herein we systematically evaluate the potential role of particle size and surface charge on the toxicity of the three types of AgNPs against two model organisms, Escherichia coli and Daphnia magna. We find particle size, surface charge, and concentration dependent toxicity of all the three types of AgNPs against both the test organisms. Notably, Ag+ (as added AgNO3) toxicity is greater than each type of AgNPs tested and the toxicity follows the trend: AgNO3>BPEI-AgNP>Citrate-AgNP>PVP-AgNP. Modeling particle properties using the general linear model (GLM), a significant interaction effect of primary particle size and surface charge emerges that can explain empirically-derived acute toxicity with great precision. The model explains 99.9% variation of toxicity in E. coli and 99.8% variation of toxicity in D. magna, revealing satisfactory predictability of the regression models developed to predict the toxicity of the three organo-coated AgNPs. We anticipate that the use of GLM to satisfactorily predict the toxicity based on nanoparticle physico-chemical characteristics could contribute to our understanding of nanotoxicology and underscores the need to consider potential interactions among nanoparticle properties to explaining nanotoxicity.
9

Modeling Tree Species Distribution and Dynamics Under a Changing Climate, Natural Disturbances, and Harvest Alternatives in the Southern United States

Sui, Zhen 14 August 2015 (has links)
Forests in the southern United States with diverse forest ownership entities are facing threats associated with climate change and natural disturbances. This study represented the relationship between climate and species dominance, predicted future species distribution probability under a changing climate, and projected forest dynamics under ownership-based management regimes. Correlative statistics and mechanistic modeling approaches are implemented. Temporal scale includes the recent past 40 years and the future 60 years; spatial scale downscaled from southern United States to the coastal region of the northern Gulf of Mexico. In the southern United States, dominance of four major pine species experienced shifts from 1970 to 2000; quantile regression models built on the relationships among pine dominance and climatic variables can be used to predict future southern pine dominance. Furthermore, multiple climate envelope models (CEMs) were constructed for nineteen native and one invasive tree species (Chinese tallow, Triadica sebifera) to predict species establishment probabilities (SEPs) on the various land types from 2010 to 2070. CEMs achieved both predictive consistency and ecological conformity in estimating SEPs. Chinese tallow was predicted to have the highest invasionability in longleaf/slash pine and oak/gum/cypress forests during the next 60 years. Forest dynamics, in the coastal region, was projected by linking CEMs and forest landscape model (LANDIS) to evaluate ownership-based management regimes under climate change and natural disturbances. The dominance of forest species will diminish due to climate change and natural disturbances at both spatial scales—in the coastal region and non-industrial private forest (NIPF). No management on NIPF land was predicted to substantially increase the ratio of occupancy area between pines and oaks, but moderate and intensive management regimes were not significantly different. Pines are expected to be more resistant than oaks by maintaining stable age structures, which matched the forest inventory records. Overall, this study projected a future of southern forests on climate-species relationship, invasion risks, and forest community dynamics under multiple scenarios in the United States. Such knowledge could assist forest managers and landowners in foreseeing the future and making effective management prescriptions to mitigate potential threats.
10

Méthodologie de traitement conjoint des signaux EEG et oculométriques : applications aux tâches d'exploration visuelle libre / Methodology for EEG signal and eye tracking joint processing : applications on free visual exploration tasks

Kristensen, Emmanuelle 12 June 2017 (has links)
Nos travaux se sont articulés autour du problème de recouvrement temporel rencontré lors de l'estimation des potentiels évoqués. Il constitue, plus particulièrement, une limitation majeure pour l'estimation des potentiels évoqués par les fixations ou saccades oculaires lors d'une expérience en enregistrement conjoint EEG et oculométrie. En effet, la méthode habituellement utilisée pour estimer ces potentiels évoqués, la méthode par simple moyennage du signal synchronisé sur l'évènement d'intérêt, suppose qu'il y a un seul potentiel évoqué par essai. Or selon les intervalles inter-stimuli, cette hypothèse n'est pas toujours vérifiée. Ceci est d'autant plus vrai dans le contexte des potentiels évoqués par fixations ou saccades oculaires, les intervalles entre ceux-ci n'étant pas contrôlés par l'expérimentateur et pouvant être plus courts que les latences des potentiels d'intérêt. Le fait que cette hypothèse ne soit pas vérifiée donne une estimation biaisée du potentiel évoqué du fait des recouvrements entre les potentiels évoqués.Nous avons donc utilisé le Modèle Linéaire Général (GLM), méthode de régression linéaire bien connue, pour estimer les potentiels évoqués par les mouvements oculaires afin de répondre à ce problème de recouvrement. Tout d'abord, nous avons introduit, dans ce modèle, un terme de régularisation au sens de Tikhonov dans l'optique d'améliorer le rapport signal sur bruit de l'estimation pour un faible nombre d'essais. Nous avons ensuite comparé le GLM à l'algorithme ADJAR dans un contexte d'enregistrement conjoint EEG et oculométrie lors d'une tâche d'exploration visuelle de scènes naturelles. L'algorithme ADJAR ("ADJAcent Response") est un algorithme classique d'estimation itérative des recouvrements temporels développé en 1993 par M. Woldorff. Les résultats ont montré que le GLM était un modèle plus flexible et robuste que l'algorithme ADJAR pour l'estimation des potentiels évoqués par les fixations oculaires. Puis, deux configurations du GLM ont été comparées pour l'estimation du potentiel évoqué à l'apparition du stimulus et du potentiel évoqué par les fixations au début de l'exploration. Toutes deux prenaient en compte les recouvrements entre potentiels évoqués mais l'une distinguait également le potentiel évoqué par la première fixation de l'exploration du potentiel évoqué par les fixations suivantes. Il est apparu que le choix de la configuration du GLM était un compromis entre la qualité de l'estimation des potentiels et les hypothèses émises sur les processus cognitifs sous-jacents.Enfin, nous avons conduit de bout en bout une expérience d'envergure en enregistrement conjoint EEG et oculométrie portant sur l'exploration des expressions faciales émotionnelles naturelles statiques et dynamiques. Nous avons présenté les premiers résultats pour la modalité statique. Après avoir discuté de la méthode d'estimation des potentiels évoqués selon l'impact des mouvements oculaires sur leur fenêtre de latence, nous avons étudié l'effet du type d'émotion. Nous avons trouvé des modulations du potentiel différentiel EPN (Early Posterior Negativity), entre 230 et 350 ms après l'apparition du stimulus et du potentiel LPP (Late Positivity Potential), entre 400 et 600 ms après l'apparition du stimulus. Nous avons également observé des variations du potentiel évoqué par les fixations oculaires. Pour le potentiel LPP, qui est un marqueur de la reconnaissance consciente de l'émotion, nous avons montré qu'il était important de dissocier l'information qui est immédiatement encodée à l'apparition du stimulus émotionnel, de celle qui est apportée à l'issue de la première fixation. Cela met en évidence un motif d'activation différencié pour les stimuli émotionnels à valence négative ou à valence positive. Cette différenciation est en accord avec l'hypothèse d'un traitement plus rapide des stimuli émotionnels à valence négative que des stimuli émotionnels à valence positive. / Our research focuses on the issue of overlapping for evoked potential estimation. More specifically, this issue is a significant limitation for Eye-Fixation Related Potentials and Eye-Saccade Related Potentials estimations during a joint EEG and eye-tracking recording. Indeed, the usual estimation, by averaging the signal time-locked to the event of interest, is based on the assumption that a single evoked potential occurs during a trial. However, depending on the inter-stimulus intervals, this assumption is not always verified. This is especially the case in the context of Eye-Fixation Related Potentials and Eye-Saccade Related Potentials, given the fact that the intervals between fixations (or saccades) are not controlled by the experimenter and can be shorter than the latencies of the potentials of interest.The fact that this assumption is not verified gives a distorted estimate of the evoked potential due to overlaps between the evoked potentials.We have therefore used the Linear Model (GLM), a well-known linear regression method, to estimate the potentials evoked by ocular movements in order to take into account overlaps. First, we decided to introduce a term of Tikhonov regularization into this model in order to improve the signal-to-noise ratio of the estimate for a small number of trials. Then, we compared the GLM to the ADJAR algorithm in a context of joint EEG and eye-tracking recording during a task of visual exploration of natural scenes. The ADJAR ("ADJAcent Response") algorithm is an algorithm for iterative estimation of temporal overlaps developed in 1993 by M. Woldorff. The results showed that the GLM model was more flexible and robust than the ADJAR algorithm in estimating Eye-Fixation Related Potentials. Further, two GLM configurations were compared in their estimation of evoked potential at the onset of the stimulus and the eye-fixation related potential at the beginning of the testing. Both configurations took into account the overlaps between evoked potentials, but one additionally distinguished the potential evoked by the first fixation of the exploration from the potential evoked by the following fixations. It became clear that the choice of the GLM configuration was a compromise between the estimation quality of the potentials and the assumptions about the underlying cognitive processes.Finally, we conducted an extensive joint EEG and eye-tracking experiment on the exploration of static and dynamic natural emotional facial expressions. We presented the first results for the static modality. After discussing the estimation method of the evoked potentials according to the impact of the ocular movements on their latency window, we studied the influence of the type of emotion. We found modulations of the differential EPN (Early Posterior Negativity) potential, between 230 and 350 ms after the stimulus onset and the Late Positivity Potential (LPP) , between 400 and 600 ms after the stimulus onset. We also observed variations for the Eye-Fixation Related Potentials. Regarding the LPP component, a marker of conscious recognition of emotion, we have shown that it is important to dissociate information that is immediately encoded at the onset of the emotional stimulus from information encoded at the first fixations. This shows a differentiated pattern of activation according to the emotional stimulus valence. This differentiation is in agreement with the hypothesis of a faster treatment of negative emotional stimuli than of positive emotional stimuli.

Page generated in 0.0976 seconds