• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 819
  • 411
  • 122
  • 95
  • 43
  • 31
  • 24
  • 22
  • 17
  • 15
  • 14
  • 13
  • 12
  • 10
  • 8
  • Tagged with
  • 1897
  • 415
  • 359
  • 342
  • 208
  • 190
  • 180
  • 168
  • 146
  • 144
  • 140
  • 133
  • 119
  • 117
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Metody modelování a statistické analýzy procesu extremálních hodnot / Methods of modelling and statistical analysis of an extremal value process

Jelenová, Klára January 2012 (has links)
In the present work we deal with the problem of etremal value of time series, especially of maxima. We study times and values of maximum by an approach of point process and we model distribution of extremal values by statistical methods. We estimate parameters of distribution using different methods, namely graphical methods of data analysis and subsequently we test the estimated distribution by tests of goodness of fit. We study the stationary case and also the cases with a trend. In connection with distribution of excesess and exceedances over a threshold we deal with generalized Pareto distribution.
262

Teorie extrémních hodnot v aktuárských vědách / Extreme Value Theory in Actuarial Sciences

Jamáriková, Zuzana January 2013 (has links)
This thesis is focused on the models based on extreme value theory and their practical applications. Specifically are described the block maxima models and the models based on threshold exceedances. Both of these methods are described in thesis theoretically. Apart from theoretical description there are also practical calculations based on simulated or real data. The applications of block maxima models are focused on choice of block size, suitability of the models for specific data and possibilities of extreme data analysis. The applications of models based on threshold exceedances are focused on choice of threshold and on suitability of the models. There is an example of the model used for calculations of reinsurance premium for extreme claims in the case of nonproportional reinsurance.
263

Modelování operačního rizika / Operational risk modelling

Mináriková, Eva January 2013 (has links)
In the present thesis we will firstly familiarize ourselves with the term of operational risk, it's definition presented in the directives Basel II and Solvency II, and afterwards with the methods of calculation Capital Requirements for Operational Risk, set by these directives. In the second part of the thesis we will concentrate on the methods of modelling operational loss data. We will introduce the Extreme Value Theory which describes possible approaches to modelling data with significant values that occur infrequently; the typical characteristic of operational risk data. We will mainly focus on the model for threshold exceedances which utilizes Generalized Pareto Distribution to model the distribution of those excesses. The teoretical knowledge of this theory and the appropriate modelling will be applied on simulated loss data. Finally we will test the ability of presented methods to model loss data distributions.
264

Rezervování škod v rámci panelových dat / Claims reserving within the panel data framework

Gerthofer, Michal January 2015 (has links)
In the presented thesis the issue of dependency between response variables within the subjects in the generalized linear models framework is investigated. Reserving in non-life insurance is a key factor for the financial position of a company. The text introduces the basic actuarial notation, terminology and methods. The main part is focused on panel data framework, especially Generalized Linear Mixed Models (GLMM) as well as Generalized Estimating Equations (GEE), and their application on claims reserving. The aim of this thesis is to show the advantages, disadvantages, limitations and the comparison of these approaches on representative datasets, which were chosen according to results obtained from whole database analysis. Significant focus is on model selection and diagnostics used for this purpose. Finally, the obtained results are summarized in tables, figures and the comparison of the methods is provided. Powered by TCPDF (www.tcpdf.org)
265

A distribuição normal-valor extremo generalizado para a modelagem de dados limitados no intervalo unitá¡rio (0,1) / The normal-generalized extreme value distribution for the modeling of data restricted in the unit interval (0,1)

Benites, Yury Rojas 28 June 2019 (has links)
Neste trabalho é introduzido um novo modelo estatístico para modelar dados limitados no intervalo continuo (0;1). O modelo proposto é construído sob uma transformação de variáveis, onde a variável transformada é resultado da combinação de uma variável com distribuição normal padrão e a função de distribuição acumulada da distribuição valor extremo generalizado. Para o novo modelo são estudadas suas propriedades estruturais. A nova família é estendida para modelos de regressão, onde o modelo é reparametrizado na mediana da variável resposta e este conjuntamente com o parâmetro de dispersão são relacionados com covariáveis através de uma função de ligação. Procedimentos inferênciais são desenvolvidos desde uma perspectiva clássica e bayesiana. A inferência clássica baseia-se na teoria de máxima verossimilhança e a inferência bayesiana no método de Monte Carlo via cadeias de Markov. Além disso estudos de simulação foram realizados para avaliar o desempenho das estimativas clássicas e bayesianas dos parâmetros do modelo. Finalmente um conjunto de dados de câncer colorretal é considerado para mostrar a aplicabilidade do modelo. / In this research a new statistical model is introduced to model data restricted in the continuous interval (0;1). The proposed model is constructed under a transformation of variables, in which the transformed variable is the result of the combination of a variable with standard normal distribution and the cumulative distribution function of the generalized extreme value distribution. For the new model its structural properties are studied. The new family is extended to regression models, in which the model is reparametrized in the median of the response variable and together with the dispersion parameter are related to covariables through a link function. Inferential procedures are developed from a classical and Bayesian perspective. The classical inference is based on the theory of maximum likelihood, and the Bayesian inference is based on the Markov chain Monte Carlo method. In addition, simulation studies were performed to evaluate the performance of the classical and Bayesian estimates of the model parameters. Finally a set of colorectal cancer data is considered to show the applicability of the model
266

Estimativa do custo da colheita mecanizada de cana-de-açúcar utilizando modelos de regressão / Estimated cost of mechanized harvesting of sugarcane using regression models

Maekawa, Eduardo Shigueiti 22 August 2016 (has links)
A colheita mecanizada é uma das mais significativas e onerosas operações do processo de produção de cana-de-açúcar, tornando-se importante o entendimento das relações que envolvem o seu custo. Atualmente, as metodologias para estimar o custo da colheita partem do conceito de custo fixo e variável. No entanto, considerando a complexidade desse processo, faz-se necessário avaliar métodos capazes de relacionar os parâmetros operacionais com o custo final. Neste contexto, a modelagem estatística por meio da regressão permite tratar tais relações e prever tendências. O objetivo deste trabalho foi desenvolver um modelo empírico para o cálculo do custo da colheita mecanizada de cana-de-açúcar. Desenvolveu-se um modelo linear generalizado (MLG) e um modelo linear generalizado misto (MLGM) ambos com distribuição gama, utilizando indicadores operacionais e dados de custo de 20 usinas do setor sucroalcooleiro. Por meio do MLGM, obteve-se uma aderência satisfatória quando comparado aos modelos MLG, nulo (média) e linear (supondo normalidade). Os indicadores que explicaram o custo foram: produtividade (t maq-1), consumo (l t-1), horímetro (h) e número de operadores por colhedora (nop). / The mechanized harvesting of sugarcane is one of the most significant and costly operations of the production process, thus it is important to understand the relationships involving its cost. Currently, methods to estimate these costs rise from the concept of fixed and variable cost. However, considering the complexity of the harvesting process, it is necessary to evaluate techniques to relate the operating parameters with the final cost. In this context, statistical modeling by regression allows to treat such relationship and predict trends. The objective of this study was to develop an empirical model to calculate the cost of mechanical harvesting of sugarcane. A generalized linear model (GLM) and a generalized linear mixed model (GLMM) both with gamma distribution was developed using operational indicators and cost data from 20 plants in the sugarcane industry. Through the GLMM, satisfactory adhesion was obtained when compared to the GLM, null model (average) and linear (assuming normality). The indicators that explained the cost were: productivity (t mach-1), consumption (l t-1), hourmeter (h) and number of operators per harvester (nop).
267

GARMA models, a new perspective using Bayesian methods and transformations / Modelos GARMA, uma nova perspectiva usando métodos Bayesianos e transformações

Andrade, Breno Silveira de 16 December 2016 (has links)
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average). / Modelos Autoregressivos e de médias móveis generalizados (GARMA) são uma classe de modelos que foi desenvolvida para extender os conhecidos modelos ARMA com distribuição Gaussiana para um cenário de series temporais não Gaussianas. Este trabalho apresenta os modelos GARMA aplicados a distribuições discretas, e alguns métodos de reamostragem aplicados neste contexto. É proposto neste trabalho uma abordagem Bayesiana para os modelos GARMA. O trabalho da continuidade apresentando os modelos GARMA transformados, utilizando a transformação de Box-Cox. E por último porém não menos importante uma abordagem Bayesiana para os modelos GARMA transformados.
268

Modelo linear parcial generalizado simétrico / Linear Model Partial Generalized Symmetric

Vasconcelos, Julio Cezar Souza 06 February 2017 (has links)
Neste trabalho foi proposto o modelo linear parcial generalizado simétrico, com base nos modelos lineares parciais generalizados e nos modelos lineares simétricos, em que a variável resposta segue uma distribuição que pertence à família de distribuições simétricas, considerando um preditor linear que possui uma parte paramétrica e uma não paramétrica. Algumas distribuições que pertencem a essa classe são as distribuições: Normal, t-Student, Exponencial potência, Slash e Hiperbólica, dentre outras. Uma breve revisão dos conceitos utilizados ao longo do trabalho foram apresentados, a saber: análise residual, influência local, parâmetro de suavização, spline, spline cúbico, spline cúbico natural e algoritmo backfitting, dentre outros. Além disso, é apresentada uma breve teoria dos modelos GAMLSS (modelos aditivos generalizados para posição, escala e forma). Os modelos foram ajustados utilizando o pacote gamlss disponível no software livre R. A seleção de modelos foi baseada no critério de Akaike (AIC). Finalmente, uma aplicação é apresentada com base em um conjunto de dados reais da área financeira do Chile. / In this work we propose the symmetric generalized partial linear model, based on the generalized partial linear models and symmetric linear models, that is, the response variable follows a distribution that belongs to the symmetric distribution family, considering a linear predictor that has a parametric and a non-parametric component. Some distributions that belong to this class are distributions: Normal, t-Student, Power Exponential, Slash and Hyperbolic among others. A brief review of the concepts used throughout the work was presented, namely: residual analysis, local influence, smoothing parameter, spline, cubic spline, natural cubic spline and backfitting algorithm, among others. In addition, a brief theory of GAMLSS models is presented (generalized additive models for position, scale and shape). The models were adjusted using the package gamlss available in the free R software. The model selection was based on the Akaike criterion (AIC). Finally, an application is presented based on a set of real data from Chile\'s financial area.
269

Controle não linear aplicado a dispositivos FACTS em sistemas elétricos de potência / Nonlinear control applied to FACTS devices in power systems

Siqueira, Daniel Souto 24 April 2012 (has links)
O TCSC é um dos compensadores dinâmicos mais eficazes empregados em Sistemas Elétricos de Potência, pois, oferece um ajuste flexível, de forma rápida e confiável, possibilitando a aplicação de teorias avançadas no seu controle. Estes dispositivos podem desempenhar funções importantes para a operação e o controle do sistema, trazendo inúmeros benefícios. Devido aos benefícios que o uso deste dispositivo oferece, uma grande quantidade de trabalhos vem sendo desenvolvidos com o intuito de sintetizar leis de controle para o mesmo. Porém, a maioria destes trabalhos é fundamentado em técnicas de controle clássico, isto é, projetando leis de controle baseado em sistemas linearizados e para pontos específicos da operação. Estas técnicas de análise entretanto, não garantem que para perturbações que levam o sistema para pontos distantes daqueles usados no projeto do controlador, a atuação do controlador seja eficaz e contribua assim para a estabilização do sistema. Visando o estudo mais aprofundado dos fenômenos que ocorrem nos sistemas físicos, modelos não lineares vêm sendo empregados, e as técnicas de projeto de controladores baseadas nesses modelos, são cada vez mais desenvolvidas. Neste trabalho será empregada a técnica de controle não linear baseada na Função Energia Generalizada de Controle para síntese de leis de controles estabilizantes para os dispositivos TCSC considerando, na modelagem, as perdas do sistema de transmissão. Esta técnica foi desenvolvida recentemente por SILVA et al. (2009), onde as ideias de Função de Lyapunov de Controle para uma classe maior de problemas foram desenvolvidas. Além de permitir o projeto do controlador, a técnica fornece estimativas da região de estabilidade do sistema e, portanto, podendo subsidiar a avaliação sistemática da contribuição do controlador na estabilidade transitória. / The TCSC is one of the most effective dynamic compensators used in electric power systems, offering a flexible adjustment, quickly and reliably, enabling the application of advanced theories in their control. These devices can play important roles for the operation and control of the networks, bringing many benefits. Because of the beneficial use of these devices a large amount of work has been developed in order to synthesize their control laws. However most of these studies are based on the classical control techniques, designing control laws based on linearized systems at specific operating points. However, these techniques do not guarantee that system disturbances which lead to operating points far away from those used for the controller design, the performance of the controller will be effective contributing to the system stabilization. Aiming to further studies and understanding of the physical phenomena occurring in the real world systems, nonlinear models have being employed in the controller design and techniques based on these methodologies have been proposed as never. In this work the technique of nonlinear control based on the Generalized Control Energy Function, for synthesis of control laws, which stabilize the TCSC devices considering the losses in the system transmission lines are employed. These techniques were recently developed by SILVA et al. (2009), and they extend the ideas of Control Lyapunov Function for a larger class of problems. Besides allowing the controller design, the technique provides estimates of the system stability region and therefore can support the systematic evaluation of the contribution to the transient stability controller.
270

Modelos estatísticos para dados politômicos nominais em estudos longitudinais com uma aplicação à área agronômica / Statistical models for nominal polytomous data in longitudinal studies with an application to agronomy

Menarin, Vinicius 14 January 2016 (has links)
Estudos em que a resposta de interesse é uma variável categorizada são bastante comuns nas mais diversas áreas da Ciência. Em muitas situações essa resposta é composta por mais de duas categorias não ordenadas, denominada então de uma variável politômica nominal, e em geral o objetivo do estudo é associar a probabilidade de ocorrência de cada categoria aos efeitos de variáveis explicativas. Ademais, existem tipos especiais de estudos em que os dados são coletados diversas vezes para uma mesma unidade amostral ao longo do tempo, os estudos longitudinais. Estudos assim requerem o uso de modelos estatísticos que considerem em sua formulação algum tipo de estrutura que suporte a dependência que tende a surgir entre observações feitas em uma mesma unidade amostral. Neste trabalho são abordadas duas extensões do modelo de logitos generalizados, usualmente empregado quando a resposta é politômica nominal com observações independentes entre si. A primeira consiste de uma modificação das equações de estimação generalizadas para dados nominais que se utiliza de razões de chances locais para descrever a dependência entre as observações da variável resposta politômica ao longo dos diversos tempos observados. Este tipo de modelo é denominado de modelo marginal. A segunda proposta abordada consiste no modelo de logitos generalizados com a inclusão de efeitos aleatórios no preditor linear, que também leva em conta uma dependência entre as observações. Esta abordagem caracteriza o modelo de logitos generalizados misto. Há diferenças importantes inerentes às interpretações dos modelos marginais e mistos, que são discutidas e que devem ser levadas em consideração na escolha da abordagem adequada. Ambas as propostas são aplicadas em um conjunto de dados proveniente de um experimento da área agronômica realizado em campo, conduzido sob um delineamento casualizado em blocos com esquema fatorial para os tratamentos. O experimento foi acompanhado ao longo de seis estações do ano, caracterizando assim uma estrutura longitudinal, sendo a variável resposta o tipo de vegetação observado no campo (touceiras, plantas invasoras ou espaços vazios). Os resultados encontrados são satisfatórios, embora a dependência presente nos dados não seja tão caracterizada; por meio de testes como da razão de verossimilhanças e de Wald diversas diferenças significativas entre os tratamentos foram encontradas. Ainda, devido às diferenças metodológicas das duas abordagens, o modelo marginal baseado nas equações de estimação generalizadas mostra-se mais adequado para esses dados. / Studies where the response is a categorical variable are quite common in many fields of Sciences. In many situations this response is composed by more than two unordered categories characterizing a nominal polytomous outcome and, in general, the aim of the study is to associate the probability of occurrence of each category to the effects of variables. Furthermore, there are special types of study where many measurements are taken over the time for the same sampling unit, called longitudinal studies. Such studies require special statistical models that consider some kind of structure that support the dependence that tends to arise from the repeated measurements for the same sampling unit. This work focuses on two extensions of the baseline-category logit model usually employed in cases when there is a nominal polytomous response with independent observations. The first one consists in a modification of the well-known generalized estimating equations for longitudinal data based on local odds ratios to describe the dependence between the levels of the response over the repeated measurements. This type of model is also known as a marginal model. The second approach adds random effects to the linear predictor of the baseline-category logit model, which also considers a dependence between the observations. This characterizes a baseline-category mixed model. There are substantial differences inherent to interpretations when marginal and mixed models are compared, what should be considered in the choice of the most appropriated approach for each situation. Both methodologies are applied to the data of an agronomic experiment installed under a complete randomized block design with a factorial arrangement for the treatments. It was carried out over six seasons, characterizing the longitudinal structure, and the response is the type of vegetation observed in field (tussocks, weeds or regions with bare ground). The results are satisfactory, even if the dependence found in data is not so strong, and likelihood-ratio and Wald tests point to several differences between treatments. Moreover, due to methodological differences between the two approaches, the marginal model based on generalized estimating equations seems to be more appropriate for this data.

Page generated in 0.0521 seconds