• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 187
  • 78
  • 52
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 787
  • 177
  • 160
  • 151
  • 143
  • 140
  • 137
  • 92
  • 81
  • 77
  • 70
  • 70
  • 60
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Optical Characterization of Rare Earth Doped Glasses

Soundararajan, Gokulakrishnan 06 August 2009
Optical amplifiers are highly sought-after in optical communications to power boost light signals carrying information. Rare Earth doped glasses have been the medium of choice for optical amplification. It is, therefore, essential to understand the interaction of light with potential host glasses for rare-earths before they could be proposed as suitable candidates. In this research, we have optically characterized three different rare earth doped bulk glasses. The glass samples investigated were Neodymium doped Gallium Lanthanum Sulfide (GLS:Nd), Erbium doped Germanium Gallium Sulfide (GeGaS:Er) and Erbium doped Fluorochlorozirconate (FCZ:Er). The transmission spectra, T(λ), was used in identifying the absorption transitions of rare earth ions from the ground level to the various excited levels and in obtaining the optical absorption coefficient, α(λ). This in turn was used in determining the Judd-Ofelt parameters, which were then used in obtaining radiative lifetimes of the energy levels of interest. Photoluminescence emission bands were also identified and their shapes were investigated. Finally, a comparison of the Judd-Ofelt lifetime with the experimental decay time was also done. From which, the major decay mechanism of the rare earth ions from the energy level under investigation was concluded.
292

Optical Characterization of Rare Earth Doped Glasses

Soundararajan, Gokulakrishnan 06 August 2009 (has links)
Optical amplifiers are highly sought-after in optical communications to power boost light signals carrying information. Rare Earth doped glasses have been the medium of choice for optical amplification. It is, therefore, essential to understand the interaction of light with potential host glasses for rare-earths before they could be proposed as suitable candidates. In this research, we have optically characterized three different rare earth doped bulk glasses. The glass samples investigated were Neodymium doped Gallium Lanthanum Sulfide (GLS:Nd), Erbium doped Germanium Gallium Sulfide (GeGaS:Er) and Erbium doped Fluorochlorozirconate (FCZ:Er). The transmission spectra, T(λ), was used in identifying the absorption transitions of rare earth ions from the ground level to the various excited levels and in obtaining the optical absorption coefficient, α(λ). This in turn was used in determining the Judd-Ofelt parameters, which were then used in obtaining radiative lifetimes of the energy levels of interest. Photoluminescence emission bands were also identified and their shapes were investigated. Finally, a comparison of the Judd-Ofelt lifetime with the experimental decay time was also done. From which, the major decay mechanism of the rare earth ions from the energy level under investigation was concluded.
293

Analysis of Plasticity and Shear Band Deformation Mechanism in Bulk Metallic Glasses and Composites

Chen, Hai-min 16 November 2009 (has links)
On the toughening of bulk metallic glasses (BMGs), successful results in the phase-separated Zr63.8Ni16.2Cu15Al5 BMG have achieved compressive ductility over 15% through the computational-thermodynamic approach. In this study, the phase-separated Zr63.8Ni16.2Cu15Al5 BMG was compressed to nominal strains of 3%, 7%, and 10% at low strain rates (~10-4 s-1) and the results demonstrated that the BMG exhibited apparent uniform deformation initially, followed by visible local shear bands development. Afterwards, a single shear along the principal shear plane was soon developed and mainly dominated the whole deformation process. The principal shear contributed more than 2/3 of the overall plastic strain until failure. It was also found that the local shear strain varied along the principal shear plane and decreased monotonically from the shear band initiation site. Subsequently, in-situ compression experiments were conducted to monitor the change of sample shape during deformation in order to properly correlate with the stress-strain curve. The observed images showed that there was a one-to-one correspondence between the intermittent sample sliding and flow serration in the plastic region of stress-strain curve. Further investigations on flow serration were conducted on the Pd40Ni40P20 BMG through the compression experiments equipped with high-sensitivity strain gauges directly attached to two opposite sides of the test sample. There was an accompanied displacement burst when a shear band starts to propagate during deformation and this displacement burst would be accurately captured by the high-sensitivity strain gauges. Based on the displacement-time profile for one serration, shear-band propagating speed can be estimated and found to be insensitive to the applied strain rates (or the applied crosshead speeds). The disappearance of flow serration at high strain rates should be a result that the signal of displacement burst was overwhelmed by the applied strain rate. Using the shear strain rate data, the measured viscosity within a propagating shear band was found to be relatively low, which is in similar to the viscosity values reported in the supercooled liquid region during homogeneous deformation. In comparison with shear band propagation in the brittle Mg58Cu31Y6Nd5 and Au49Ag5.5Pd2.3Cu26.9Si16.3, moderately ductile Cu50Zr43Al7 and Pd40Ni40P20, and highly ductile phased-separated Zr63.8Ni16.2Cu15Al5 systems, the ductility of BMGs appears to be closely related to the dynamics during shear band propagation. The more ductile in nature the metallic glass is, the slower the shear band propagating speed would become. We also made attempts to investigate the shear band propagation in the porous Mo particles reinforced Mg58Cu28.5Gd11Ag2.5 bulk metallic glass composites (BMGCs) with up to 10% compressive failure strain. It was found that flow serration was absent in the stress-strain curve. Using high-sensitivity strain gauges, no distinct displacement burst was detected in the displacement-time profile. The diappearance of flow serration for the current porous Mo particles reinforced Mg58Cu28.5Gd11Ag2.5 BMGC is apparently associated with the lack of long-range shear band propagagtion. By employing the approach of separating the homogeneous amorphous matrix into many individual compartments, only short-range shear band propgagation is possible in the current Mg-based BMGC. An effective free spacing considering the spacing between two porous Mo particles and porous Mo particle size was applied to interpret the development of shear band propagation and is a useful indicator for the design of BMGC with high ductility.
294

Hydrogen in NiZr metallic glasses

Cambron, André. January 1986 (has links)
No description available.
295

Dynamics of neural networks and disordered spin systems

Laughton, Stephen Nicholas January 1995 (has links)
I obtain a number of results for the dynamics of several disordered spin systems, of successively greater complexity. I commence with the generalised Hopfield model trained with an intensive number of patterns, where in the thermodynamic limit macroscopic, deterministic equations of motion can be derived exactly for both the synchronous discrete time and asynchronous continuous time dynamics. I show that for symmetric embedding matrices Lyapunov functions exist at the macroscopic level of description in terms of pattern overlaps. I then show that for asymmetric embedding matrices several types of bifurcation phenomena to complex non-transient dynamics occur, even in this simplest model. Extending a recent result of Coolen and Sherrington, I show how the dynamics of the generalised Hopfield model trained with extensively many patterns and non-trivial embedding matrix can be described by the evolution of a small number of overlaps and the disordered contribution to the 'energy', upon calculation of a noise distribution by the replica method. The evaluation of the noise distribution requires two key assumptions: that the flow equations are self averaging, and that equipartitioning of probability occurs within the macroscopic sub-shells of the ensemble. This method is inexact on intermediate time scales, due to the microscopic information integrated out in order to derive a closed set of equations. I then show how this theory can be improved in a systematic manner by introducing an order parameter function - the joint distribution of spins and local alignment fields, which evolves in time deterministically, according to a driven diffusion type equation. I show how the coefficients in this equation can be evaluated for the generalised Sherrington-Kirkpatrick model, both within the replica symmetric ansatz, and using Parisi's ultrametric ansatz for the replica matrices, upon making once again the two key assumptions (self averaging and equipartitioning). Since the order parameter is now a continuous function, however, the assumption of equipartitioning within the macroscopic sub-shells is much less restricting.
296

Structure and dynamics in two-dimensional glass-forming alloys

Widmer-Cooper, Asaph January 2006 (has links)
Doctor of Philosophy (PhD) / The glass-transition traverses continuously from liquid to solid behaviour, yet the role of structure in this large and gradual dynamic transition is poorly understood. This thesis presents a theoretical study of the relationship between structure and dynamics in two-dimensional glass-forming alloys, and provides new tools and real-space insight into the relationship at a microscopic level. The work is divided into two parts. Part I is concerned with the role of structure in the appearance of spatially heterogeneous dynamics in a supercooled glass-forming liquid. The isoconfigurational ensemble method is introduced as a general tool for analysing the effect that a configuration has on the subsequent particle motion, and the dynamic propensity is presented as the aspect of structural relaxation that can be directly related to microscopic variations in the structure. As the temperature is reduced, the spatial distribution of dynamic propensity becomes increasingly heterogeneous. This provides the first direct evidence that the development of spatially heterogeneous dynamics in a fragile glass-former is related to spatial variations in the structure. The individual particle motion also changes from Gaussian to non- Gaussian as the temperature is reduced, i.e. the configuration expresses its character more and more intermittently. The ability of several common measures of structure and a measure of structural ‘looseness’ to predict the spatial distribution of dynamic propensity are then tested. While the local coordination environment, local potential energy, and local free volume show some correlation with propensity, they are unable to predict its spatial variation. Simple coarse-graining does not help either. These results cast doubt on the microscopic basis of theories of the glass transition that are based purely on concepts of free volume or local potential energy. In sharp contrast, a dynamic measure of structural ‘looseness’ - an isoconfigurational single-particle Debye-Waller (DW) factor - is able to predict the spatial distribution of propensity in the supercooled liquid. This provides the first microscopic evidence for previous correlations found between short- and long-time dynamics in supercooled liquids. The spatial distribution of the DW factor changes rapidly in the supercooled liquid and suggests a picture of structural relaxation that is inconsistent with simple defect diffusion. Overall, the work presented in Part I provides a real-space description of the transition from structure-independent to structure-dependent dynamics, that is complementary to the configuration-space description provided by the energy landscape picture of the glass transition. In Part II, an investigation is presented into the effect of varying the interparticle potential on the phase behaviour of the binary soft-disc model. This represents a different approach to studying the role of structure in glass-formation, and suggests many interesting directions for future work. The structural and dynamic properties of six different systems are characterised, and some comparisons are made between them. A wide range of alloy-like structures are formed, including substitutionally ordered crystals, amorphous solids, and multiphase materials. Approximate phase diagrams show that glass-formation generally occurs between competing higher symmetry structures. This work identifies two new glass-forming systems with effective chemical ordering and substantially different short- and medium-range structure compared to the glassformer studied in Part I. These represent ideal candidates for extending the study presented in Part I. There also appears to be a close connection between quasicrystal and glass-formation in 2D via random-tiling like structures. This may help explain the experimental observation that quasicrystals sometimes vitrify on heating. The alignment of asymmetric unit cells is found to be the rate-limiting step in the crystal nucleation and growth of a substitutionally ordered crystal, and another system shows amorphous-crystal coexistence and appears highly stable to complete phase separation. The generality of these results and their implications for theoretical descriptions of the glass transition are also discussed.
297

Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten

Martin, Morgana. January 2008 (has links)
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Thadhani, Naresh; Committee Member: Doyoyo, Mulalo; Committee Member: Kecskes, Laszlo; Committee Member: Li, Mo; Committee Member: Sanders, Thomas; Committee Member: Zhou, Min.
298

Observed super-spin class behavior in Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles

Adair, Antony. January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
299

Fonctionnalisation de surface de verres métalliques base Zirconium. / Surface functionalization of zirconium based metallic glasses.

Hervier, Paul 28 November 2017 (has links)
Les verres métalliques sont des matériaux récents. Développés depuis les années 60, ils sont connus pour leur haute résistance mécanique et leur capacité à devenir visqueux à relativement basse température. La fonctionnalisation de leur surface est un moyen prometteur d’amélioration et d’optimisation de leurs propriétés. Cependant, la structure amorphe de ces matériaux est métastable et un maintien à une température trop élevée conduit systématiquement à la cristallisation du matériau et donc à une perte de ces propriétés uniques. La plupart des techniques de traitement de surface étant réalisées à hautes températures, elles ne sont pas adaptées à ce type de matériaux. Dans ce travail, deux techniques innovantes que sont le thermoformage et le traitement laser à impulsion ultra-courtes sont utilisées, permettant une texturation de la surface des verres métalliques tout en évitant la cristallisation. Cette thèse porte donc sur l’effet de ces deux traitements de surfaces sur les propriétés physico-chimiques de verres métalliques base zirconium et donc sur la modification de leur propriétés de surface telles que la mouillabilité ou la résistance à la corrosion. Nous verrons que ces deux techniques présentent chacune leur avantages et peuvent être particulièrement adaptées dans le cadre d’applications biomédicales. / Metallic glasses are recent materials. First developed in the 60s, they are well-known for their high mechanical resistance and their ability to become viscous at relatively low temperatures. Functionalization of their surfaces is a promising way to further increase their properties. However, their amorphous structure is in a metastable state and maintaining them at too high temperatures leads systematically to their crystallization, and thus the loss of their unique properties. Most of surface treatment techniques are performed at high temperatures and thus are not adapted to these materials. In this work, two innovative techniques which are thermoforming and ultra-short pulse duration laser treatment have been used and allow to texture the surfaces of the alloys by avoiding their crystallization. This thesis is focused on the effect of these two processing techniques on physical and chemical properties of Zr-based bulk metallic glasses and thus on the modification of their surface properties such as wettability or corrosion resistance. We will see that both techniques present their advantages and can be particularly adapted for biomedical applications.
300

Synthesis and in situ Characterization of Nanostructured and Amorphous Metallic Films

January 2017 (has links)
abstract: Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related. Thus, precise control of the size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films with exceptional mechanical properties. However, conventional bottom-up techniques for synthesizing thin films are incapable of achieving the microstructural control required to explicitly tune their properties. This dissertation focuses on developing a novel technique to synthesize metallic alloy thin films with precisely controlled microstructures and subsequently characterizing their mechanical properties using in situ transmission electron microscopy (TEM). Control over the grain size and distribution was achieved by controlling the recrystallization process of amorphous films by the use of thin crystalline seed layers. The novel technique was used to manipulate the microstructure of structural (TiAl) and functional (NiTi) thin films thereby exhibiting its capability and versatility. Following the synthesis of thin films with tailored microstructures, in situ TEM techniques were employed to probe their mechanical properties. Firstly, a novel technique was developed to measure local atomic level elastic strains in metallic glass thin films during in situ TEM straining. This technique was used to detect structural changes and anelastic deformation in metallic glass thin films. Finally, as the electron beam (e-beam) in TEMs is known to cause radiation damage to specimen, systematic experiments were carried out to quantify the effect of the e-beam on the stress-strain response of nc metals. Experiments conducted on Al and Au films revealed that the e-beam enhances dislocation activity leading to stress relaxation. / Dissertation/Thesis / Supplementary Video S1 / Supplementary Video S2 / Supplementary Video S3 / Doctoral Dissertation Materials Science and Engineering 2017

Page generated in 0.0356 seconds