• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 23
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 14
  • 13
  • 13
  • 13
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sobre a técnica Fast Collocation (colocação rápida) na determinação do geóide do estado de São Paulo utilizando dados das missões CHAMP e GRACE

Alves, Alexandre de Paula January 2007 (has links)
Os objetivos deste trabalho são: determinar o geóide do Estado de São Paulo (SP) pela técnica matemática Fast Collocation utilizando o modelo do geopotencial CG01c, derivado das novas missões gravimétricas de satélite CHAMP e GRACE, avaliar esse geóide através de estações com alturas geoidais conhecidas e do geóide calculado por Souza (2002), e apresentar uma nova abordagem que amplia a idéia sobre o sensoriamento remoto. O modelo do geopotencial CG01c, obtido com dados das missões CHAMP, GRACE e dados de superfície, e desenvolvido até o grau e ordem 360, foi utilizado para geração de anomalias gravimétricas, as quais foram subtraídas das anomalias gravimétricas terrestres, gerando as anomalias gravimétricas residuais. Essas anomalias residuais serviram de dados de entrada no programa FASTCOL para gerar as alturas geoidais residuais. A essas alturas geoidais residuais foi adicionado o modelo CG01c, representativo dos longos comprimentos de onda do campo de gravidade terrestre, produzindo-se o modelo geoidal chamado GEÓIDESP_FC_2007. Este geóide foi avaliado e posteriormente comparado com o Modelo Digital do Geóide Regular (MDGR). Ao final, argumentos foram apresentados para justificar o estudo do campo de gravidade da Terra no âmbito do sensoriamento remoto. / The objectives of this work are: to determine the geoid of the São Paulo (SP) State applying the mathematical technique so-called Fast Collocation using the CG01c geopotential model, from the new satellite gravity missions CHAMP and GRACE, to evaluate that geoid by stations with known geoidal heights and by the geoid determined by Souza (2002), and to show a new approach that enlarges the idea about the remote sensing. The CG01c geopotential model, obtained from missions CHAMP, GRACE and surface data, and developed up to degree and order 360, it was used to obtain the gravity anomalies, which were subtracted of the terrestrial gravity anomalies, yielding the residuals gravity anomalies. These residuals gravity anomalies it was input to the FASTCOL software to yield the residuals geoidal heights. The CG01c geopotential model, representative of the long wavelengths of the earth gravity field, was added to the residuals geoidal heights, yielding the geoid model so-called GEÓIDESP_FC_2007. This geoid was evaluated and later compared with the Modelo Digital do Geóide Regular (MDGR). At the end, arguments were presented to justify the study of the earth gravity field in the scope of the remote sensing
22

Three-Dimensional Spherical Modeling of the Mantles of Mars and Ceres: Inference from Geoid, Topography and Melt History

Sekhar, Pavithra 03 April 2014 (has links)
Mars is one of the most intriguing planets in the solar system. It is the fourth terrestrial planet and is differentiated into a core, mantle and crust. The crust of Mars is divided into the Southern highlands and the Northern lowlands. The largest volcano in the solar system, Olympus Mons is found on the crustal dichotomy boundary. The presence of isolated volcanism on the surface suggests the importance of internal activity on the planet. In addition to volcanism in the past, there has been evidence of present day volcanic activity. Convective upwelling, including decompression melting, has remained an important contributing factor in melting history of the planet. In this thesis, I investigate the production of melt in the mantle for a Newtonian rheology, and compare it with the melt needed to create Tharsis. In addition to the melt production, I analyze the 3D structure of the mantle for a stagnant lithosphere. I vary different parameters in the Martian mantle to understand the production of low or high degree structures early on to explain the crustal dichotomy. This isothermal structure in the mantle contributes to the geoid and topography on the planet. I also analyze how much of the internal density contributes to the surface topography and areoid of Mars. In contrast to Mars, Ceres is a dwarf planet in the Asteroid belt. Ceres is an icy body and it is unclear if it is differentiated into a core, mantle and crust yet. However, studies show that it is most likely a differentiated body and the mantle consists of ice and silicate. The presence of brucite and serpentine on the surface suggests the presence of internal activity. Being a massive body and also believed to have existed since the beginning of the solar system, studying Ceres will shed light on the conditions of the early solar system. Ceres has been of great interest in the scientific community and its importance has motivated NASA to launch a mission, Dawn, to study the planet. Dawn will collect data from the dwarf planet when it arrives in 2015. In my modeling studies, I implement a similar technique on Ceres, as followed on Mars, and focus on the mantle convection process and the geoid and topography. The silicate-ice mixture in the mantle gives rise to a non-Newtonian rheology that depends on the grain size of the ice particle. The geoid and topography observed for different differentiated scenarios in my modeling can be compared with the data from the Dawn mission when it arrives at Ceres in 2015. / Ph. D.
23

Termální konvekce v pláštích terestrických těles / Thermal Convection in Terrestrial Planetary Mantles

Benešová, Nina January 2015 (has links)
In this thesis, we present results of a numerical modelling study focused on the thermal evolution of the Earth and terrestrial planets. We focus particularly on two problems: I) constraining the internal structure of Venus and Mercury using their geoid and surface topography data and II) evaluating the effects of a rhe- ologically distinct post-perovskite on the secular cooling of the Earth. In part I, we performed simulations in a broad group of models of the Venusian man- tle, characterised by different rheological descriptions, and we compared spectra of their geoid and their surface topography with the observed quantities. Our analysis suggested that the geoid and the surface topography of Venus are con- sistent with a radially symmetric viscosity model with a strong 200 km thick lithosphere, without an asthenosphere and with a gradual viscosity increase in the underlying mantle. In the case of Mercury, none of our models was able to predict observed data, thus suggesting other than a dynamic origin of observed geoid and topography. In part II, we investigated style of Earth's mantle con- vection and its long-term evolution in the models that take into account a weak post-perovskite. We conclude that the presence of the weak post-perovskite en- hances the core cooling. This effect is comparable in...
24

Regionale Geoidmodellierung in Polargebieten

Schwabe, Joachim 07 July 2015 (has links) (PDF)
Der regionalen Schwerefeldmodellierung in polaren Gebieten kommt in vielerlei Hinsicht eine besondere und wachsende Bedeutung zu. Einerseits sind hochauflösende und präzise Geoidmodelle eine wichtige Eingangsgröße bei der Untersuchung und Quantifizierung geophysikalischer, ozeanographischer bzw. glaziologischer Phänomene, z. B. bei der Bestimmung der mittleren dynamischen Ozeantopographie oder der Anwendung des Schwimmgleichgewichts im Bereich von Schelfeisen, Meereis oder subglazialen Seen. Zudem werden sie allgemein zur Referenzierung von Höhenmodellen benötigt. Andererseits sind, aufgrund der unvermeidbaren polaren Datenlücken von Satellitenbeobachtungen jenseits der Grenzbreite (sog. „Polloch“), terrestrische Schweredaten auch für die globale Schwerefeldmodellierung unerlässlich. Jedoch sind die verfügbaren terrestrischen (bodennahen) Schwerebeobachtungen insbesondere im Gebiet der Antarktis äußerst lückenhaft und heterogen. So entspricht das tatsächliche Auflösungsvermögen selbst aktueller kombinierter Schwerefeldmodelle wie EGM2008 oder EIGEN-6C über dem antarktischen Kontinent lediglich dem der reinen Satellitenmodelle aus GRACE bzw. GOCE. Des Weiteren sind Standardverfahren der regionalen Geoidmodellierung hier nicht ohne Weiteres anwendbar. Neben der Heterogenität der Daten als praktischer Herausforderung muss aus theoretischer Sicht dem zusätzlichen Dichtekontrast durch das Eis Rechnung getragen werden. Die vorliegende kumulative Dissertation greift diese Problematik auf. Während die einzelnen Publikationen die Ergebnisse ausgewählter regionaler Fallstudien präsentieren, soll die folgende zusammenfassende Abhandlung einen doppelten Bogen spannen, indem die geophysikalischen Phänomene gleichzeitig als zu untersuchende Anwendungsgebiete und als Einflussfaktoren im Kontext der regionalen Geoidmodellierung beschrieben werden. So wird am Beispiel der Weddellsee gezeigt, wie die Meereisbedeckung die Qualität und Zuverlässigkeit der mithilfe der Satellitenaltimetrie abgeleiteten Schwerefeldmodelle beeinträchtigt. Diese Modelle bilden derzeit die alleinige Datengrundlage für die hochauflösenden globalen Modelle im Gebiet des Antarktischen Ozeans. Zugleich wird anhand des verfeinerten regionalen Modells und daraus abgeleiteter geostrophischer Geschwindigkeiten demonstriert, dass selbst lückenhafte und heterogene terrestrische Daten hier einen wesentlichen Beitrag zur simultanen Kalibrierung und Vereinheitlichung des Datenbestandes leisten können. Im Ergebnis konnten in den küstennahen Gewässern Differenzen von mehreren Dezimetern gegenüber Geoidhöhen aus EGM2008 festgestellt werden, welche teils auf systematische Abweichungen und teils auf Rauschen im globalen Modell zurückzuführen sind. Über dem Festland erreicht dessen Vernachlässigungsfehler im quadratischen Mittel sogar 0,75 m und Maxima von über 3 m. Ein weiteres verfeinertes und, dank geeigneter Eingangsdaten, sehr genaues und hochauflösendes Geoidmodell wird für die Region um den Vostoksee in der Ostantarktis abgeleitet. In Kombination mit Eisoberflächenhöhen und Eisdicken gelingt es, das Schwimmgleichgewicht des subglazialen Sees nachzuweisen. Das gegenüber GOCE zusätzlich gewonnene Geoidsignal ist hier mit 0,56 m Standardabweichung zwar etwas kleiner, jedoch wird im Vergleich mit der residualen Auslenkung des Seespiegels (0,26 m Standardabweichung) auch für diese Anwendung der signifikante und gegenüber dem Auflösungsvermögen von GOCE auch notwendige Beitrag eines regionalen Geoidmodells deutlich. Für das hydrostatische Gleichgewicht eines subglazialen Sees ist streng genommen das tatsächliche Schwerepotential in Höhe des Seespiegels maßgeblich. Dessen Berechnung erfordert eine Fortsetzung des Störpotentials nach unten innerhalb der Topographie, welche konzeptionell in engem Zusammenhang mit dem bekannten Geoid-Quasigeoid-Separationsterm steht. Dessen oft angenommene Approximation mithilfe der Bougueranomalie kann, angesichts der heutigen Anforderungen an ein modernes zentimetergenaues Geoid, gerade in rauem Gelände zu ungenau sein. In Anlehnung an aktuelle Arbeiten auf diesem Gebiet wird ein verallgemeinerter und zugleich verfeinerter Ansatz zur praktischen Berechnung des Terms erarbeitet. Am Beispiel des Himalaya werden die einzelnen Anteile im Rahmen einer Simulationsstudie quantifiziert und insbesondere ihre Sensitivität gegenüber dem Integrationsradius der Topographie untersucht. Besonderes Augenmerk liegt ebenso auf dem indirekten Effekt der Topographie in Bezug auf das Potential, welcher, im Gegensatz zur Anwendung eines planaren Modells, in sphärischer Betrachtungsweise nicht verschwindet. / In many respects, regional gravity field modeling in polar areas is of special, and growing, interest. On the one hand, high-resolution and precise geoid models are an important input parameter to investigate and quantify manifold geophysical, oceanographical and glaciological phenomena, e.g., the determination of the mean dynamic ocean topography, or the application of the hydrostatic equilibrium condition in the areas of ice shelves, sea ice, or subglacial lakes. Moreover, geoid models are in general needed as a reference for height models. On the other hand, because of the unavoidable polar data gaps in satellite measurements due to the inclination (the so-called “polar gap”), terrestrial gravity data are indispensable also for global gravity field modeling. However, the available terrestrial (ground-based) gravity datasets, in particular of Antarctica, are very sparse and heterogeneous. For example, over the Antarctic continent the true resolution of even the most recent combined global geopotential models such as EGM2008 or EIGEN-6C only corresponds to that of the satellite-only models derived from GRACE and GOCE, respectively. Furthermore, standard techniques of regional geoid modeling cannot be readily used in this area. Apart from the heterogeneity of the data as a practical challenge the additional density contrast implied by the covering sheet needs to be accounted for from the theoretical point of view. This complex situation is the starting point for the present cumulative dissertation. Whereas the individual publications present the results of selected regional case studies, the intention of the following summary is to draw an integrated picture aiming at explaining the geophysical phenomena as both applications and influencing factors in the context of regional geoid modeling. Using the example of the Weddell Sea it is shown how sea-ice coverage affects the quality and reliability of marine gravity field models derived from radar satellite altimetry. At present, these models are the only input data to the high-resolution global geopotential models. At the same time, the refined regional model and geostrophic velocities derived thereof are employed to demonstrate how even sparse and heterogeneous terrestrial gravity data may provide a contribution to simultaneously calibrate and unify the available datasets. As a result, near the coast differences at the order of some decimeters could be observed in comparison with EGM2008, originating partly from systematic effects and noise in the global model. In the continental areas, its omission error even yields a standard deviation of 0.75 m and attains a maximum of more than 3 m. Another refined and, owing to appropriate input data, very precise and highly resolving geoid model is derived for the region around subglacial Lake Vostok. In combination with ice-surface heights and ice thickness data it is used to provide observational evidence that the lake is in a state of hydrostatic equilibrium. There, the additional geoid signal w.r.t. GOCE is a bit smaller (0.56 m standard deviation). However, considering the residual deviations of the apparent lake level (0.26 m standard deviation) the significant and necessary, as compared to the resolution of GOCE, contribution of a regional geoid model to this application is shown. In a strict sense, the relevant quantity to evaluate the hydrostatic equilibrium condition of a subglacial lake is the actual geopotential at the anticipated lake level. Its computation requires a downward continuation of the disturbing potential inside the topography, which is closely related to the concept of the well-known geoid-quasigeoid separation term. In the past, this term was frequently described as an approximation by means of the Bouguer anomaly. However, considering the modern requirements of the “one-centimeter geoid” this approximation may be too coarse over rough terrain. Following recent works in this field, a generalized yet refined approach for practical implementation of the term is developed. The individual constituents of the term are quantified. In particular, their sensitivity against the radius up to which topography is taken into account is investigated. For this simulation study, the Himalaya mountain region served as test area. Furthermore, special focus is given to the indirect of topography on the potential which, contrary to applying a planar model, does not vanish in the spherical approach.
25

Regionale Geoidmodellierung in Polargebieten: Betrachtungen zu ausgewählten Anwendungen und ihren besonderen Anforderungen am Beispiel der Antarktis

Schwabe, Joachim 07 July 2015 (has links)
Der regionalen Schwerefeldmodellierung in polaren Gebieten kommt in vielerlei Hinsicht eine besondere und wachsende Bedeutung zu. Einerseits sind hochauflösende und präzise Geoidmodelle eine wichtige Eingangsgröße bei der Untersuchung und Quantifizierung geophysikalischer, ozeanographischer bzw. glaziologischer Phänomene, z. B. bei der Bestimmung der mittleren dynamischen Ozeantopographie oder der Anwendung des Schwimmgleichgewichts im Bereich von Schelfeisen, Meereis oder subglazialen Seen. Zudem werden sie allgemein zur Referenzierung von Höhenmodellen benötigt. Andererseits sind, aufgrund der unvermeidbaren polaren Datenlücken von Satellitenbeobachtungen jenseits der Grenzbreite (sog. „Polloch“), terrestrische Schweredaten auch für die globale Schwerefeldmodellierung unerlässlich. Jedoch sind die verfügbaren terrestrischen (bodennahen) Schwerebeobachtungen insbesondere im Gebiet der Antarktis äußerst lückenhaft und heterogen. So entspricht das tatsächliche Auflösungsvermögen selbst aktueller kombinierter Schwerefeldmodelle wie EGM2008 oder EIGEN-6C über dem antarktischen Kontinent lediglich dem der reinen Satellitenmodelle aus GRACE bzw. GOCE. Des Weiteren sind Standardverfahren der regionalen Geoidmodellierung hier nicht ohne Weiteres anwendbar. Neben der Heterogenität der Daten als praktischer Herausforderung muss aus theoretischer Sicht dem zusätzlichen Dichtekontrast durch das Eis Rechnung getragen werden. Die vorliegende kumulative Dissertation greift diese Problematik auf. Während die einzelnen Publikationen die Ergebnisse ausgewählter regionaler Fallstudien präsentieren, soll die folgende zusammenfassende Abhandlung einen doppelten Bogen spannen, indem die geophysikalischen Phänomene gleichzeitig als zu untersuchende Anwendungsgebiete und als Einflussfaktoren im Kontext der regionalen Geoidmodellierung beschrieben werden. So wird am Beispiel der Weddellsee gezeigt, wie die Meereisbedeckung die Qualität und Zuverlässigkeit der mithilfe der Satellitenaltimetrie abgeleiteten Schwerefeldmodelle beeinträchtigt. Diese Modelle bilden derzeit die alleinige Datengrundlage für die hochauflösenden globalen Modelle im Gebiet des Antarktischen Ozeans. Zugleich wird anhand des verfeinerten regionalen Modells und daraus abgeleiteter geostrophischer Geschwindigkeiten demonstriert, dass selbst lückenhafte und heterogene terrestrische Daten hier einen wesentlichen Beitrag zur simultanen Kalibrierung und Vereinheitlichung des Datenbestandes leisten können. Im Ergebnis konnten in den küstennahen Gewässern Differenzen von mehreren Dezimetern gegenüber Geoidhöhen aus EGM2008 festgestellt werden, welche teils auf systematische Abweichungen und teils auf Rauschen im globalen Modell zurückzuführen sind. Über dem Festland erreicht dessen Vernachlässigungsfehler im quadratischen Mittel sogar 0,75 m und Maxima von über 3 m. Ein weiteres verfeinertes und, dank geeigneter Eingangsdaten, sehr genaues und hochauflösendes Geoidmodell wird für die Region um den Vostoksee in der Ostantarktis abgeleitet. In Kombination mit Eisoberflächenhöhen und Eisdicken gelingt es, das Schwimmgleichgewicht des subglazialen Sees nachzuweisen. Das gegenüber GOCE zusätzlich gewonnene Geoidsignal ist hier mit 0,56 m Standardabweichung zwar etwas kleiner, jedoch wird im Vergleich mit der residualen Auslenkung des Seespiegels (0,26 m Standardabweichung) auch für diese Anwendung der signifikante und gegenüber dem Auflösungsvermögen von GOCE auch notwendige Beitrag eines regionalen Geoidmodells deutlich. Für das hydrostatische Gleichgewicht eines subglazialen Sees ist streng genommen das tatsächliche Schwerepotential in Höhe des Seespiegels maßgeblich. Dessen Berechnung erfordert eine Fortsetzung des Störpotentials nach unten innerhalb der Topographie, welche konzeptionell in engem Zusammenhang mit dem bekannten Geoid-Quasigeoid-Separationsterm steht. Dessen oft angenommene Approximation mithilfe der Bougueranomalie kann, angesichts der heutigen Anforderungen an ein modernes zentimetergenaues Geoid, gerade in rauem Gelände zu ungenau sein. In Anlehnung an aktuelle Arbeiten auf diesem Gebiet wird ein verallgemeinerter und zugleich verfeinerter Ansatz zur praktischen Berechnung des Terms erarbeitet. Am Beispiel des Himalaya werden die einzelnen Anteile im Rahmen einer Simulationsstudie quantifiziert und insbesondere ihre Sensitivität gegenüber dem Integrationsradius der Topographie untersucht. Besonderes Augenmerk liegt ebenso auf dem indirekten Effekt der Topographie in Bezug auf das Potential, welcher, im Gegensatz zur Anwendung eines planaren Modells, in sphärischer Betrachtungsweise nicht verschwindet. / In many respects, regional gravity field modeling in polar areas is of special, and growing, interest. On the one hand, high-resolution and precise geoid models are an important input parameter to investigate and quantify manifold geophysical, oceanographical and glaciological phenomena, e.g., the determination of the mean dynamic ocean topography, or the application of the hydrostatic equilibrium condition in the areas of ice shelves, sea ice, or subglacial lakes. Moreover, geoid models are in general needed as a reference for height models. On the other hand, because of the unavoidable polar data gaps in satellite measurements due to the inclination (the so-called “polar gap”), terrestrial gravity data are indispensable also for global gravity field modeling. However, the available terrestrial (ground-based) gravity datasets, in particular of Antarctica, are very sparse and heterogeneous. For example, over the Antarctic continent the true resolution of even the most recent combined global geopotential models such as EGM2008 or EIGEN-6C only corresponds to that of the satellite-only models derived from GRACE and GOCE, respectively. Furthermore, standard techniques of regional geoid modeling cannot be readily used in this area. Apart from the heterogeneity of the data as a practical challenge the additional density contrast implied by the covering sheet needs to be accounted for from the theoretical point of view. This complex situation is the starting point for the present cumulative dissertation. Whereas the individual publications present the results of selected regional case studies, the intention of the following summary is to draw an integrated picture aiming at explaining the geophysical phenomena as both applications and influencing factors in the context of regional geoid modeling. Using the example of the Weddell Sea it is shown how sea-ice coverage affects the quality and reliability of marine gravity field models derived from radar satellite altimetry. At present, these models are the only input data to the high-resolution global geopotential models. At the same time, the refined regional model and geostrophic velocities derived thereof are employed to demonstrate how even sparse and heterogeneous terrestrial gravity data may provide a contribution to simultaneously calibrate and unify the available datasets. As a result, near the coast differences at the order of some decimeters could be observed in comparison with EGM2008, originating partly from systematic effects and noise in the global model. In the continental areas, its omission error even yields a standard deviation of 0.75 m and attains a maximum of more than 3 m. Another refined and, owing to appropriate input data, very precise and highly resolving geoid model is derived for the region around subglacial Lake Vostok. In combination with ice-surface heights and ice thickness data it is used to provide observational evidence that the lake is in a state of hydrostatic equilibrium. There, the additional geoid signal w.r.t. GOCE is a bit smaller (0.56 m standard deviation). However, considering the residual deviations of the apparent lake level (0.26 m standard deviation) the significant and necessary, as compared to the resolution of GOCE, contribution of a regional geoid model to this application is shown. In a strict sense, the relevant quantity to evaluate the hydrostatic equilibrium condition of a subglacial lake is the actual geopotential at the anticipated lake level. Its computation requires a downward continuation of the disturbing potential inside the topography, which is closely related to the concept of the well-known geoid-quasigeoid separation term. In the past, this term was frequently described as an approximation by means of the Bouguer anomaly. However, considering the modern requirements of the “one-centimeter geoid” this approximation may be too coarse over rough terrain. Following recent works in this field, a generalized yet refined approach for practical implementation of the term is developed. The individual constituents of the term are quantified. In particular, their sensitivity against the radius up to which topography is taken into account is investigated. For this simulation study, the Himalaya mountain region served as test area. Furthermore, special focus is given to the indirect of topography on the potential which, contrary to applying a planar model, does not vanish in the spherical approach.
26

Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH method

Ulotu, Prosper January 2009 (has links)
Developed countries are striving to achieve a cm geoid model. Most developing countries/regions think that the situation in their areas does not allow even a few decimetre geoid model. GNSS, which provides us with position, is one of the greatest achievements of the present time. Conversion of ellipsoidal height to orthometric height, which is more useful, requires an accurate geoid model. In spite of the sparse terrestrial gravity data of variable density, distribution and quality (a typical situation in developing countries), this study set out to develop as accurately as possibly achievable, a high quality geoid model of Tanzania. Literature review of three more preferred geoid methods came to a conclusion, that the Royal Institute of Technology of Sweden (KTH) method of least squares modification of Stokes formula (LSMS) with additive corrections (AC) is the most suitable for this research. However, even with a good method, the accuracy and the quality of a geoid model depend much on the quality of the data. In this study, a procedure to create a gravity database (GDB) out of sparse data with varying density, distribution and quality has been developed. This GDB is of high density and full coverage, which ensures presence of high and low gravity frequencies, with medium frequencies ranging between fair and excellent. Also an alternative local/regional Global Gravitational Model (GGM) validation method based on quality terrestrial point surface gravity anomaly has been developed. Validation of a GGM using the new approach of terrestrial point gravity and GPS/Levelling, gave the same results. Once satisfactorily proved, the method has extra advantages. The limits of Tanzania GDB (TGDB) are latitudes 15 ° S to 4 ° N and longitudes 26 ° E to 44 ° E . Cleaning and quality control of the TGDB was based on the cross validation (XV) by the Kriging method and Gaussian distribution of the XV residuals. The data used in the LSMS with AC to develop a new Tanzania gravimetric geoid model 2008, TZG08, are 1′ ×1′ clean and statistically tested surface gravity anomalies. 39,677 point gravity in land and 57,723 in the ocean were utilised. Pure satellite ITGGRACE03S GGM to degree 120 was used to determine modification parameters and long-wavelength component of the geoid model. 3′′ Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM), ITG-GRACE03S to degree 120 and EIGENCG03C to degree 360 combined GGM qualified to patch the data voids in accordance to the method of this research. TZG08 is referred to Geodetic Reference System 1980 (GRS80), and its extents are latitudes 12 ° S to 1 ° N and longitudes 29 ° E to 41 ° E . 19 GPS/levelling points qualified to assess the overall accuracy of TZG08 as 29.7 cm, and upon approximate removal of GPS and orthometric systematic effects, the accuracy of TZG08 is 27.8 cm. A corrector surface (CS) for conversion of GPS height to orthometric height referred to Tanzania National Height Datum (TNHD) has been created for a part of TZG08. Using the CS and TZG08, orthometric height of Mt. Kilimanjaro is re-established as it was in 1952 to be 5,895 m above the TNHD, which is still the official height of the mountain. / <p>QC 20100813</p>
27

Etablissement des nouveaux réseaux multi-observations géodésiques et gravimétriques, et détermination du géoïde en Iran / Establishment of multi-observations geodetic and gravimetric networks, and determination of geoid in Iran

Hatam Chavari, Yaghoub 08 December 2010 (has links)
Iran couvre une grande superficie en longitude entre les méridiens 44°E et 64°E et en latitude entre les parallèles 25°N et 40°N. la cartographie de champ de pesanteur sur l'Iran est de première importance pour des considérations d'ordre géodésique, géophysique et géodynamique. Dans cette thèse, les mesures de pesanteur sont utilisées pour déterminer le géoïde gravimétrique sur l'Iran. Ce géoïde est couplé à la mesure de hauteur GPS et d'altitude (nivellement) pour réaliser une surface verticale opérationnelle sur le territoire Iranien. La contribution aux principaux travaux géodésiques et gravimétriques réalisés ces dernières années porte sur l'établissement: 1) du réseau national de gravimétrique absolu de l'Iran (NAGNI09), 2) de la ligne nationale d'étalonnage de gravimétrique de l'Iran (NGCLI10), 3) du réseau multi- observations géodésiques et gravimétriques de l'Iran (MPGGNI10). Le réseau gravimétrique absolu, comporte 24 stations où la mesure de la pesanteur a été réalisée à l'aide de gravimètres FG5, avec une précision meilleure que 5 Gal. La répétition des observations sur deux sites entre 2000 et 2007 met en évidence des variations inter-annuelles de la pesanteur en relation avec l'évolution du contenu en eau du sous-sol et (ou) la déformation tectonique. Le réseau a servi de point d'appui pour la réalisation du réseau géodésique et gravimétrique MPGGNI10 de maille 55 km sur lequel a été mesuré la pesanteur à l'aide des gravimètres relatifs CG5 et CG-3/M, la hauteur de GPS et l'altitude avec une précision respectivement de 0.010 mGal, 0.03 m et . La technique de retrait- restauration couplée à la méthode de condensation de Helmert a permis de calculer un nouveau modèle de géoïde gravimétrique, IRGeoid10, avec une précision absolue et relatif respectivement de l'ordre de 0.26 m et 2.8 ppm. Ce géoïde est ajusté aux points GPS nivelés pour définir un nouveau référentiel des altitudes sur l'Iran. / Iran covers a large area limited in longitude by the meridians 44°E and 64°E and in latitude by the parallels 25°N and 40°N. Mapping a new gravity field over Iran is the first important data for geodetic, geophysical and geodynamical considerations. In this thesis, the gravity measurements are used to determine the gravimetric geoid over Iran. This geoid is coupled with the GPS height and altitude (levelling) to realize an operational vertical surface at the territory of Iran. The contribution of the principal geodetic and gravimetric works realized in recent years are the establishment of: 1) the national absolute gravity network of Iran (NAGNI09), 2) the national gravity calibration line of Iran (NGCLI10) and 3) the multi-observations geodetic and gravimetric network of Iran (MPGGNI10). The absolute gravity network consists in 24 stations where the gravity measurement has been realized with the help of gravimeters FG5, with a precision better than 5 Gal. The repetition of the observations at two stations between 2000 and 2007 makes obvious the inter-annual variations of gravity in relation of the amount of underground water changes and (or) tectonic deformation. The absolute gravity network has served the base stations for the realization of the MPGGNI10 geodetic and gravimetric network with a mesh of 55 km, at which the gravity is measured with the help of relative gravimeters CG-5 and CG-3/M, the GPS height and the altitude with a precision of 0.010 mGal, 0.03 m, and respectively. The remove-restore technique coupled with the Helmert's condensation method is chousen to compute a new gravimetric geoid model, IRGeoid10, with a absolute and relative precision of the order of 0.26 m and 2.8 ppm respectively. The gravimetric geoid is adjusted at the GPS/levelling points to define new vertical reference surface over Iran
28

Proposta de metodologia para definição de um modelo digital de elevação para monitoramento de áreas de inundação

Silva, Robert Martins da 01 October 2017 (has links)
Submitted by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2018-02-06T15:00:54Z No. of bitstreams: 1 Robert Martins da Silva - 2017.pdf: 90829743 bytes, checksum: 03eef7ebec5e626e2c74eddd8bf63508 (MD5) / Approved for entry into archive by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2018-02-06T15:33:35Z (GMT) No. of bitstreams: 1 Robert Martins da Silva - 2017.pdf: 90829743 bytes, checksum: 03eef7ebec5e626e2c74eddd8bf63508 (MD5) / Made available in DSpace on 2018-02-06T15:33:35Z (GMT). No. of bitstreams: 1 Robert Martins da Silva - 2017.pdf: 90829743 bytes, checksum: 03eef7ebec5e626e2c74eddd8bf63508 (MD5) Previous issue date: 2017-10-01 / O conhecimento do relevo terrestre sempre foi de grande importância para a humanidade, e o modo de sua representação é objeto de constante e múltiplos estudos. Objetivo desse trabalho foi a utilização de métodos geodésicos para eleboração de um modelo digital de elevação integrado com dados hidrológicos para monitoramento das áreas afetadas pelas inundações do Rio Uruguai na cidade de Itaqui, Rio Grande do Sul, que periodicamente sofrem perdas e grandes gastos devido as recorrentes inundações. Para tanto neste trabalho é aplicado uma metodologia baseada na associação de dados provenientes de diferentes fontes (dados de levantamento geodésico, altimétrico, série histórica de dados hidrológicos), e que juntos retornam um produto final preciso e confiável. Para início do trabalho foi realizado a vinculação das cotas do rio ao sistema geodésico brasileiro através do nivelamento geométrico entre uma RN de referência e as réguas linimétricas do rio. Na segunda parte do trabalho foi aplicada técnicas de posicionamento geodésico dentro da região de estudo e posterior processamento e análise dos dados obtidos. Nessa etapa também realizou-se a conversão de altitudes geométricas em ortométricas e sua correção com o uso de um modelo geoidal. A terceira etapa do trabalho consistiu na geração de modelos digitais com diferentes interpoladores em ambiente SIG e posteriormente foi realizada uma análise estatística para validação e classificação dos modelos por meio do Software GeoPec desenvolvido especificamente para avaliação de dados espaciais. E por último a validação do MDE resultante através da comparação com trabalhos já realizados e com uma aplicação direta em um evento ocorrido no ano de 2017. A aplicação dessa metodologia permitiu a obtenção de um modelo digital de elevação preciso e acurado classificado dentro das normativas da cartografia nacional. Tal resultado justifica que a aplicação da metodologia proposta pode ser empregada por toda área urbana do município de Itaqui retornar algum suporte aos gestores visto que a metodologia apresentou resultados satisfatórios, necessitando porém de alguns ajustes e complementos de forma a se tornar mais eficiente. / The knowledge of earthly relief has always been of great importance to mankind, and the mode of its representation is the object of constant and multiple studies.The objective of this work was the use of geodetic methods for the elaboration of a digital elevation model integrated with hydrological data to monitor the areas affected by the Uruguay River floods in the city of Itaqui, Rio Grande do Sul, which periodically suffer losses and large expenses due to recurrent floods. For this purpose, a methodology based on the association of data from different sources (geodetic survey, altimetric data, historical series of hydrological data) is applied, and together they return an accurate and reliable final product. For the beginning of the work the linking of the river quotas to the Brazilian geodetic system was done through the geometric leveling between a reference RN and the linimetric rules of the river. In the second part of the work, geodetic positioning techniques were applied within the region of study and later processing and analysis of the data obtained. In this stage also the conversion of geometric altitudes in ortometric and its correction with the use of a geoidal model was realized. The third stage of the work consisted in the generation of digital models with different interpolators in GIS environment and later a statistical analysis was performed for the validation and classification of the models through the GeoPec Software developed specifically for the evaluation of spatial data. And finally, the validation of the resulting MDE through the comparison with works already carried out and with a direct application in an event occurred in the year 2017. The application of this methodology allowed to obtain a digital model of accurate and accurate elevation classified within the norms of the cartography. This result justifies that the application of the proposed methodology can be used by all urban areas of the municipality of Itaqui to return some support to the managers since the methodology presented satisfactory results, however, requiring some adjustments and complements in order to become more efficient.
29

Obtenção de um modelo geoidal para o Estado de São Paulo. / Determination of geoid model to State of São Paulo.

Silva, Marco Antônio 11 September 2002 (has links)
O sistema GPS tem sido largamente usado para posicionamento. Vislumbra-se o potencial uso deste sistema para determinação de altitudes ortométricas, substituindo o oneroso e demorado processo de nivelamento geométrico. Para isso, um modelo geoidal com precisão absoluta submétrica e precisão relativa da ordem de 2 ppm é necessário. Este modelo pode ser dividido em duas componentes: longo e curto comprimento de onda. O modelo do geopotencial fornece a componente de longo comprimento de onda da altura geoidal, enquanto que a gravimetria associada a um modelo digital do terreno permite calcular a componente de curto comprimento de onda através da integral modificada de Stokes. Algumas das modificações da função de Stokes são comparadas. Dois métodos de avaliação desta integral, integração direta e FFT são mostrados no trabalho. Como resultado dessas comparações, obtém-se um modelo geoidal para o Estado de São Paulo / The GPS system has been used broadly for positioning. It is glimpsed the potential use of this system for the determination of orthometric height, substituting the expensive and slow process of geometric leveling. For this propose, it is necessary a geoid model with submetric absolute accuracy and relative accuracy on the order of 2 ppm. This model can be divided in two components: long and short wavelengths. The model of the geopotential supplies the long wavelength component of the geoid height, while gravimetry associated with a digital terrain model, allows the estimation of the short wavelength component, through the modified Stokes´s integral. Comparisons of some of these modifications of the Stokes´s function are carried out. Two methods of evaluation of the integral, numerical integration and FFT are shown in the work. As a result of those comparisons, it is obtained a geoid model for the State of São Paulo
30

Determinação e avaliação de geoide para o município de Porto Alegre/RS (GEOIDEPOA2016)

Lima, Elen Marten de January 2016 (has links)
Conhecer a altitude de um ponto é muito importante em diversas aplicações, como a implantação de uma rede de água ou para determinar se certa área está sujeita à inundação por exemplo. Esta altitude, altitude ortométrica, está referenciada ao nível médio do mar e é determinada a partir do transporte de um ponto com altitude conhecida até o ponto o qual se deseja saber a altitude. O geoide, é a superfície que representa o nível médio do mar e o seu cálculo tem sido objeto dos geodesistas há muito tempo. Devido a irregularidade da forma da Terra, utiliza-se uma figura matemática para representar a Terra, o elipsoide, onde são realizados os cálculos matemáticos. Ao elipsoide está relacionada a altitude geométrica, a qual é determinada utilizando receptores do sistema global de posicionamento por satélite. A altitude ortométrica e a altitude geométrica, relacionam-se através da ondulação geoidal, a qual é a separação geoide-elipsoide. O transporte das altitudes ortométricas exige uma densa rede com altitudes conhecidas, o que é algo difícil de ocorrer em países de dimensões continentais como o Brasil. Uma das soluções encontradas é cálculo de geoides com precisão que atenda as necessidades na determinação da altitude ortométrica. Este trabalho calculou um geoide para o município de Porto Alegre e foi avaliado a partir das alturas geoidais obtidas do posicionamento GNSS sobre referencias de nível (RRNN) as quais possuem precisão milimétrica. No cálculo do geoide utilizou-se o modelo geopotencial global EGM2008 de grau 360, para a representação dos longos comprimentos de onda; e observações gravimétricas terrestres, totalizando 277 pontos distribuídos por todo o munícipio. Para o cálculo do geoide utilizou-se da integral de Stokes, resultando em um geoide com resolução de 3” x 3” e erro médio quadrático de 7,7 centímetros. Em uma segunda fase o geoide (GEOIDEPOA2016) foi avaliado em relação ao modelo de ondulação geoidal oficial do Brasil, o MAPGEO2015 e seu antecessor, o MAPGEO2010, assim como com o modelo de alturas geoidais o qual a prefeitura municipal de Porto Alegre (NPMPA) possui. Os modelos de alturas geoidais que apresentaram melhores resultados para determinar a altitude ortométrica foram o GEOIDEPOA2016 e o NPMPA, com erro médio quadrático de 7,7 e 8,1 centímetros respectivamente. / The knowledge of an altitude point is very important in several applications, such as the implantation of a water network or to determine if a certain area is subject to flooding for example. This altitude, ortometric altitude, is referenced to the mean sea level and is determined from the transport of a point with known altitude to the point where the altitude is desired. The geoid is the surface that represents the average level of the sea and its calculation has long been object of the geodesists. Due to the irregularity of the shape of the Earth, a mathematical figure is used to represent the Earth, the ellipsoid, where the mathematical calculations are performed. The ellipsoid is related to geometric altitude, which is determined using receivers of the global satellite positioning system. The orthometric altitude and the geometric altitude are related through the geoidal undulation, which is the geoid-ellipsoid separation. The transportation of orthometric altitudes requires a dense network with known altitudes, which is difficult to achieve in countries with continental dimensions such as Brazil. One of the solutions found is accurately calculating geoids that meet the needs in determining orthometric altitude. This work calculated a geoid for the municipality of Porto Alegre and was evaluated from the geoid heights obtained from the GNSS positioning on level references (RRNN) which have millimetric precision. In the calculation of the geoid, the EGM2008 global geopotential model was used for the representation of the long wavelengths with terrestrial gravimetric observations, totaling 277 points distributed throughout the municipality. For the calculation of the geoid was used of the integral of Stokes, resulting in a geoid with resolution of 3 "x 3" and RMS 7.7 centimeters. In a second phase the geoid (GEOIDEPOA2016) was evaluated in relation to the Brazil official geoidal model, MAPGEO2015 and its predecessor, MAPGEO2010, as well as the geoid heights model, which the municipal government of Porto Alegre (NPMPA) has. The geoid heights models that presented the best results to determine the orthometric altitude were GEOIDEPOA2016 and NPMPA, with a RMS 7.7 and 8.1 cm respectively.

Page generated in 0.4299 seconds