• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 19
  • 19
  • 16
  • 13
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverse problems with sparsity constraints convergence rates and exact recovery

Trede, Dennis January 2010 (has links)
Zugl.: Bremen, Univ., Diss., 2010
2

Shape optimization and optimal boundary control for high intensity focused ultrasound (HIFU)

Veljović, Slobodan January 2010 (has links)
Erlangen, Nürnberg, Univ., Diss., 2010
3

Untersuchungen zum phänomenologischen Ansatz der Dielektrizitätsfunktion polarer amorpher Systeme oder die Regularisierung eines exponentiell schlecht gestellten Problems

Rosenberg, Magnus Frank. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Dortmund.
4

Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern

Garcke, Jochen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bonn.
5

Well-posedness of a fluid-particle interaction model / Existenz und Eindeutigkeit von Entropielösungen eines Partikel-Fluid-Modells

Klotzky, Jens January 2018 (has links) (PDF)
This thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant. \begin{align*} \partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} The model was introduced for the case of a single particle by Lagoutière, Seguin and Takahashi, is a first step towards a better understanding of interaction between fluids and solids on the level of partial differential equations and has the unique property of considering entropy admissible solutions and the interaction with shockwaves. The model is extended to an arbitrary, finite number of particles and interactions like merging, splitting and crossing of particle paths are considered. The theory of entropy admissibility is revisited for the cases of interfaces and discontinuous flux conservation laws, existing results are summarized and compared, and adapted for regions of particle interactions. To this goal, the theory of germs introduced by Andreianov, Karlsen and Risebro is extended to this case of non-conservative interface coupling. Exact solutions for the Riemann Problem of particles drifting apart are computed and analysis on the behavior of entropy solutions across the particle related interfaces is used to determine physically relevant and consistent behavior for merging and splitting of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using an explicit construction method, L-infinity bounds, an approximation of the particle paths and compactness arguments to obtain existence of entropy solutions. Uniqueness is shown in the class of weak entropy solutions using almost classical Kruzkov-type analysis and the notion of L1-dissipative germs. Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated. / Diese Arbeit befasst sich mit dem Modell einer skalaren partiellen Differentialgleichung mit singulärem Quellterm, das die Interaktion zwischen einem reibungsfreiem Fluid, dargestellt durch die Burgers Gleichung, und einer gegebenen, endlichen Menge von sich in dem Fluid bewegenden Partikeln beschreibt, die eine punktweise Zugkraft auf das Fluid auswirken und durch eine entsprechende Reibungskonstante charakterisiert sind. \begin{align*} \partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} Das Modell wurde für den Fall der Interaktion mit einem einzelnen Partikel durch Lagoutière, Seguin and Takahashi eingeführt, stellt einen ersten Schritt zu einem besseren Verständnis der Interaktion zwischen einem Fluid und Festkörpern auf dem Level der partiellen Differentialgleichungen dar und hat die einzigartige Eigenschaft, dass Entropielösungen und die Interaktion mit Schockwellen berücksichtigt werden. Das Modell wird zu einer beliebigen, endlichen Anzahl von Partikeln erweitert und Interaktionen wie das Verschmelzen und Spaltung von Partikeln werden behandelt. Existierende Theorie der Entropie-Zulässigkeit im Hinblick auf Interfaces und Erhaltungsgleichungen mit unstetiger Flussfunktion wird zusammengefasst, die Resultate werden verglichen und für die Regionen mit Partikelinteraktionen angepasst. Zu diesem Zweck wird die Theorie der Germs, eingeführt von Andreianov, Karlsen und Risebro, auf den vorliegenden Fall eines nicht-erhaltenden Interfaces erweitert. Für das Riemann Problem von auseinanderdriftenden Partikeln werden die exakten Lösungen berechnet und eine Analyse des Verhaltens von Entropielösungen über die von den Partikeln erzeugten Interface wird genutzt, um ein physikalisch sinnvolles und mit der Theorie eines einzelnen Partikels konsistentes Verhalten beim Verschmelzen und Spalten von Partikeln herzuleiten. Mit Hilfe einer expliziten Konstruktionsmethode, hergeleiteten L-infinity Beschränkungen, einer Approximation der Partikelpfade und Kompaktheitsargumenten wird gezeigt, dass das entsprechende Cauchy Problem wohlgestellt ist. Eindeutigkeit im Raum der schwachen Entropielösungen wird mit beinahe klassischen Argumenten der Theorie von Kruzkov sowie der Theorie von L1-dissipativen Germs gezeigt. Notwendige Grundlagen zu hyperbolischen Erhaltungsgleichungen, unter anderem die Theorie schwacher Lösungen, Schock- und Verdünnungswellen sowie die Rankine-Hugoniot Bedingung, werden in Grundzügen am Anfang der Arbeit wiederholt.
6

Anwendung des Mikrogravitationslinseneffekts zur Untersuchung astronomischer Objekte

Helms, Andreas January 2004 (has links)
Die Untersuchung mikrogelinster astronomischer Objekte ermöglicht es, Informationen über die Größe und Struktur dieser Objekte zu erhalten. Im ersten Teil dieser Arbeit werden die Spektren von drei gelinsten Quasare, die mit dem Potsdamer Multi Aperture Spectrophotometer (PMAS) erhalten wurden, auf Anzeichen für Mikrolensing untersucht. In den Spektren des Vierfachquasares HE 0435-1223 und des Doppelquasares HE 0047-1756 konnten Hinweise für Mikrolensing gefunden werden, während der Doppelquasar UM 673 (Q 0142--100) keine Anzeichen für Mikrolensing zeigt. Die Invertierung der Lichtkurve eines Mikrolensing-Kausik-Crossing-Ereignisses ermöglicht es, das eindimensionale Helligkeitsprofil der gelinsten Quelle zu rekonstruieren. Dies wird im zweiten Teil dieser Arbeit untersucht. Die mathematische Beschreibung dieser Aufgabe führt zu einer Volterra'schen Integralgleichung der ersten Art, deren Lösung ein schlecht gestelltes Problem ist. Zu ihrer Lösung wird in dieser Arbeit ein lokales Regularisierungsverfahren angewendet, das an die kausale Strukture der Volterra'schen Gleichung besser angepasst ist als die bisher verwendete Tikhonov-Phillips-Regularisierung. Es zeigt sich, dass mit dieser Methode eine bessere Rekonstruktion kleinerer Strukturen in der Quelle möglich ist. Weiterhin wird die Anwendbarkeit der Regularisierungsmethode auf realistische Lichtkurven mit irregulärem Sampling bzw. größeren Lücken in den Datenpunkten untersucht. / The study of microlensed astronomical objects can reveal information about the size and the structure of these objects. In the first part of this thesis we analyze the spectra of three lensed quasars obtained with the Potsdam Multi Aperture Spectrophotometer (PMAS). The spectra of the quadrupole quasar HE 0435--1223 and the double quasar HE 0047--1756 show evidence for microlensing whereas in the double quasar UM 673 (Q 0142--100) no evidence for microlensing could be found. By inverting the lightcurve of a microlensing caustic crossing event the one dimensional luminosity profile of the lensed source can be reconstructed. This is investigated in the second part of this thesis.The mathematical formulation of this problem leads to a Volterra integral equation of the first kind, whose solution is an ill-posed problem. For the solution we use a local regularization method which is better adapted to the causal structure of the Volterra integral equation compared to the so far used Tikhonov-Phillips regularization. Furthermore we show that this method is more robust on reconstructing small structures in the source profile. We also study the influence of irregular sampled data and gaps in the lightcurve on the result of the inversion.
7

On the Influence of Multiplication Operators on the Ill-posedness of Inverse Problems / Zum Einfluss von Multiplikationsoperatoren auf die Inkorrektheit Inverser Probleme

Freitag, Melina 28 October 2004 (has links) (PDF)
In this thesis we deal with the degree of ill-posedness of linear operator equations in Hilbert spaces, where the operator may be decomposed into a compact linear integral operator with a well-known decay rate of singular values and a multiplication operator. This case occurs for example for nonlinear operator equations, where the local degree of ill-posedness is investigated via the Frechet derivative. If the multiplier function has got zeroes, the determination of the local degree of ill-posedness is not trivial. We are going to investigate this situation, provide analytical tools as well as their limitations. By using several numerical approaches for computing the singular values of the operator we find that the degree of ill-posedness does not change through those multiplication operators. We even provide a conjecture, verified by several numerical studies, how these multiplication operators influence the singular values of the operator equation. Finally we analyze the influence of those multiplication operators on the opportunities of Tikhonov regularization and corresponding convergence rates. In this context we also provide a short summary on the relationship between nonlinear problems and their linearizations. / Diese Arbeit beschaeftigt sich mit dem Grad der Inkorrektheit linearer Operatorgleichungen in Hilbertraeumen, die sich als Komposition eines vollstetigen linearen Integraloperators mit bekannter Abklingrate der Singulaerwerte und eines Multiplikationsoperators darstellen lassen. Dieser Fall tritt beispielsweise bei nichtlinearen Operatorgleichungen auf, wobei der lokale Inkorrektheitsgrad ueber die Frechetableitung bestimmt wird. Falls die Multiplikatorfunktion Nullstellen hat, so ist die Bestimmung des lokalen Grades der Inkorrektheit nicht einfach. Moeglichkeiten und Grenzen der Analysis fuer diese Situation werden betrachtet. Unterschiedliche numerische Ansaetze fuer die Bestimmung der Singulaerwerte liefern, dass der Grad der Inkorrektheit durch die Multiplikationsoperatoren nicht veraendert wird. Es wird sogar ein Zusammenhang angegeben, wie Multiplikationsoperatoren die Singulaerwerte beeinflussen. Schliesslich werden Moeglichkeiten der Tikhonov-Regularisierung unter Einfluss der Multiplikationsoperatoren untersucht. In diesem Zusammenhang wird auch eine kurze Zusammenfassung zur Beziehung von nichtlinearen Problemen und ihren Linearisierungen gegeben.
8

On variational methods and gradient flows in image processing

Droske, Marc. Unknown Date (has links) (PDF)
Essen, University, Diss., 2005--Duisburg.
9

Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spaces

Anzengruber, Stephan W., Hofmann, Bernd, Mathé, Peter 11 December 2012 (has links) (PDF)
The stable solution of ill-posed non-linear operator equations in Banach space requires regularization. One important approach is based on Tikhonov regularization, in which case a one-parameter family of regularized solutions is obtained. It is crucial to choose the parameter appropriately. Here, a variant of the discrepancy principle is analyzed. In many cases such parameter choice exhibits the feature, called regularization property below, that the chosen parameter tends to zero as the noise tends to zero, but slower than the noise level. Here we shall show such regularization property under two natural assumptions. First, exact penalization must be excluded, and secondly, the discrepancy principle must stop after a finite number of iterations. We conclude this study with a discussion of some consequences for convergence rates obtained by the discrepancy principle under the validity of some kind of variational inequality, a recent tool for the analysis of inverse problems.
10

On the Influence of Multiplication Operators on the Ill-posedness of Inverse Problems: Zum Einfluss von Multiplikationsoperatoren auf die Inkorrektheit Inverser Probleme

Freitag, Melina 03 September 2004 (has links)
In this thesis we deal with the degree of ill-posedness of linear operator equations in Hilbert spaces, where the operator may be decomposed into a compact linear integral operator with a well-known decay rate of singular values and a multiplication operator. This case occurs for example for nonlinear operator equations, where the local degree of ill-posedness is investigated via the Frechet derivative. If the multiplier function has got zeroes, the determination of the local degree of ill-posedness is not trivial. We are going to investigate this situation, provide analytical tools as well as their limitations. By using several numerical approaches for computing the singular values of the operator we find that the degree of ill-posedness does not change through those multiplication operators. We even provide a conjecture, verified by several numerical studies, how these multiplication operators influence the singular values of the operator equation. Finally we analyze the influence of those multiplication operators on the opportunities of Tikhonov regularization and corresponding convergence rates. In this context we also provide a short summary on the relationship between nonlinear problems and their linearizations. / Diese Arbeit beschaeftigt sich mit dem Grad der Inkorrektheit linearer Operatorgleichungen in Hilbertraeumen, die sich als Komposition eines vollstetigen linearen Integraloperators mit bekannter Abklingrate der Singulaerwerte und eines Multiplikationsoperators darstellen lassen. Dieser Fall tritt beispielsweise bei nichtlinearen Operatorgleichungen auf, wobei der lokale Inkorrektheitsgrad ueber die Frechetableitung bestimmt wird. Falls die Multiplikatorfunktion Nullstellen hat, so ist die Bestimmung des lokalen Grades der Inkorrektheit nicht einfach. Moeglichkeiten und Grenzen der Analysis fuer diese Situation werden betrachtet. Unterschiedliche numerische Ansaetze fuer die Bestimmung der Singulaerwerte liefern, dass der Grad der Inkorrektheit durch die Multiplikationsoperatoren nicht veraendert wird. Es wird sogar ein Zusammenhang angegeben, wie Multiplikationsoperatoren die Singulaerwerte beeinflussen. Schliesslich werden Moeglichkeiten der Tikhonov-Regularisierung unter Einfluss der Multiplikationsoperatoren untersucht. In diesem Zusammenhang wird auch eine kurze Zusammenfassung zur Beziehung von nichtlinearen Problemen und ihren Linearisierungen gegeben.

Page generated in 0.0814 seconds